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P
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay be er understand what you will find beyond this
page.

This text comprises a three–volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, deriva ves, and the basics of
integra on, found in Chapters 1 through 6.1. The second text covers material
o en taught in “Calc 2:” integra on and its applica ons, along with an introduc-
on to sequences, series and Taylor Polynomials, found in Chapters 5 through

8. The third text covers topics common in “Calc 3” or “mul variable calc:” para-
metric equa ons, polar coordinates, vector–valued func ons, and func ons of
more than one variable, found in Chapters 9 through 14. All three are available
separately for free at www.apexcalculus.com.

Prin ng the en re text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some pre-
fer to have a nice, bound copy of the text. Therefore this text has been split into
these three manageable parts, each of which can be purchased for about $15 at
Amazon.com.

For Students: How to Read this Text

Mathema cs textbooks have a reputa on for being hard to read. High–level
mathema cal wri ng o en seeks to say much with few words, and this style
o en seeps into texts of lower–level topics. This book was wri en with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and sec on starts with an introduc on of the coming material,
hopefully se ng the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is wri en to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of defini ons, the truth
of theorems, and the applica on of mathema cal techniques. When you en-
counter a sentence you don’t understand, read it again. If it s ll doesn’t make
sense, read on anyway, as some mes confusing sentences are explained by later
sentences.

You don’t have to read every equa on. The examples generally show “all”
the steps needed to solve a problem. Some mes reading through each step is
helpful; some mes it is confusing. When the steps are illustra ng a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathema cs needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of ge ng bogged down in reading how the number was found.

Most proofs have been omi ed. In mathema cs, proving something is al-
ways true is extremely important, and entails much more than tes ng to see if
it works twice. However, students o en are confused by the details of a proof,
or become concerned that they should have been able to construct this proof

http://apexcalculus.com
http://amazon.com


on their own. To alleviate this poten al problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interac ve, 3D Graphics

New to Version 3.0 is the addi on of interac ve, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shi ed, and zoomed
in/out so the reader can be er understand the object illustrated.

As of this wri ng, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To ac vate the interac ve mode, click on
the image. Once ac vated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to inves gate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object le /right or up/down. By right-clicking on the graph one can access
a menu of other op ons, such as changing the ligh ng scheme or perspec ve.
One can also revert the graph back to its default view. If you wish to deac vate
the interac vity, one can right-click and choose the “Disable Content” op on.

Thanks

There are many people who deserve recogni on for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my me
and a en on at home. Many thanks to Troy Siemers, whose most important
contribu ons extend far beyond the sec ons he wrote or the 227 figures he
coded in Asymptote for 3D interac on. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contribu ons and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Liber ni and other faculty of VMI who have given me
numerous sugges ons and correc ons based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their pa ence in teaching
Calc III while I was s ll wri ng the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solu ons, and thanks to the tutors for spending their me doing so.
A very special thanks to Kris Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, me culously checking every solu on
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra me to work on this project. I am blessed to
have so many people give of their me to make this book be er.

APEX – Affordable Print and Electronic teXts

APEX is a consor um of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wri ng paradigm is facing a poten-
al revolu on as desktop publishing and electronic formats increase in popular-

ity. However, wri ng a good textbook is no easy task, as the me requirements



alone are substan al. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collabora on, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is en rely free; someone always bears some cost. This text
“cost” the authors of this book their me, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military Ins tute, through a generous
Jackson–Hope grant, given the lead author significant me away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Crea ve Commons At-
tribu on - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the la er, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sec ons that are “missing” or remove sec ons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathema cal correc ons (again, thanks
to all my close readers!).

• “Large”mathema cal correc ons and adjustments. Therewere a number
of places in Version 3.0 where a defini on/theorem was not correct as
stated. See www.apexcalculus.com for more informa on.

• More useful numbering of Examples, Theorems, etc. “Defini on 11.4.2”
refers to the second defini on of Chapter 11, Sec on 4.

• The addi on of Sec on 13.7: Triple Integra onwith Cylindrical and Spher-
ical Coordinates

• The addi on of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com




1: L
Calculus means “a method of calcula on or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathema cs that had taken place into
the first half of the 17th century, mathema cians and scien sts were keenly
aware of what they could not do. (This is true even today.) In par cular, two
important concepts eluded mastery by the great thinkers of that me: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× me.” But what if the rate is not constant
– can distance s ll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathema cians, Sir
IsaacNewton andGo ried Leibniz, are creditedwith independently formula ng
a system of compu ng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The founda on of “the calculus” is the limit. It is a tool to describe a par-
cular behavior of a func on. This chapter begins our study of the limit by ap-

proxima ng its value graphically and numerically. A er a formal defini on of
the limit, proper es are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An Introduc on To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the func on y = sin x
x . When x is near the value 1, what value (if

any) is y near?
While our ques on is not precisely formed (what cons tutes “near the value
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Figure 1.1.1: sin(x)/x near x = 1.
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Figure 1.1.2: sin(x)/x near x = 0.

x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 1.1.3: Values of sin(x)/x with x
near 1.

Chapter 1 Limits

1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this func on to approximate the appropriate y values. Consider Figure
1.1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no informa on about what is going on with the func on nearby. We cannot find
out how y behaves near x = 0 for this func on simply by le ng x = 0.

Finding a limit entails understanding how a func on behaves near a par cu-
lar value of x. Before con nuing, it will be useful to establish some nota on. Let
y = f(x); that is, let y be a func on of x for some func on f. The expression “the
limit of y as x approaches 1” describes a number, o en referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete defini on (that will come in the next sec on); this is a
pseudo-defini on that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-defini on of a limit, not the actual defini on.)

Once we have the true defini on of a limit, we will find limits analy cally;
that is, exactly using a variety of mathema cal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a func on can provide
a good approxima on, though o en not very precise. Numerical methods can
provide a more accurate approxima on. We have already approximated limits
graphically, so we now turn our a en on to numerical approxima ons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.1.3.

No ce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned

Notes:
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x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.1.4: Values of sin(x)/x with x
near 0.
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0.28

0.3

0.32

0.34

x

y

Figure 1.1.5: Graphically approxima ng a
limit in Example 1.1.1.

x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.1.6: Numerically approxima ng
a limit in Example 1.1.1.

1.1 An Introduc on To Limits

with the value of the func on at that par cular x value; we are only concerned
with the values of the func on when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.1.2. The table in Figure 1.1.4
shows the value of sin(x)/x for values of x near 0. Ten places a er the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our func on at x = 0, only on the behavior
of the func on near 0.

This numerical method gives confidence to say that 1 is a good approxima-
on of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 1.1.1 Approxima ng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

S To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.1.5 and
1.1.6, respec vely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a be er approxima on.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few ques ons about approxima ng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approxima on as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approxima on?

Notes:

3
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Figure 1.1.7: Graphically approxima ng a
limit in Example 1.1.2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 1.1.8: Numerically approxima ng
a limit in Example 1.1.2.
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Graphs are useful since they give a visual understanding concerning the be-
havior of a func on. Some mes a func on may act “erra cally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing u li es are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in ques on. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do be er. Using values “on both sides of 3” helps us iden fy trends.

Example 1.1.2 Approxima ng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

S Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined func on, so it
behaves differently on either side of 0. Figure 1.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

Iden fying When Limits Do Not Exist

A func on may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The func on f(x)may approach different values on either side of c.

2. The func on may grow without upper or lower bound as x approaches c.

3. The func on may oscillate as x approaches c without approaching a spe-
cific value.

Notes:
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Figure 1.1.9: Observing no limit as x → 1
in Example 1.1.3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 1.1.10: Values of f(x) near x = 1 in
Example 1.1.3.
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Figure 1.1.11: Observing no limit as x →
1 in Example 1.1.4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 1.1.12: Values of f(x) near x = 1 in
Example 1.1.4.

1.1 An Introduc on To Limits

We’ll explore each of these in turn.

Example 1.1.3 Different Values Approached From Le and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1 .

S A graph of f(x) around x = 1 and a table are given in Figures
1.1.9 and 1.1.10, respec vely. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the le ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 1.1.4 The Func on Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

S A graph and table of f(x) = 1/(x − 1)2 are given in Figures
1.1.11 and 1.1.12, respec vely. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.

Example 1.1.5 The Func on Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

S Two graphs of f(x) = sin(1/x) are given in Figures 1.1.13.
Figure 1.1.13(a) shows f(x) on the interval [−1, 1]; no ce how f(x) seems to os-
cillate near x = 0. One might think that despite the oscilla on, as x approaches

Notes:
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Figure 1.1.14: Interpre ng a difference
quo ent as the slope of a secant line.

Chapter 1 Limits

0, f(x) approaches 0. However, Figure 1.1.13(b) zooms in on sin(1/x), on the
interval [−0.1, 0.1]. Here the oscilla on is even more pronounced. Finally, in
the table in Figure 1.1.13(c), we see sin(x)/x evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many mes! Because of this oscilla on,

lim
x→0

sin(1/x) does not exist.
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1

.

x

.

y

x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 1.1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 1.1.5.

Limits of Difference Quo ents

We have approximated limits of func ons as x approached a par cular num-
ber. We will consider another important kind of limit a er explaining a few key
ideas.

Let f(x) represent the posi on func on, in feet, of some par cle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the par cle is at posi on 10 ., and when x = 5, the par cle is at 20 . Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the par cle traveled 10 feet in 4 seconds, we can say the par cle’s average
velocity was 2.5 /s. We write this calcula on using a “quo ent of differences,”
or, a difference quo ent:

f(5)− f(1)
5− 1

=
10
4

= 2.5 /s.

This difference quo ent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essen ally what we are doing:

Notes:

6



.....
2

.
4

.
6

.

10

.

20

. x.

f

(a)

.....
2

.
4

.
6

.

10

.

20

. x.

f

(b)

.....
2

.
4

.
6

.

10

.

20

. x.

f

(c)

Figure 1.1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.1.16: The difference quo ent
evaluated at values of h near 0.

1.1 An Introduc on To Limits

given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.1.14.

Now consider finding the average speed on another me interval. We again
start at x = 1, but consider the posi on of the par cle h seconds later. That is,
consider the posi ons of the par cle when x = 1 and when x = 1 + h. The
difference quo ent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quo ent for all values of h (even
nega ve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quo ent computes the
average velocity of the par cle over an interval of me of length h star ng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average veloci es
over very short me periods and compute secant lines over small intervals. See
Figure 1.1.15. This leads us to wonder what the limit of the difference quo ent
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true defini on of a limit nor an exact method for
compu ng it, we se le for approxima ng the value. While we could graph the
difference quo ent (where the x-axis would represent h values and the y-axis
would represent values of the difference quo ent) we se le for making a table.
See Figure 1.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathema cal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathema cal curiosi es; they allow us to link posi on, velocity and
accelera on together, connect cross-sec onal areas to volume, find the work
done by a variable force, and much more.

In the next sec on we give the formal defini on of the limit and begin our
study of finding limits analy cally. In the following exercises, we con nue our
introduc on and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situa ons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quo ent?

6. When x is near 0, sin x
x

is near what value?

Problems
In Exercises 7 – 16, approximate the given limits both numer-
ically and graphically.

7. lim
x→1

x2 + 3x− 5

8. lim
x→0

x3 − 3x2 + x− 5

9. lim
x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

14. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

15. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

16. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 17 – 24, a func on f and a value a are
given. Approximate the limit of the difference quo ent,
lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π

8



Note: the common phrase “the ε-δ defi-
ni on” is read aloud as “the epsilon delta
defini on.” The hyphen between ε and δ
is not a minus sign.

1.2 Epsilon-Delta Defini on of a Limit

1.2 Epsilon-Delta Defini on of a Limit
This sec on introduces the formal defini on of a limit. Many refer to this as “the
epsilon-delta,” defini on, referring to the le ers ε and δ of the Greek alphabet.

Before we give the actual defini on, let’s consider a few informal ways of
describing a limit. Given a func on y = f(x) and an x-value, c, we say that “the
limit of the func on f, as x approaches c, is a value L”:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if “y is near L” whenever “x is near c.”

The problem with these defini ons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respec vely?

The defini on we describe in this sec on comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The tradi onal nota on for the x-tolerance is the lowercase Greek le er
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of 3′ nearly gets us to the actual defini on:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathema cally as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Le ng the symbol “−→” represent the word “implies,” we can rewrite 3′′ as

|x− c| < δ −→ |y− L| < ε or c− δ < x < c+ δ −→ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any posi ve (but typically
small) values. Finally, we have the formal defini on of the limit with the nota on
seen in the previous sec on.

Notes:
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Chapter 1 Limits

Defini on 1.2.1 The Limit of a Func on f

Let I be an open interval containing c, and let f be a func on defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x in I,
where x ̸= c, if |x− c| < δ, then |f(x)− L| < ε.

(Mathema cians o en enjoy wri ng ideas without using any words. Here is
the wordless defini on of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0,∃ δ > 0 s.t. 0 < |x− c| < δ −→ |f(x)− L| < ε.)

Note the order in which ε and δ are given. In the defini on, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An example will help us understand this defini on. Note that the explana-
on is long, but it will take one through all steps necessary to understand the

ideas.

Example 1.2.1 Evalua ng a limit using the defini on
Show that lim

x→4

√
x = 2.

S Beforeweuse the formal defini on, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

1.5 < y < 2.5
1.5 <

√
x < 2.5

1.52 < x < 2.52

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ < 1.75. See Figure 1.2.1.

Notes:
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1.2 Epsilon-Delta Defini on of a Limit

Given the y tolerance ε = 0.5, we have found an x tolerance, δ < 1.75, such
that whenever x is within δ units of 4, then y is within ε units of 2. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is 0.01, i.e., ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have δ < 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if ε = 0.5, then δ < 1.75 and if ε = 0.01, then δ <
0.0399. A pa ern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of 2:

|y− 2| < ε

−ε < y− 2 < ε (Defini on of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2). (Rewrite in the desired form)

The “desired form” in the last step is “4− something < x < 4+ something.”
Sincewewant this last interval to describe an x tolerance around 4, we have that
either δ < 4ε− ε2 or δ < 4ε+ ε2, whichever is smaller:

δ < min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, the minimum is δ < 4ε − ε2. That’s the formula: given an ε, set
δ < 4ε− ε2.

We can check this for our previous values. If ε = 0.5, the formula gives
δ < 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ < 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, set δ < 4ε − ε2. Then if |x − 4| < δ (and x ̸= 4), then
|f(x) − 2| < ε, sa sfying the defini on of the limit. We have shown formally
(and finally!) that lim

x→4

√
x = 2.

Notes:
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Chapter 1 Limits

The previous examplewas a li le long in thatwe sampled a few specific cases
of ε before handling the general case. Normally this is not done. The previous
example is also a bit unsa sfying in that

√
4 = 2; why work so hard to prove

something so obvious? Many ε-δ proofs are long and difficult to do. In this sec-
on, we will focus on examples where the answer is, frankly, obvious, because

the non–obvious examples are even harder. In the next sec on we will learn
some theorems that allow us to evaluate limits analy cally, that is, without us-
ing the ε-δ defini on.

Example 1.2.2 Evalua ng a limit using the defini on
Show that lim

x→2
x2 = 4.

S Let’s do this example symbolically from the start. Let ε > 0
be given; we want |y − 4| < ε, i.e., |x2 − 4| < ε. How do we find δ such that
when |x− 2| < δ, we are guaranteed that |x2 − 4| < ε?

This is a bit trickier than the previous example, but let’s start by no cing that
|x2 − 4| = |x− 2| · |x+ 2|. Consider:

|x2 − 4| < ε −→ |x− 2| · |x+ 2| < ε −→ |x− 2| < ε

|x+ 2|
. (1.1)

Could we not set δ =
ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assump on. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In par cular, we can (probably) assume that
δ < 1. If this is true, then |x − 2| < δ would imply that |x − 2| < 1, giving
1 < x < 3.

Now, back to the frac on
ε

|x+ 2|
. If 1 < x < 3, then 3 < x + 2 < 5 (add 2

to all terms in the inequality). Taking reciprocals, we have

1
5
<

1
|x+ 2|

<
1
3

which implies

1
5
<

1
|x+ 2|

which implies

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ <
ε

5
. To see why, let consider what follows when

we assume |x− 2| < δ:

Notes:
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Figure 1.2.2: Choosing δ = ε/5 in Exam-
ple 1.2.2.

1.2 Epsilon-Delta Defini on of a Limit

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(Mul ply by |x+ 2|)

|x2 − 4| < |x+ 2| · ε
5

(Combine le side)

|x2 − 4| < |x+ 2| · ε
5
< |x+ 2| · ε

|x+ 2| = ε (Using (1.2) as long as δ < 1)

We have arrived at |x2−4| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assump on; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of ε. The do ed inner lines show the bound-
aries defined by se ng δ = ε/5. Note how these do ed lines are within the
dashed lines. That is perfectly fine; by choosing xwithin the do ed lines we are
guaranteed that f(x) will be within ε of 4.

In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies |x2 − 4| < ε
(i.e. |y − 4| < ε) as desired. This shows that lim

x→2
x2 = 4. Figure 1.2.2 gives a

visualiza on of this; by restric ng x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4.

Make note of the general pa ern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by assuming

1. |f(x) − L| < ε, then perform some algebraic manipula ons to give an
inequality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch–work” phase
of our proof. Once we have δ, we can formally start with |x − c| < δ and use
algebraic manipula ons to conclude that |f(x) − L| < ε, usually by using the
same steps of our “scratch–work” in reverse order.

Notes:
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Chapter 1 Limits

We highlight this process in the following example.

Example 1.2.3 Evalua ng a limit using the defini on
Prove that lim

x→1
(x3 − 2x) = −1.

S We start our scratch–work by considering |f(x)−(−1)| < ε:

|f(x)− (−1)| < ε

|x3 − 2x+ 1| < ε (Now factor)
|(x− 1)(x2 + x− 1)| < ε

|x− 1| < ε

|x2 + x− 1|
. (1.3)

We are at the phase of saying that |x − 1| < something, where something=
ε/|x2 + x− 1|. We want to turn that something into δ.

Since x is approaching 1, we are safe to assume that x is between 0 and 2.
So

0 < x < 2
0 < x2 < 4. (squared each term)

Since 0 < x < 2, we can add 0, x and 2, respec vely, to each part of the inequal-
ity and maintain the inequality.

0 < x2 + x < 6
−1 < x2 + x− 1 < 5. (subtracted 1 from each part)

In Equa on (1.3), we wanted |x−1| < ε/|x2+ x− 1|. The above shows that
given any x in [0, 2], we know that

x2 + x− 1 < 5 which implies that
1
5
<

1
x2 + x− 1

which implies that
ε

5
<

ε

x2 + x− 1
. (1.4)

So we set δ < ε/5. This ends our scratch–work, and we begin the formal proof
(which also helps us understand why this was a good choice of δ).

Given ε, let δ < ε/5. We want to show that when |x − 1| < δ, then |(x3 −

Notes:
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Note: Recall ln 1 = 0 and ln x < 0 when
0 < x < 1. So ln(1 − ε) < 0, hence we
consider its absolute value.

1.2 Epsilon-Delta Defini on of a Limit

2x)− (−1)| < ε. We start with |x− 1| < δ:

|x− 1| < δ

|x− 1| < ε

5
|x− 1| < ε

5
<

ε

|x2 + x− 1|
(for x near 1, from Equa on (1.4))

|x− 1| · |x2 + x− 1| < ε

|x3 − 2x+ 1| < ε

|(x3 − 2x)− (−1)| < ε,

which is what we wanted to show. Thus lim
x→1

(x3 − 2x) = −1.

We illustrate evalua ng limits once more.

Example 1.2.4 Evalua ng a limit using the defini on
Prove that lim

x→0
ex = 1.

S Symbolically, we want to take the equa on |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Here is our scratch–work:

|ex − 1| < ε

−ε < ex − 1 < ε (Defini on of absolute value)
1− ε < ex < 1+ ε (Add 1)

ln(1− ε) < x < ln(1+ ε) (Take natural logs)

Making the safe assump on that ε < 1 ensures the last inequality is valid (i.e.,
so that ln(1−ε) is defined). We can then set δ to be the minimum of | ln(1−ε)|
and ln(1+ ε); i.e.,

δ = min{| ln(1− ε)|, ln(1+ ε)} = ln(1+ ε).

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (Defini on of absolute value)
− ln(1+ ε) < x < ln(1+ ε).

ln(1− ε) < x < ln(1+ ε). (since ln(1− ε) < − ln(1+ ε))

Notes:
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Chapter 1 Limits

The above line is true by our choice of δ and by the fact that since | ln(1− ε)| >
ln(1+ ε) and ln(1− ε) < 0, we know ln(1− ε) < − ln(1+ ε).

1− ε < ex < 1+ ε (Exponen ate)
−ε < ex − 1 < ε (Subtract 1)

In summary, given ε > 0, let δ = ln(1 + ε). Then |x − 0| < δ implies
|ex − 1| < ε as desired. We have shown that lim

x→0
ex = 1.

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
1 instead. By using the subs tu onu = x−c, this reduces to showing limu→0 eu =
1 which we just did in the last example. As an added benefit, this shows that in
fact the func on f(x) = ex is con nuous at all values of x, an important concept
we will define in Sec on 1.5.

This formal defini on of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” func ons like polynomials, square–
roots and exponen als. It is very difficult to prove, using the techniques given
above, that lim

x→0
(sin x)/x = 1, as we approximated in the previous sec on.

There is hope. The next sec on shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathema cs), rarely are
limits evaluated using the defini on. Rather, the techniques of the following
sec on are employed.

Notes:
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “defini on” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be posi ve.

4. T/F: δ must always be posi ve.

Problems
In Exercises 5 – 14, prove the given limit using an ε− δ proof.

5. lim
x→4

(2x+ 5) = 13

6. lim
x→5

(3− x) = −2

7. lim
x→3

(
x2 − 3

)
= 6

8. lim
x→4

(
x2 + x− 5

)
= 15

9. lim
x→1

(
2x2 + 3x+ 1

)
= 6

10. lim
x→2

(
x3 − 1

)
= 7

11. lim
x→2

5 = 5

12. lim
x→0

(
e2x − 1

)
= 0

13. lim
x→1

1
x
= 1

14. lim
x→0

sin x = 0 (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = 0.)

17



Chapter 1 Limits

1.3 Finding Limits Analy cally

In Sec on 1.1 we explored the concept of the limit without a strict defini on,
meaning we could only make approxima ons. In the previous sec on we gave
the defini on of the limit and demonstrated how to use it to verify our approxi-
ma ons were correct. Thus far, our method of finding a limit is 1) make a really
good approxima on either graphically or numerically, and 2) verify our approx-
ima on is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this sec on gives a series of
theorems which allow us to find limits much more quickly and intui vely.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? Intui on tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Proper es
Let b, c, L and K be real numbers, let n be a posi ve integer, and let f and g be
func ons defined on an open interval I containing c with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. Iden ty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar Mul ples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. Quo ents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L
(If n is even then require f(x) ≥ 0 on I.)

9. Composi ons: Adjust our previously given limit situa on to:

lim
x→c

f(x) = L, lim
x→L

g(x) = K and g(L) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits Analy cally

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 1.3.1 Using basic limit proper es
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

S

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMul ple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar Mul ple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadra c
polynomial can be determined using the proper es of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the func on. This holds
true for all polynomials, and also for ra onal func ons (which are quo ents of
polynomials), as stated in the following theorem.

Notes:
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Chapter 1 Limits

Theorem 1.3.2 Limits of Polynomial and Ra onal Func ons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 1.3.2 Finding a limit of a ra onal func on
Using Theorem 1.3.2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

S Using Theorem 1.3.2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.

It was likely frustra ng in Sec on 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many func ons
behave in such an “obvious” fashion, as demonstrated by the ra onal func on
in Example 1.3.2.

Polynomial and ra onal func ons are not the only func ons to behave in
such a predictable way. The following theorem gives a list of func ons whose
behavior is par cularly “nice” in terms of limits. In the next sec on, we will give
a formal name to these func ons that behave “nicely.”

Theorem 1.3.3 Special Limits

Let c be a real number in the domain of the given func on and let n be a posi ve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Notes:
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1.3 Finding Limits Analy cally

Example 1.3.3 Evalua ng limits analy cally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

S

1. This is a straigh orward applica onof Theorem1.3.3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 1.3.3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.3 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
al/logarithmic iden ty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the limit Composi on Rule of Theorem 1.3.1. Using The-
orem 1.3.3, we have lim

x→1
ln x = ln 1 = 0 and lim

x→0
ex = e0 = 1, sa sfying

the condi ons of the Composi on Rule. Applying this rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

Notes:
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Chapter 1 Limits

5. We encountered this limit in Sec on 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condi on of Theorem 1.3.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are s ll unable to eval-
uate this limit with tools we currently have at hand.

The sec on could have been tled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of func ons, we can find limits involving sums,
products, powers, etc., of these func ons. We further the development of such
compara ve tools with the Squeeze Theorem, a clever and intui ve way to find
the value of some limits.

Before sta ng this theorem formally, suppose we have func ons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 1.3.4 Squeeze Theorem

Let f, g and h be func ons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate func ons bywhich to “squeeze”
a given func on. However, that is generally the only place where work is neces-
sary; the theorem makes the “evalua ng the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.

Notes:
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.. θ.

(1, tan θ)

.

(cos θ, sin θ)

.
(1, 0)

Figure 1.3.1: The unit circle and related
triangles.

1.3 Finding Limits Analy cally

Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

S We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
1.3.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

Figure 1.3.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

Mul ply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequali es, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequali es hold for all values of θ near 0, even nega ve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

Notes:
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cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth men oning. First, one
might be discouraged by this applica on, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathema cal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ra o of x and sin x
approaches 1, meaning that they are approaching 0 in essen ally the same way.
Another way of viewing this is: for small x, the func ons y = x and y = sin x are
essen ally indis nguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the la er three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is s ll 1. At the same me, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this par cular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resul ng in a limit of 1.

Notes:
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Figure 1.3.2: Graphing f in Example 1.3.5
to understand a limit.

1.3 Finding Limits Analy cally

Our final theorem for this sec on will be mo vated by the following exam-
ple.

Example 1.3.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

S We begin by a emp ng to apply Theorem 1.3.2 and subs -
tu ng 1 for x in the quo ent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the theorem.
By graphing the func on, as in Figure 1.3.2, we see that the func on seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quo ent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The func on is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the func on at 1, only the value the func on approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.

The key to the above example is that the func ons y = (x2− 1)/(x− 1) and
y = x+1 are iden cal except at x = 1. Since limits describe a value the func on
is approaching, not the value the func on actually a ains, the limits of the two
func ons are always equal.

Notes:
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Theorem 1.3.6 Limits of Func ons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

onal func on of the form g(x)/f(x) and directly evalua ng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 1.3.6. We demon-
strate this once more.

Example 1.3.6 Evalua ng a limit using Theorem 1.3.6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

S We a empt to apply Theorem 1.3.2 by subs tu ng 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, synthe c division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x − 3) terms as long as x ̸= 3. Using Theorem 1.3.6 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

We end this sec on by revisi ng a limit first seen in Sec on 1.1, a limit of
a difference quo ent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Notes:
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Example 1.3.7 Evalua ng the limit of a difference quo ent
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

S Since f is a polynomial, our first a empt should be to em-
ploy Theorem 1.3.2 and subs tute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a ra onal func on hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.6, as h ̸= 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approxima on.

This sec on contains several valuable tools for evalua ng limits. One of the
main results of this sec on is Theorem 1.3.3; it states that many func ons that
we use regularly behave in a very nice, predictable way. In Sec on 1.5 we give a
name to this nice behavior; we label such func ons as con nuous. Defining that
term will require us to look again at what a limit is and what causes limits to not
exist.

Notes:
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Exercises 1.3
Terms and Concepts
1. Explain in your ownwords, without using ε-δ formality, why

lim
x→c

b = b.

2. Explain in your ownwords, without using ε-δ formality, why
lim
x→c

x = c.

3. What does the text mean when it says that certain func-
ons’ “behavior is ‘nice’ in terms of limits”? What, in par-
cular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informa on:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the rela ve sizes of f(x) and g(x)
as x approaches 1?

6. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
In Exercises 7 – 14, use the following informa on to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

• lim
x→9

f(x) = 6, lim
x→6

f(x) = 9, f(9) = 6

• lim
x→9

g(x) = 3, lim
x→6

g(x) = 3, g(6) = 9

7. lim
x→9

(f(x) + g(x))

8. lim
x→9

(3f(x)/g(x))

9. lim
x→9

(
f(x)− 2g(x)

g(x)

)

10. lim
x→6

(
f(x)

3− g(x)

)
11. lim

x→9
g
(
f(x)
)

12. lim
x→6

f
(
g(x)

)
13. lim

x→6
g
(
f(f(x))

)
14. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

In Exercises 15 – 18, use the following informa on to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

• lim
x→1

f(x) = 2, lim
x→10

f(x) = 1, f(1) = 1/5

• lim
x→1

g(x) = 0, lim
x→10

g(x) = π, g(10) = π

15. lim
x→1

f(x)g(x)

16. lim
x→10

cos
(
g(x)

)
17. lim

x→1
f(x)g(x)

18. lim
x→1

g
(
5f(x)

)
In Exercises 19 – 34, evaluate the given limit.

19. lim
x→3

x2 − 3x+ 7

20. lim
x→π

(
x− 3
x− 5

)7

21. lim
x→π/4

cos x sin x

22. lim
x→1

2x− 2
x+ 4

23. lim
x→0

ln x

24. lim
x→3

4x
3−8x

25. lim
x→π/6

csc x

26. lim
x→0

ln(1+ x)

27. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

28. lim
x→π

3x+ 1
1− x

29. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

30. lim
x→0

x2 + 2x
x2 − 2x

31. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

32. lim
x→2

x2 − 10x+ 16
x2 − x− 2

33. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16
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34. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 35 – 38, where appro-
priate, to evaluate the given limit.

35. lim
x→0

x sin
(
1
x

)

36. lim
x→0

sin x cos
(

1
x2

)
37. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

38. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

Exercises 39 – 43 challenge your understanding of limits but
can be evaluated using the knowledge gained in this sec on.

39. lim
x→0

sin 3x
x

40. lim
x→0

sin 5x
8x

41. lim
x→0

ln(1+ x)
x

42. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

43. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)
)
does not exist.

(d) Show why the answer to part (c) does not violate the
Composi on Rule of Theorem 1.3.1.
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Chapter 1 Limits

1.4 One Sided Limits
We introduced the concept of a limit gently, approxima ng their values graphi-
cally and numerically. Next came the rigorous defini on of the limit, along with
an admi edly tediousmethod for evalua ng them. The previous sec on gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and ra onal, trigono-
metric, exponen al and logarithmic func ons (and their sums, products, etc.) all
behave “nicely.” In this sec on we rigorously define what we mean by “nicely.”

In Sec on 1.1 we saw three ways in which limits of func ons failed to exist:

1. The func on approached different values from the le and right,

2. The func on grows without bound, and

3. The func on oscillates.

In this sec on we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal defini ons that are very similar to the
defini on of the limit given in Sec on 1.2, but the nota on is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

Defini on 1.4.1 One Sided Limits: Le - and Right-Hand Limits

Le -Hand Limit
Let f be a func on defined on (a, c) for some a < c and let L be a real
number.
The limit of f(x), as x approaches c from the le , is L, or, the le -hand
limit of f at c is L, denoted by

lim
x→c−

f(x) = L,

means given any ε > 0, there exists δ > 0 such that for all a < x < c, if
|x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let f be a func on defined on (c, b) for some b > c and let L be a real
number.
The limit of f(x), as x approaches c from the right, is L, or, the right-hand
limit of f at c is L, denoted by

lim
x→c+

f(x) = L,

means given any ε > 0, there exists δ > 0 such that for all c < x < b, if
|x− c| < δ, then |f(x)− L| < ε.

Notes:
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Figure 1.4.1: A graphof f in Example 1.4.1.

1.4 One Sided Limits

Prac cally speaking, when evalua ng a le -hand limit, we consider only val-
ues of x “to the le of c,” i.e., where x < c. The admi edly imperfect nota on
x → c− is used to imply that we look at values of x to the le of c. The nota-
on has nothing to do with posi ve or nega ve values of either x or c. A similar

statement holds for evalua ng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous sec ons
to help us evaluate these limits; we just restrict our view to one side of c.

We prac ce evalua ng le - and right-hand limits through a series of exam-
ples.

Example 1.4.1 Evalua ng one sided limits
Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 1.4.1. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

S For these problems, the visual aid of the graph is likely more
effec ve in evalua ng the limits than using f itself. Therefore we will refer o en
to the graph.

1. As x goes to 1 from the le , we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not ma er that there is an “open circle” there; we are
evalua ng a limit, not the value of the func on. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
sec on. The func on does not approach one par cular value, but two
different values from the le and the right.

4. Using the defini on and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a le -hand limit at 0 as f is

not defined for values of x < 0.

Notes:
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Chapter 1 Limits

6. Using the defini on and the graph, f(0) = 0.

7. As x goes to 2 from the le , we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the defini on of the func on show that f(2) is not defined.

Note how the le and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intui ve: the limit exists precisely when the le and right-hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits

Let f be a func on defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the le and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
le and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 – 1.4.4 is that the value of the func-
onmay/may not be equal to the value(s) of its le /right-hand limits, evenwhen

these limits agree.

Example 1.4.2 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 , as shown in Figure 1.4.2. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

Notes:
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Figure 1.4.3: Graphing f in Example 1.4.3

1.4 One Sided Limits

S Againwewill evaluate each using both the defini on of f and
its graph.

1. As x approaches 1 from the le , we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and le . Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the le , f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

Example 1.4.3 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 1.4.3. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear by looking at the graph that both the le and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 1.4.4 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 1.4.4. Evaluate the fol-

lowing.

Notes:
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Chapter 1 Limits

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear from the defini on of the func on and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 1.4.1 – 1.4.4 we were asked to find both lim
x→1

f(x) and f(1). Con-
sider the following table:

lim
x→1

f(x) f(1)

Example 1.4.1 does not exist 1
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1

Only in Example 1.4.4 do both the func on and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situa on
which we explore in the next sec on, en tled “Con nuity.” In short, a con nu-
ous func on is one in which when a func on approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually a ains that value at c. Such func ons behave

nicely as they are very predictable.

Notes:

34



Exercises 1.4
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→0−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→2+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined func ons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 1.5.1: A graphof f in Example 1.5.1.

1.5 Con nuity

1.5 Con nuity
As we have studied limits, we have gained the intui on that limits measure
“where a func on is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problema c; func ons can tend to one
value but a ain another. This sec on focuses on func ons that do not exhibit
such behavior.

Defini on 1.5.1 Con nuous Func on

Let f be a func on defined on an open interval I containing c.

1. f is con nuous at c if lim
x→c

f(x) = f(c).

2. f is con nuous on I if f is con nuous at c for all values of c in I. If f
is con nuous on (−∞,∞), we say f is con nuous everywhere.

A useful way to establish whether or not a func on f is con nuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 1.5.1 Finding intervals of con nuity
Let f be defined as shown in Figure 1.5.1. Give the interval(s) on which f is con-
nuous.

S We proceed by examining the three criteria for con nuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be con nuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is con nuous at every point of (0, 3) except at x = 1.
Therefore f is con nuous on (0, 1) and (1, 3).

Our defini on of con nuity (currently) only applies to open intervals. A er
Defini on 1.5.2, we’ll be able to say that f is con nuous on [0, 1) and (1, 3].

Notes:
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Chapter 1 Limits

Example 1.5.2 Finding intervals of con nuity
The floor func on, f(x) = ⌊x⌋, returns the largest integer smaller than, or equal
to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.5.2
demonstrates why this is o en called a “step func on.”

Give the intervals on which f is con nuous.

S We examine the three criteria for con nuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The func on is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is con nuous everywhere except at integer values of c. So
the intervals on which f is con nuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our defini on of con nuity on an interval specifies the interval is an open
interval. We can extend the defini on of con nuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

Defini on 1.5.2 Con nuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a < b.
f is con nuous on [a, b] if:

1. f is con nuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about con nuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Using this new defini on, we can adjust our answer in Example 1.5.1 by stat-
ing that f is con nuous on [0, 1) and (1, 3], as men oned in that example. We

Notes:
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1.5 Con nuity

can also revisit Example 1.5.2 and state that the floor func on is con nuous on
the following half–open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is con nuous everywhere; a er all, if f is
con nuous on [0, 1) and [1, 2), isn’t f also con nuous on [0, 2)? Of course, the
answer is no, and the graph of the floor func on immediately confirms this.

Con nuous func ons are important as they behave in a predictable fashion:
func ons a ain the value they approach. Because con nuity is so important,
most of the func ons you have likely seen in the past are con nuous on their
domains. This is demonstrated in the following example where we examine the
intervals of con nuity of a variety of common func ons.

Example 1.5.3 Determining intervals on which a func on is con nuous
For each of the following func ons, give the domain of the func on and the
interval(s) on which it is con nuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

S We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a ra onal func-
on, we apply Theorem 1.3.2 to recognize that f is con nuous on all of its

domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 1.3.3 shows that sin x is con nuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.3 shows that

f(x) =
√
x is con nuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1.3.1 and

1.3.3 shows that f is con nuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

func on as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

func on is con nuous on all of its domain, giving that f is con nuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is con nuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transi ons from one “piece” of its defini on to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is con nuous everywhere.

Notes:
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Chapter 1 Limits

Con nuity is inherently ed to the proper es of limits. Because of this, the
proper es of limits found in Theorems 1.3.1 and 1.3.2 apply to con nuity aswell.
Further, now knowing the defini on of con nuity we can re–read Theorem 1.3.3
as giving a list of func ons that are con nuous on their domains. The following
theorem states how con nuous func ons can be combined to form other con-
nuous func ons, followed by a theorem which formally lists func ons that we

know are con nuous on their domains.

Theorem 1.5.1 Proper es of Con nuous Func ons

Let f and g be con nuous func ons on an interval I, let c be a real number
and let n be a posi ve integer. The following func ons are con nuous on
I.

1. Sums/Differences: f± g

2. Constant Mul ples: c · f

3. Products: f · g

4. Quo ents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (If n is even then require f(x) ≥ 0 on I.)

7. Composi ons: Adjust the defini ons of f and g to: Let f be
con nuous on I, where the range of f on I is J,
and let g be con nuous on J. Then g ◦ f, i.e.,
g(f(x)), is con nuous on I.

Theorem 1.5.2 Con nuous Func ons

Let n be a posi ve integer. The following func ons are con nuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = csc x

5. f(x) = sec x

6. f(x) = cot x

7. f(x) = ax (a > 0)

8. f(x) = ln x

9. f(x) = n
√
x

We apply these theorems in the following Example.

Notes:
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Figure 1.5.3: A graph of f in Example
1.5.4(1).

1.5 Con nuity

Example 1.5.4 Determining intervals on which a func on is con nuous
State the interval(s) on which each of the following func ons is con nuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

S Weexamine each in turn, applying Theorems 1.5.1 and 1.5.2
as appropriate.

1. The square–root terms are con nuous on the intervals [1,∞) and (−∞, 5],
respec vely. As f is con nuous only where each term is con nuous, f is
con nuous on [1, 5], the intersec on of these two intervals. A graph of f
is given in Figure 1.5.3.

2. The func ons y = x and y = sin x are each con nuous everywhere, hence
their product is, too.

3. Theorem 1.5.2 states that f(x) = tan x is con nuous “on its domain.” Its
domain includes all real numbers except odd mul ples of π/2. Thus the
intervals on which f(x) = tan x is con nuous are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . , .

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restric ng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

A common way of thinking of a con nuous func on is that “its graph can
be sketched without li ing your pencil.” That is, its graph forms a “con nuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–defini on glosses over some of the finer points of con nuity. Very
strange func ons are con nuous that one would be hard pressed to actually
sketch by hand.

This intui ve no on of con nuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is con nuous on [1, 2] (i.e., its graph can be sketched as a con nu-
ous curve from (1,−10) to (2, 5)) then we know intui vely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some me, for instance, but we are guaranteed all
values between−10 and 5.

Notes:
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Chapter 1 Limits

While this no on seems intui ve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.3 Intermediate Value Theorem

Let f be a con nuous func on on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value c in (a, b) such that f(c) = y.

One important applica on of the Intermediate Value Theorem is root find-
ing. Given a func on f, we are o en interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
ons can be found through successive applica ons of this theorem. Suppose

through direct computa on we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approxima on of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibili es:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approxima on
of the root.

3. f(d) > 0: Thenwe know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
ma on of the root.

Successively applying this technique is called the Bisec on Method of root
finding. We con nue un l the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.5 Using the Bisec on Method
Approximate the root of f(x) = x − cos x, accurate to three places a er the
decimal.

S Consider the graph of f(x) = x−cos x, shown in Figure 1.5.4.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
Bisec onMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Notes:
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Itera on # Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.5.5: Itera ons of the Bisec on
Method of Root Finding

1.5 Con nuity

Itera on 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Itera on 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
nue to check the endpoints, just the midpoint. Thus we put the rest of

the itera ons in Figure 1.5.5.

No ce that in the 12th itera on we have the endpoints of the interval each
star ng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places a er the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approxima on of where f is 0. The
IntermediateValue Theoremstates that the actual zero is s ll within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places a er the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 itera ons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 itera ons).

It is a simplema er to extend theBisec onMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new func on gwhere g(x) = f(x)−1. Then
use the Bisec on Method to solve g(x) = 0.

Similarly, given two func ons f and g, we can use the Bisec on Method to
solve f(x) = g(x). Once again, create a new func on hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In Sec on 4.1 another equa on solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathema cs, though, so we will wait before introducing it.

This sec on formally defined what it means to be a con nuous func on.
“Most” func ons that we deal with are con nuous, so o en it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next sec on we examine onemore aspect of limits: limits that involve
infinity.

Notes:

43



Exercises 1.5
Terms and Concepts
1. In your own words, describe what it means for a func on

to be con nuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a func on?

4. Given func ons f and g on an interval I, how can the Bisec-
on Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is con nuous at c.

6. T/F: If f is con nuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is con nuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is con nuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is con nuous on [0, 1) and [1, 2), then f is con nu-
ous on [0, 2).

10. T/F: The sum of con nuous func ons is also con nuous.

Problems
In Exercises 11 – 18, a graph of a func on f is given along with
a value a. Determine if f is con nuous at a; if it is not, state
why it is not.
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13. a = 1
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14. a = 0
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2
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18. a = 3π/2
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1.5
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π/2 π 3π/2 2π
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y

In Exercises 19 – 22, determine if f is con nuous at the indi-
cated values. If not, explain why.

19. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

20. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 23 – 34, give the intervals on which the given
func on is con nuous.

23. f(x) = x2 − 3x+ 9

24. g(x) =
√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s

32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

Exercises 35 – 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be con nuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

36. Let g be con nuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be con nuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a func on on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 – 42, use the Bisec on Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given func on in the given interval.

39. f(x) = x2 + 2x− 4 on [1, 1.5].

40. f(x) = sin x− 1/2 on [0.5, 0.55]

41. f(x) = ex − 2 on [0.65, 0.7].

42. f(x) = cos x− sin x on [0.7, 0.8].

Review

43. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

44. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

45. Give an example of func on f(x) forwhich lim
x→0

f(x) does not
exist.
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Figure 1.6.1: Graphing f(x) = 1/x2 for
values of x near 0.

Chapter 1 Limits

1.6 Limits Involving Infinity
In Defini on 1.2.1 we stated that in the equa on limx→c f(x) = L, both c and
L were numbers. In this sec on we relax that defini on a bit by considering
situa ons when it makes sense to let c and/or L be “infinity.”

As a mo va ng example, consider f(x) = 1/x2, as shown in Figure 1.6.1.
Note how, as x approaches 0, f(x) grows very, very large – in fact, it growswithout
bound. It seems appropriate, and descrip ve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with nota on such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

Defini on 1.6.1 Limit of Infinity,∞

Let I be an open interval containing c, and let f be a func on defined on
I, except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

means that given any N > 0, there exists δ > 0 such that for all x
in I, where x ̸= c, if |x− c| < δ, then f(x) > N.

• The limit of f(x), as x approaches c, is nega ve infinity, denoted
by

lim
x→c

f(x) = −∞,

means that given any N < 0, there exists δ > 0 such that for all x
in I, where x ̸= c, if |x− c| < δ, then f(x) < N.

The first defini on is similar to the ε–δ defini on from Sec on 1.2. In that
defini on, given any (small) value ε, if we let x get close enough to c (within δ
units of c) then f(x) is guaranteed to be within ε of L. Here, given any (large)
value N, if we let x get close enough to c (within δ units of c), then f(x) will be

Notes:

46



.....
0.5

.
1

.
1.5

.
2

.

50

.

100

. x.

y

Figure 1.6.2: Observing infinite limit as
x → 1 in Example 1.6.1.

1.6 Limits Involving Infinity

at least as large as N. In other words, if we get close enough to c, then we can
make f(x) as large as we want. We define limits equal to−∞ in a similar way.

It is important to note that by saying limx→c f(x) = ∞ we are implicitly stat-
ing that the limit of f(x), as x approaches c, does not exist. A limit only exists
when f(x) approaches an actual numeric value. We use the concept of limits
that approach infinity because it is helpful and descrip ve.

We define one-sided limits that approach infinity in a similar way.

Defini on 1.6.2 One-Sided Limits of Infinity

• Let f be a func on defined on (a, c) for some a < c.
The limit of f(x), as x approaches c from the le , is infinity, or, the
le -hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

means given any N > 0, there exists δ > 0 such that for all
a < x < c, if |x− c| < δ, then f(x) > N.

• Let f be a func on defined on (c, b) for some b > c.
The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

means given any N > 0, there exists δ > 0 such that for all
c < x < b, if |x− c| < δ, then f(x) > N.

• The term le - (or, right-) hand limit of f at c is nega ve infinity is
defined in a manner similar to Defini on 1.6.1.

Example 1.6.1 Evalua ng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.6.2.

S In Example 1.1.4 of Sec on 1.1, by inspec ng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func on
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value N be given. Let δ = 1/

√
N. If x is within δ of 1, i.e., if

Notes:
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Chapter 1 Limits

|x− 1| < 1/
√
N, then:

|x− 1| < 1√
N

(x− 1)2 <
1
N

1
(x− 1)2

> N,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 = ∞.

Example 1.6.2 Evalua ng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.6.3.

S It is easy to see that the func on grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

The graphs in the two previous examples demonstrate that if a func on f has
a limit (or, le - or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a ver cal line near x = c. This observa on leads to a defini on.

Defini on 1.6.3 Ver cal Asymptote

Let I be an interval that either contains c or has c as an endpoint, and let
f be a func on defined on I, except possibly at c.
If the limit of f(x) as x approaches c from either the le or right (or both)
is∞ or−∞, then the line x = c is a ver cal asymptote of f.

Example 1.6.3 Finding ver cal asymptotes
Find the ver cal asymptotes of f(x) =

3x
x2 − 4

.

S Ver cal asymptotes occur where the func on grows with-
out bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the func on take on
large values. In the case of the given func on, the denominator is 0 at x = ±2.
Subs tu ng in values of x close to 2 and−2 seems to indicate that the func on

Notes:
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Figure 1.6.5: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

1.6 Limits Involving Infinity

tends toward∞ or−∞ at those points. We can graphically confirm this by look-
ing at Figure 1.6.4. Thus the ver cal asymptotes are at x = ±2.

When a ra onal func on has a ver cal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a ver cal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a ver cal asymptote at x = 1,
as shown in Figure 1.6.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a li le contrived. Another example demon-
stra ng this important concept is f(x) = (sin x)/x. We have considered this
func on several mes in the previous sec ons. We found that limx→0

sin x
x = 1;

i.e., there is no ver cal asymptote. No simple algebraic cancella on makes this
fact obvious; we used the Squeeze Theorem in Sec on 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a ver cal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a ver cal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respec vely. However, 0/0 is not a valid arithme cal expression. It gives
no indica on that the respec ve limits are 1 and 2.

With a li le cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that

Notes:
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Chapter 1 Limits

the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respec ve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later sec on we will
learn a technique called l’Hôspital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evalua ng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quan ty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞.

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathema cal expressions, either. In each, the func on is growing
without bound, indica ng that the limit will be∞,−∞, or simply not exist if the
le - and right-hand limits do not match.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this sec onwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the func on to
the “far right” of the graph. We make this no on more explicit in the following
defini on.

Defini on 1.6.4 Limits at Infinity and Horizontal Asymptotes

Let L be a real number.

1. Let f be a func on defined on (a,∞) for some number a. The
limit of f at infinity is L, or lim

x→∞
f(x) = L, means for every ε > 0

there existsM > a such that if x > M, then |f(x)− L| < ε.

2. Let f be a func on defined on (−∞, b) for some number b. The
limit of f at nega ve infinity is L, or lim

x→−∞
f(x) = L, means

for every ε > 0 there exists M < b such that if x < M, then
|f(x)− L| < ε.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the line y = L is a
horizontal asymptote of f.

Notes:
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Figure 1.6.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 1.6.4.

1.6 Limits Involving Infinity

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this defini on
with Defini on 1.6.1.

Example 1.6.4 Approxima ng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

S We will approximate the horizontal asymptotes by approxi-
ma ng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.6.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analy cally.

Horizontal asymptotes can take on a variety of forms. Figure 1.6.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.6.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.6.7(c) shows that f(x) = (sin x)/x has even more interes ng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.6.7: Considering different types of horizontal asymptotes.
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Chapter 1 Limits

We can analy cally evaluate limits at infinity for ra onal func ons once we
understand limx→∞ 1/x. As x gets larger and larger, 1/x gets smaller and smaller,
approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large
enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε. Thus
we have limx→∞ 1/x = 0.

It is now not much of a jump to conclude the following:

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence mul plying by 1), which is the largest power of x to appear
in the func on. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any ra onal func on. In fact, it gives us the follow-
ing theorem.
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1.6 Limits Involving Infinity

Theorem 1.6.1 Limits of Ra onal Func ons at Infinity

Let f(x) be a ra onal func on of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situa on like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then a er dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indica ve of some sort of infinite limit.

Intui vely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the func on behaves
like an/(bmxm−n), which tends toward 0. If n > m, the func on behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
func ons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

, graphed in Figure 1.6.7(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posi ve and−1 when x is nega ve. Hence we get
asymptotes of y = 1 and y = −1, respec vely.
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Figure 1.6.8: Visualizing the func ons in
Example 1.6.6.

Chapter 1 Limits

Example 1.6.5 Finding a limit of a ra onal func on

Confirm analy cally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 1.6.4.

S Before using Theorem 1.6.1, let’s use the technique of eval-
ua ng limits at infinity of ra onal func ons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 1.6.1 directly; in this case n = m so the limit is the
ra o of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 1.6.6 Finding limits of ra onal func ons
Use Theorem 1.6.1 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

S

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.6.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the ra o of the coefficients of x2, which
is−1/3. See Figure 1.6.8(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 1.6.8(c).
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Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate the value of limits numerically and
graphically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined con nuity and explored proper es of con nuous func ons, and

• considered limits that involved infinity.

Why? Mathema cs is famous for building on itself and calculus proves to
be no excep on. In the next chapter we will be interested in “dividing by 0.”
That is, we will want to divide a quan ty by smaller and smaller numbers and
see what value the quo ent approaches. In other words, we will want to find a
limit. These limits will enable us to, among other things, determine exactly how
fast something is moving when we are only given posi on informa on.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum o en is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over me an
apprecia on is o en formed based on the scope of its applicability.
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Exercises 1.6
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly sta ng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly sta ng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a ver cal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a func on with a ver cal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
con nuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the func on.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...
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.

−50

.

50

.

x
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11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

.....
−10
.

−5
.

5
.

50

.

100

.

150

. x.

y

In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, iden fy the horizontal and ver cal
asymptotes, if any, of the given func on.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f con nuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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2: D
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the deriva ve. Limits describe where a func on is going; deriva ves describe
how fast the func on is going.

2.1 Instantaneous Rates of Change: The Deriva ve
A common amusement park ride li s riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds a er freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without interven on, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall a er 2 seconds (corresponding
to a height of 86 .). How fast will the riders be traveling at that me?

We have been given a posi on func on, but what we want to compute is a
velocity at a specific point in me, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Sec on 1.1 when we introduced the
difference quo ent. We have

change in distance
change in me

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some me period containing t = 2. If we make the me
interval small, we will get a good approxima on. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approxima on of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 /s,



h
Average Velocity

/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1.1: Approxima ng the instan-
taneous velocity with average veloci es
over a small me period h.

Chapter 2 Deriva ves

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a be er approxima on of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 /s.

We can do this for smaller and smaller intervals of me. For instance, over
a me span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 /s.

Over a me span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 /s.

Whatwe are really compu ng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compu ng

f(2+ h)− f(2)
h

where h is small.
We really want to use h = 0, but this, of course, returns the familiar “0/0”

indeterminate form. So we employ a limit, as we did in Sec on 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1.1. It looks as though the velocity is approaching−64 /s.
Compu ng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Graphically, we can view the average veloci es we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2+ h, f(2+ h)). In Figure 2.1.2, the secant line corresponding to h = 1 is
shown in three contexts. Figure 2.1.2(a) shows a “zoomed out” version of fwith
its secant line. In (b), we zoom in around the points of intersec on between
f and the secant line. No ce how well this secant line approximates f between

Notes:
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2.1 Instantaneous Rates of Change: The Deriva ve

those twopoints – it is a commonprac ce to approximate func onswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.1.2, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 2.1.2: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this sec on. First, we formally define two of them.
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Chapter 2 Deriva ves

Defini on 2.1.1 Deriva ve at a Point

Let f be a con nuous func on on an open interval I and let c be in I. The
deriva ve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differen able
at c; if the limit does not exist, then f is not differen able at c. If f is
differen able at every point in I, then f is differen able on I.

Defini on 2.1.2 Tangent Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The line with equa on ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the deriva ve of f at c.

Some examples will help us understand these defini ons.

Example 2.1.1 Finding deriva ves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equa on of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equa on of the tangent line
to the graph f at x = 3.

S

1. We compute this directly using Defini on 2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

Notes:
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Figure 2.1.3: A graph of f(x) = 3x2+5x−
7 and its tangent lines at x = 1 and x = 3.

2.1 Instantaneous Rates of Change: The Deriva ve

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equa on, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the defini on,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equa on y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 2.1.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing informa on from thederiva-
ve is the normal line. It is perpendicular to the tangent line, hence its slope is

the opposite–reciprocal of the tangent line’s slope.

Defini on 2.1.3 Normal Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The normal line to the graph of f at c is the line with equa on

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the ver cal line
through

(
c, f(c)

)
; that is, x = c.

Example 2.1.2 Finding equa ons of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 2.1.1. Find the equa ons of the normal
lines to the graph of f at x = 1 and x = 3.

S In Example 2.1.1, we found that f ′(1) = 11. Hence at x = 1,

Notes:
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Figure 2.1.4: A graph of f(x) = 3x2+5x−
7, along with its normal line at x = 1.
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the normal line will have slope−1/11. An equa on for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is plo ed with y = f(x) in Figure 2.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathema cally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ra o of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equa on for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear func ons are easy to work with; many func ons that arise in the
course of solving real problems are not easy to work with. A common prac ce
in mathema cal problem solving is to approximate difficult func ons with not–
so–difficult func ons. Lines are a common choice. It turns out that at any given
point on the graph of a differen able func on f, the best linear approxima on
to f is its tangent line. That is one reason we’ll spend considerable me finding
tangent lines to func ons.

One type of func on that does not benefit from a tangent–line approxima-
on is a line; it is rather simple to recognize that the tangent line to a line is the

line itself. We look at this in the following example.

Example 2.1.3 Finding the deriva ve of a linear func on
Consider f(x) = 3x + 5. Find the equa on of the tangent line to f at x = 1 and
x = 7.

S We find the slope of the tangent line by using Defini on
2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

Notes:
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Figure 2.1.5: f(x) = sin x graphed with an
approxima on to its tangent line at x = 0.

2.1 Instantaneous Rates of Change: The Deriva ve

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only func ons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the deriva ve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We o en desire to find the tangent line to the graph of a func on without
knowing the actual deriva ve of the func on. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 2.1.4 Numerical approxima on of the tangent line
Approximate the equa on of the tangent line to the graph of f(x) = sin x at
x = 0.

S In order to find the equa on of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the deriva ve. This is where we will make an approxima on.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approxima on of the equa on of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.1.5. The graph seems to imply the
approxima on is rather good.

Recall from Sec on 1.3 that limx→0
sin x
x = 1, meaning for values of x near

0, sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.1. To find the deriva ve of f at x = 1, we needed
to evaluate a limit. To find the deriva ve of f at x = 3, we needed to again
evaluate a limit. We have this process:

Notes:
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input specific
number c

do something
to f and c

return
number f ′(c)

This process describes a func on; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this func on occurs.

Instead of applying this func on repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
func on f ′(x)

The output is the “deriva ve func on,” f ′(x). The f ′(x) func on will take a
number c as input and return the deriva ve of f at c. This calls for a defini on.

Defini on 2.1.4 Deriva ve Func on

Let f be a differen able func on on an open interval I. The func on

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the deriva ve of f.

Nota on:
Let y = f(x). The following nota ons all represent the deriva ve of f:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The nota on
dy
dx

is one symbol; it is not the frac on “dy/dx”. The
nota on, while somewhat confusing at first, was chosen with care. A frac on–
looking symbol was chosen because the deriva ve has many frac on–like prop-
er es. Among other places, we see these proper es atworkwhenwe talk about
the units of the deriva ve, when we discuss the Chain Rule, and when we learn
about integra on (topics that appear in later sec ons and chapters).

Examples will help us understand this defini on.

Example 2.1.5 Finding the deriva ve of a func on
Let f(x) = 3x2 + 5x− 7 as in Example 2.1.1. Find f ′(x).

Notes:
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S We apply Defini on 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computa on of f ′(x) affirm these facts.

Example 2.1.6 Finding the deriva ve of a func on
Let f(x) =

1
x+ 1

. Find f ′(x).

S We apply Defini on 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

Notes:
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So f ′(x) =
−1

(x+ 1)2
. To prac ce using our nota on, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 2.1.7 Finding the deriva ve of a func on
Find the deriva ve of f(x) = sin x.

S Before applyingDefini on 2.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we se led
for an approxima on in Example 2.1.4.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig iden ty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two frac ons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine func on is a nice
func on. Then again, perhaps this is not en rely surprising. The sine func on
is periodic – it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
deriva ve would be periodic; we now know exactly which periodic func on it is.

Thinking back to Example 2.1.4, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our deriva ve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 2.1.8 Finding the deriva ve of a piecewise defined func on
Find the deriva ve of the absolute value func on,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 2.1.6.

S We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

Notes:
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Figure 2.1.7: A graph of the deriva ve of
f(x) = |x|.

2.1 Instantaneous Rates of Change: The Deriva ve

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computa on shows that
d
dx
(
x
)
= 1.

We need to also find the deriva ve at x = 0. By the defini on of the deriva-
ve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our func on’s defini on switches from one piece
to the other, we need to consider le and right-hand limits. Consider the fol-
lowing, where we compute the le and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the le and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differen able at 0. So
we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump discon nuity at 0; see Figure 2.1.7.
So f(x) = |x| is differen able everywhere except at 0.

The point of non-differen ability came where the piecewise defined func-
on switched from one piece to the other. Our next example shows that this

does not always cause trouble.

Example 2.1.9 Finding the deriva ve of a piecewise defined func on
Find the deriva ve of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2 . See Figure 2.1.8.

Notes:
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Figure 2.1.9: A graph of f ′(x) in Example
2.1.9.
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S Using Example 2.1.7, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We s ll need to find f ′(π/2). No ce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quo ent limit at
x = π/2, u lizing again le and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0.

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0.

Since both the le and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 2.1.9 for a graph of this func on.

Recall we pseudo–defined a con nuous func on as one in which we could
sketch its graph without li ing our pencil. We can give a pseudo–defini on for
differen ability as well: it is a con nuous func on that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.1.6. Even though the func-
on f in Example 2.1.9 is piecewise–defined, the transi on is “smooth” hence it

is differen able. Note how in the graph of f in Figure 2.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

Notes:
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Differen ablity on Closed Intervals

When we defined the deriva ve at a point in Defini on 2.1.1, we specified
that the interval I over which a func on f was defined needed to be an open
interval. Open intervals are required so that we can take a limit at any point c in
I, meaning we want to approach c from both the le and right.

Recall we also required open intervals in Defini on 1.5.1 when we defined
what it meant for a func on to be con nuous. Later, we used one-sided limits to
extend con nuity to closed intervals. We now extend differen ability to closed
intervals by again considering one-sided limits.

Ourmo va on is three-fold. First, we consider “common sense.” In Example
2.1.5 we found that when f(x) = 3x2+5x−7, f ′(x) = 6x+5, and this deriva ve
is defined for all real numbers, hence f is differen able everywhere. It seems
appropriate to also conclude that f is differen able on closed intervals, like [0, 1],
as well. A er all, f ′(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) =
√
x. The domain of f is [0,∞). Is f differen able

on its domain – specifically, is f differen able at 0? (We’ll consider this in the
next example.)

Finally, in later sec ons, having the deriva ve defined on closed intervals will
prove useful. One such place is Sec on 7.4 where the deriva ve plays a role in
measuring the length of a curve.

A er a formal defini on of differen ability on a closed interval, we explore
the concept in an example.

Defini on 2.1.5 Differen ability on a Closed Interval

Let f be con nuous on [a, b] and differen able on (a, b), and let the one-
sided limits

lim
h→0+

f(a+ h)− f(a)
h

and lim
h→0−

f(b+ h)− f(b)
h

exist. Then we say f is differen able on [a, b].

For all the func ons f in this text, we can determine differen ability on [a, b]
by considering the limits limx→a+ f ′(x) and limx→b− f ′(x). This is o en easier to
evaluate than the limit of the difference quo ent.

Example 2.1.10 Differen ability at an endpoint
Consider f(x) =

√
x = x1/2 and g(x) =

√
x3 = x3/2. The domain of each func-

on is [0,∞). It can be shown that each is differen able on (0,∞); determine
the differen ability of each at x = 0.

Notes:
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S We start by considering f and take the right-hand limit of the
difference quo ent:

lim
h→0+

f(a+ h)− f(a)
h

= lim
h→0+

√
0+ h−

√
0

h

= lim
h→0+

√
h
h

= lim
h→0+

1
h1/2

= ∞.

The one-sided limit of the difference quo ent does not exist at x = 0 for f;
therefore f is differen able on (0,∞) and not differen able on [0,∞).

We state (without proof) that f ′(x) = 1/
(
2
√
x
)
. Note that limx→0+ f ′(x) =

∞; this limit was easier to evaluate than the limit of the difference quo ent,
though it required us to already know the deriva ve of f.

Now consider g:

lim
h→0+

g(a+ h)− g(a)
h

= lim
h→0+

√
(0+ h)3 −

√
0

h

= lim
h→0+

h3/2

h
= lim

h→0+
h1/2 = 0.

As the one-sided limit exists at x = 0, we conclude g is differen able on its
domain of [0,∞).

We state (without proof) that g ′(x) = 3
√
x/2. Note that limx→0+ g ′(x) = 0;

again, this limit is easier to evaluate than the limit of the difference quo ent.
The two func ons are graphed in Figure 2.1.10. Note how f(x) =

√
x seems

to “go ver cal” as x approaches 0, implying the slopes of its tangent lines are
growing toward infinity. Also note how the slopes of the tangent lines to g(x) =√
x3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific caseswhere
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later sec ons require a func on f to be differ-
en able on an open interval I; we could remove the word “open” and just use
“. . . on an interval I,” but choose to not do so in keeping with the current math-
ema cal tradi on. Our first use of differen ability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This sec on defined the deriva ve; in some sense, it answers the ques on of
“What is the deriva ve?” The next sec on addresses the ques on “What does
the deriva vemean?”

Notes:
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a posi on func on. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The defini on of the deriva ve of a func on at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
ons 2.1.1 and 2.1.4.

5. Let y = f(x). Give three different nota ons equivalent to
“f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems
In Exercises 7 – 14, use the defini on of the deriva ve to com-
pute the deriva ve of the given func on.

7. f(x) = 6

8. f(x) = 2x

9. f(t) = 4− 3t

10. g(x) = x2

11. h(x) = x3

12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x

14. r(s) = 1
s− 2

In Exercises 15 – 22, a func on and an x–value c are given.
(Note: these func ons are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equa on of the tangent line at x = c.
(b) Give the equa on of the normal line at x = c.

15. f(x) = 6, at x = −2.

16. f(x) = 2x, at x = 3.

17. f(x) = 4− 3x, at x = 7.

18. g(x) = x2, at x = 2.

19. h(x) = x3, at x = 4.

20. f(x) = 3x2 − x+ 4, at x = −1.

21. r(x) = 1
x
, at x = −2.

22. r(x) = 1
x− 2

, at x = 3.

In Exercises 23 – 26, a func on f and an x–value a are given.
Approximate the equa on of the tangent line to the graph of
f at x = a by numerically approxima ng f ′(a), using h = 0.1.

23. f(x) = x2 + 2x+ 1, x = 3

24. f(x) = 10
x+ 1

, x = 9

25. f(x) = ex, x = 2

26. f(x) = cos x, x = 0

27. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the defini on, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).
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28. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the defini on, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).
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In Exercises 29 – 32, a graph of a func on f(x) is given. Using
the graph, sketch f ′(x).
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In Exercises 33 – 34, a graph of a func on g(x) is given. Using
the graph, answer the following ques ons.

1. Where is g(x) > 0?
2. Where is g(x) < 0?
3. Where is g(x) = 0?

1. Where is g′(x) < 0?
2. Where is g′(x) > 0?
3. Where is g′(x) = 0?
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In Exercises 35 – 36, a func on f(x) is given, along with its do-
main and deriva ve. Determine if f(x) is differen able on its
domain.

35. f(x) =
√

x5(1− x), domain = [0, 1], f ′(x) = (5− 6x)x3/2

2
√
1− x

36. f(x) = cos
(√

x
)
, domain = [0,∞), f ′(x) = −

sin
(√

x
)

2
√
x

Review

37. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

38. Use the Bisec on Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

39. Give intervals on which each of the following func ons are
con nuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

40. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f con nu-
ous?
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2.2 Interpreta ons of the Deriva ve

2.2 Interpreta ons of the Deriva ve
The previous sec on defined the deriva ve of a func on and gave examples of
how to compute it using its defini on (i.e., using limits). The sec on also started
with a brief mo va on for this defini on, that is, finding the instantaneous ve-
locity of a falling object given its posi on func on. The next sec on will give us
more accessible tools for compu ng the deriva ve, tools that are easier to use
than repeated use of limits.

This sec on falls in between the “What is the defini on of the deriva ve?”
and “How do I compute the deriva ve?” sec ons. Here we are concerned with
“What does the deriva ve mean?”, or perhaps, when read with the right em-
phasis, “What is the deriva ve?” We offer two interconnected interpreta ons
of the deriva ve, hopefully explaining why we care about it and why it is worthy
of study.

Interpreta onof theDeriva ve #1: Instantaneous Rate of Change

The previous sec on started with an example of using the posi on of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is o en used when introducing the deriva ve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posi on. In general, if f is a func on of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
ve answers “When x changes, at what rate does f change?” Thinking back to

the amusement–park ride, we asked “When me changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have inten onally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construc on. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approxima on of
the distance traveled?

One could argue the only good approxima on, given the informa on pro-
vided, would be based on “distance = rate × me.” In this case, we assume a
constant rate of 60 mph with a me of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 /s, we could reasonably assume that 1 second later the rid-

Notes:
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Chapter 2 Deriva ves

ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelera ng as they fell would inform us that this is an under–approxima on. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground.

Units of the Deriva ve

It is useful to recognize the units of the deriva ve func on. If y is a func on
of x, i.e., y = f(x) for some func on f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wri en as “ /s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the frac on–like behavior
of the deriva ve in the nota on:

the units of
dy
dx

are
units of y
units of x

.

Example 2.2.1 The meaning of the deriva ve: World Popula on
Let P(t) represent the world popula on t minutes a er 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the popula on of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the popula on grew by about 28, 800 ·156 = 4, 492, 800 people.

Example 2.2.2 The meaning of the deriva ve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
i ve) profit making just one widget; the start–up costs will likely exceed $10.
Mathema cally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

S The equa on P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other informa on to use, our best approxima on
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

Notes:
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2.2 Interpreta ons of the Deriva ve

The previous examples made use of an important approxima on tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this sec on. Five minutes a er looking at the speedometer, our best
approxima on for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and 2.2.2 we made similar approxima ons. We were given
rate of change informa on which we used to approximate total change. Nota-
onally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approxima on is best when h is “small.” “Small” is a rela ve term; when
dealing with the world popula on, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Deriva ve and Mo on

One of the most fundamental applica ons of the deriva ve is the study of
mo on. Let s(t) be a posi on func on, where t is me and s(t) is distance. For
instance, s couldmeasure the height of a projec le or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object a er t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity func on. That is, at me t, v(t) gives the ve-
locity of an object. The deriva ve of v, v ′(t), gives the instantaneous rate of
velocity change – accelera on. (We o en think of accelera on in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average accelera on, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and me is measured in seconds, then the units of accelera on
(i.e., the units of v ′(t)) are “feet per second per second,” or ( /s)/s. We o en
shorten this to “feet per second squared,” or /s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known accelera on is that of gravity. In this text, we
use g = 32 /s2 or g = 9.8m/s2. What do these numbers mean?

A constant accelera on of 32( /s)/s means that the velocity changes by
32 /s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units /s and t is measured in seconds. The
ball will have a posi ve velocity while traveling upwards and a nega ve velocity
while falling down. The accelera on is thus −32 /s2. If v(1) = 20 /s, then
when t = 2, the velocity will have decreased by 32 /s; that is, v(2) = −12 /s.
We can con nue: v(3) = −44 /s, and we can also figure that v(0) = 52 /s.

These ideas are so important we write them out as a Key Idea.

Notes:
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Figure 2.2.1: A graph of f(x) = x2.
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Figure 2.2.2: A graph of f(x) = x2 and tan-
gent lines.

Chapter 2 Deriva ves

Key Idea 2.2.1 The Deriva ve and Mo on

1. Let s(t) be the posi on func on of an object. Then s ′(t) is the
velocity func on of the object.

2. Let v(t) be the velocity func on of an object. Then v ′(t) is the
accelera on func on of the object.

We now consider the second interpreta on of the deriva ve given in this
sec on. This interpreta on is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spec ve.

Interpreta on of the Deriva ve #2: The Slope of the Tangent Line

Given a func on y = f(x), the difference quo ent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear func ons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compu ng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 2.2.3 Understanding the deriva ve: the rate of change
Consider f(x) = x2 as shown in Figure 2.2.1. It is clear that at x = 3 the func on
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

S Wecananswer this directly a er the following sec on, where
we learn to quickly compute deriva ves. For now, we will answer graphically,
by considering the slopes of the respec ve tangent lines.

With prac ce, one can fairly effec vely sketch tangent lines to a curve at a
par cular point. In Figure 2.2.2, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At

Notes:
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Figure 2.2.3: Graphs of f and f ′ in Example
2.2.4, along with tangent lines in (b).
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Figure 2.2.4: Zooming in on f and its tan-
gent line at x = 3 for the func on given
in Examples 2.2.4 and 2.2.5.

2.2 Interpreta ons of the Deriva ve

x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three mes as fast.

Example 2.2.4 Understanding the graph of the deriva ve
Consider the graph of f(x) and its deriva ve, f ′(x), in Figure 2.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

S To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.2.3(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help be er visualize the y value of f ′ at those points.

Example 2.2.5 Approxima on with the deriva ve
Consider again the graph of f(x) and its deriva ve f ′(x) in Example 2.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

S Figure 2.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. No ce that near x = 3, the tangent line makes an excellent
approxima on of f. Since lines are easy to deal with, o en it works well to ap-
proximate a func onwith its tangent line. (This is especially truewhen you don’t
actually know much about the func on at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is o en useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approxima on, we now
state that in Example 2.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computa on. In reality, we o en only know two things:

Notes:
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Chapter 2 Deriva ves

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the loca on of an object and its instan-
taneous velocity at a par cular point in me. We do not have a “func on f ”
for the loca on, just an observa on. This is enough to create an approxima ng
func on for f.

This last example has a direct connec on to our approxima on method ex-
plained above a er Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compu ng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 2.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approxima onmethod used above! Not only does itmake
intui ve sense, as explained above, it makes analy cal sense, as this approxima-
on method is simply using a tangent line to approximate a func on’s value.

The importanceof understanding thederiva ve cannot beunderstated. When
f is a func on of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises 2.2
Terms and Concepts

1. What is the instantaneous rate of change of posi on
called?

2. Given a func on y = f(x), in your own words describe how
to find the units of f ′(x).

3. What func ons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this sec on, which approxima on is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in /s, of a car moving in a
straight line t seconds a er star ng. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours a ermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours a er
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of func ons f(x) and g(x) are
given. Iden fy which func on is the deriva ve of the other.
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Review
In Exercises 19 – 20, use the defini on to compute the deriva-
ves of the following func ons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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Chapter 2 Deriva ves

2.3 Basic Differen a on Rules
The deriva ve is a powerful tool but is admi edly awkward given its reliance on
limits. Fortunately, one thing mathema cians are good at is abstrac on. For
instance, instead of con nually finding deriva ves at a point, we abstracted and
found the deriva ve func on.

Let’s prac ce abstrac on on linear func ons, y = mx+b. What is y ′? With-
out limits, recognize that linear func on are characterized by being func ons
with a constant rate of change (the slope). The deriva ve, y ′, gives the instan-
taneous rate of change; with a linear func on, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the deriva ve of the general quadra c
func on, f(x) = ax2 + bx+ c. Using the defini on of the deriva ve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this sec on (and in some sec ons to follow) we will learn some of what
mathema cians have already discovered about the deriva ves of certain func-
ons and how deriva ves interact with arithme c opera ons. We start with a

theorem.

Theorem 2.3.1 Deriva ves of Common Func ons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

2. Power Rule:
d
dx
(
xn
)
= nxn−1, where n is an

integer, n > 0.

5.
d
dx

(sin x) = cos x

6.
d
dx

(cos x) = − sin x

7.
d
dx

(ex) = ex

8.
d
dx

(ln x) =
1
x

Notes:
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Figure 2.3.1: A graph of f(x) = x3, along
with its deriva ve f ′(x) = 3x2 and its tan-
gent line at x = −1.

2.3 Basic Differen a on Rules

This theorem starts by sta ng an intui ve fact: constant func ons have no
rate of change as they are constant. Therefore their deriva ve is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the deriva ves of Power Func ons (of the form y = xn) are very
straigh orward: mul ply by the power, then subtract 1 from the power. We see
something incredible about the func on y = ex: it is its own deriva ve. We also
see a new connec on between the sine and cosine func ons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s prac ce using this theorem.

Example 2.3.1 Using Theorem 2.3.1 to find, and use, deriva ves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equa on of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

S

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equa on of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equa on y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.3.1.

Notes:
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Chapter 2 Deriva ves

Theorem 2.3.1 gives useful informa on, but we will need much more. For
instance, using the theorem, we can easily find the deriva ve of y = x3, but
it does not tell how to compute the deriva ve of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next sec on).

Theorem 2.3.2 Proper es of the Deriva ve

Let f and g be differen able on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant Mul ple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 2.3.2 allows us to find the deriva ves of awide variety of func ons.
It can be used in conjunc on with the Power Rule to find the deriva ves of any
polynomial. Recall in Example 2.1.5 that we found, using the limit defini on,
the deriva ve of f(x) = 3x2 + 5x − 7. We can now find its deriva ve without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedan c here, showing every step. Normally we would do all
the arithme c and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Example 2.3.2 Using the tangent line to approximate a func on value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

S This problem is inten onally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approxima on are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all me.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Notes:
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Note: The second deriva ve nota on
could be wri en as

d2y
dx2

=
d2y
(dx)2

=
d2

(dx)2
(
y
)
.

That is, we take the deriva ve of y twice
(hence d2), both mes with respect to x
(hence (dx)2 = dx2).

2.3 Basic Differen a on Rules

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do be er? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 2.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approxima on is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places a er the decimal:
f(3) = 7.1411. Our ini al guesswas 7; our tangent line approxima onwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy some me, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approxima ng, and many scien sts, engineers and mathema cians o en face
problems too hard to solve directly. So they approximate.

Higher Order Deriva ves

The deriva ve of a func on f is itself a func on, therefore we can take its
deriva ve. The following defini on gives a name to this concept and introduces
its nota on.

Defini on 2.3.1 Higher Order Deriva ves

Let y = f(x) be a differen able func on on I. The following are defined,
provided the corresponding limits exist.

1. The second deriva ve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third deriva ve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth deriva ve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

In general, when finding the fourth deriva ve and on, we resort to the f (4)(x)

Notes:
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Chapter 2 Deriva ves

nota on, not f ′′′′(x); a er a while, too many cks is confusing.

Let’s prac ce using this new concept.

Example 2.3.3 Finding higher order deriva ves
Find the first four deriva ves of the following func ons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

S

1. Using the Power and Constant Mul ple Rules, we have: f ′(x) = 8x. Con-
nuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

No ce how all successive deriva ves will also be 0.

2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the ConstantMul ple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

Interpre ng Higher Order Deriva ves

What do higher order deriva ves mean? What is the prac cal interpreta-
on?
Our first answer is a bit wordy, but is technically correct and beneficial to

understand. That is,

The second deriva ve of a func on f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a posi on func on. Then,
as stated in Key Idea 2.2.1, f ′ describes the rate of posi on change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car

Notes:
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enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the accelera on of the car.

We started this chapter with amusement–park riders free–falling with posi-
on func on f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t /s and

f ′′(t) = −32 ( /s)/s. We may recognize this la er constant; it is the accelera-
on due to gravity. In keeping with the unit nota on introduced in the previous

sec on, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wri en as “ /s2.”

It can be difficult to consider the meaning of the third, and higher order,
deriva ves. The third deriva ve is “the rate of change of the rate of change of
the rate of change of f.” That is essen ally meaningless to the unini ated. In
the context of our posi on/velocity/accelera on example, the third deriva ve
is the “rate of change of accelera on,” commonly referred to as “jerk.”

Make no mistake: higher order deriva ves have great importance even if
their prac cal interpreta ons are hard (or “impossible”) to understand. The
mathema cal topic of seriesmakes extensive use of higher order deriva ves.

Notes:
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a func on f(x) where f ′(x) = f(x).

4. Give an example of a func on f(x) where f ′(x) = 0.

5. The deriva ve rules introduced in this sec on explain how
to compute the deriva ve of which of the following func-
ons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third deriva ve
of a func on f(x).

7. Give an example of a func onwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second deriva ve
“means.”

9. If f(x) describes a posi on func on, then f ′(x) describes
what kind of func on? What kind of func on is f ′′(x)?

10. Let f(x) be a func on measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 26, compute the deriva ve of the given func-
on.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this iden ty when b = e, i.e., using loge x =
ln x, with a = 10.

(b) Use part (a) to find the deriva ve of y = log10 x.
(c) Use part (b) to find the deriva ve of y = loga x, for

any a > 0, ̸= 1.

In Exercises 27 – 32, compute the first four deriva ves of the
given func on.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equa ons of the tangent and
normal lines to the graph of the func on at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
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Figure 2.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

2.4 The Product and Quo ent Rules

2.4 The Product and Quo ent Rules
The previous sec on showed that, in some ways, deriva ves behave nicely. The
Constant Mul ple and Sum/Difference Rules established that the deriva ve of
f(x) = 5x2 + sin xwas not complicated. We neglected compu ng the deriva ve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their deriva ves are
not as straigh orward. (If you had to guesswhat their respec ve deriva ves are,
youwould probably guess wrong.) For these, we need the Product andQuo ent
Rules, respec vely, which are defined in this sec on.

We begin with the Product Rule.

Theorem 2.4.1 Product Rule

Let f and g be differen able func ons on an open interval I. Then fg is a
differen able func on on I, and

d
dx

(
f(x)g(x)

)
= f(x)g ′(x) + f ′(x)g(x).

Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)! While this answer is simpler than

the Product Rule, it is wrong.
We prac ce using this new rule in an example, followed by an example that

demonstrates why this theorem is true.

Example 2.4.1 Using the Product Rule
Use the Product Rule to compute the deriva ve of y = 5x2 sin x. Evaluate the
deriva ve at x = π/2.

S To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

At x = π/2, we have

y ′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
2.4.1. While this does not prove that the Product Rule is the correct way to han-
dle deriva ves of products, it helps validate its truth.

Notes:
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Chapter 2 Deriva ves

We now inves gate why the Product Rule is true.

Example 2.4.2 A proof of the Product Rule
Use the defini on of the deriva ve to prove Theorem 2.4.1.

S By the limit defini on, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
as shown.

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)g(x+ h)− g(x)
h

+ lim
h→0

f(x+ h)− f(x)
h

g(x) (apply limits)

= f(x)g ′(x) + f ′(x)g(x).

It is o en true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the deriva ve of a product of func ons in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.3 Exploring alternate deriva ve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the deriva ve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

S We first expand the expression for y; a li le algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′:

y ′ = 8x3 + 9x2 − 12x.

Notes:

90



2.4 The Product and Quo ent Rules

Now apply the Product Rule.

y ′ = (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)
=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the deriva ve of the product is the
product of the deriva ves.” Thus we are tempted to say that y ′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct.

Example 2.4.4 Using the Product Rule with a product of three func ons
Let y = x3 ln x cos x. Find y ′.

S Wehave a product of three func onswhile the Product Rule
only specifies how to handle a product of two func ons. Ourmethod of handling
this problem is to simply group the la er two func ons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (x3)
(
ln x cos x

)′
+ 3x2

(
ln x cos x

)
To evaluate

(
ln x cos x

)′, we apply the Product Rule again:
= (x3)

(
ln x(− sin x) +

1
x
cos x

)
+ 3x2

(
ln x cos x

)
= x3 ln x(− sin x) + x3

1
x
cos x+ 3x2 ln x cos x

Recognize the pa ern in our answer above: when applying the Product Rule to
a product of three func ons, there are three terms added together in the final
deriva ve. Each term contains only one deriva ve of one of the original func-
ons, and each func on’s deriva ve shows up in only one term. It is straigh or-

ward to extend this pa ern to finding the deriva ve of a product of 4 or more
func ons.

We consider one more example before discussing another deriva ve rule.

Example 2.4.5 Using the Product Rule
Find the deriva ves of the following func ons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

Notes:
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S Recalling that the deriva ve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute
d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log func on ln x is an important func on (it
is), it seems worthwhile to know a func on whose deriva ve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the deriva ves of sums, differences, and
products of func ons. We now learn how to find the deriva ve of a quo ent of
func ons.

Theorem 2.4.2 Quo ent Rule

Let f and g be differen able func ons defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differen able on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g ′(x)
g(x)2

.

The Quo ent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a frac on’s numerator
and denominator as “HI” and “LO”, respec vely. Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the deriva ves of the numerator and denominator, respec vely.

Let’s prac ce using the Quo ent Rule.

Example 2.4.6 Using the Quo ent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).
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Figure 2.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

2.4 The Product and Quo ent Rules

S Directly applying the Quo ent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x · 10x− 5x2 · cos x
sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

TheQuo ent Rule allows us to fill in holes in our understanding of deriva ves
of the common trigonometric func ons. We start with finding the deriva ve of
the tangent func on.

Example 2.4.7 Using the Quo ent Rule to find d
dx

(
tan x

)
.

Find the deriva ve of y = tan x.

S At first, one might feel unequipped to answer this ques on.
But recall that tan x = sin x/ cos x, so we can apply the Quo ent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beau ful result. To confirm its truth, we can find the equa on of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.4.2.

We include this result in the following theorem about the deriva ves of the
trigonometric func ons. Recall we found the deriva ve of y = sin x in Example
2.1.7 and stated the deriva ve of the cosine func on in Theorem 2.3.1. The
deriva ves of the cotangent, cosecant and secant func ons can all be computed
directly using Theorem 2.3.1 and the Quo ent Rule.
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Theorem 2.4.3 Deriva ves of Trigonometric Func ons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
ves of the trigonometric func ons that start with “c” have aminus sign in them.

Example 2.4.8 Exploring alternate deriva ve methods

In Example 2.4.6 the deriva ve of f(x) =
5x2

sin x
was found using the Quo ent

Rule. Rewri ng f as f(x) = 5x2 csc x, find f ′ using Theorem 2.4.3 and verify the
two answers are the same.

S We found in Example 2.4.6 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2(− csc x cot x) + 10x csc x (now rewrite trig func ons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. Work to “simplify” your results into a form that is most readable and
useful to you.

The Quo ent Rule gives other useful results, as shown in the next example.
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Example 2.4.9 Using the Quo ent Rule to expand the Power Rule
Find the deriva ves of the following func ons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

S We employ the Quo ent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The deriva ve of y =
1
xn

turned out to be rather nice. It gets be er. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 2.4.9)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

This is reminiscent of the Power Rule: mul ply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stric on of n > 0.

Theorem 2.4.4 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the deriva ve of many func ons is rela vely straigh orward. It is
clear (with prac ce) what rules apply and in what order they should be applied.
Other func ons present mul ple paths; different rules may be applied depend-
ing on how the func on is treated. One of the beau ful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to

Notes:
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Chapter 2 Deriva ves

the same result, the deriva ve. We demonstrate this concept in an example.

Example 2.4.10 Exploring alternate deriva ve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the Quo ent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

S

1. Applying the Quo ent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewri ng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ≠ 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.
f ′(x) = 1− 1

x2
,

the same result as before.

Example 2.4.10 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ul mately, the important principle to take away from this is: reduce the answer

Notes:
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2.4 The Product and Quo ent Rules

to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next sec on we con nue to learn rules that allow us to more easily
compute deriva ves than using the limit defini on directly. We have to memo-
rize the deriva ves of a certain set of func ons, such as “the deriva ve of sin x
is cos x.” The Sum/Difference, Constant Mul ple, Power, Product and Quo ent
Rules show us how to find the deriva ves of certain combina ons of these func-
ons. The next sec on shows how to find the deriva ves when we compose

these func ons together.
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The Quo ent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The deriva ves of the trigonometric func ons that
start with “c” have minus signs in them.

4. What deriva ve rule is used to extend the Power Rule to
include nega ve integer exponents?

5. T/F: Regardless of the func on, there is always exactly one
right way of compu ng its deriva ve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the Quo ent Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Quo ent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the deriva ve of the given func-
on.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x
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In Exercises 37 – 40, find the equa ons of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π2 ,−
3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
func on has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested deriva ve.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 52, use the graph of f(x) to sketch f ′(x).
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Chapter 2 Deriva ves

2.5 The Chain Rule
We have covered almost all of the deriva ve rules that deal with combina ons
of two (or more) func ons. The opera ons of addi on, subtrac on, mul plica-
on (including by a constant) and division led to the Sum and Difference rules,

the Constant Mul ple Rule, the Power Rule, the Product Rule and the Quo ent
Rule. To complete the list of differen a on rules, we look at the last way two (or
more) func ons can be combined: the process of composi on (i.e. one func on
“inside” another).

One example of a composi on of func ons is f(x) = cos(x2). We currently
do not know how to compute this deriva ve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the deriva ve of cos x
and 2x as the deriva ve of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this
sec on introduces, the Chain Rule.

Before we define this new rule, recall the nota on for composi on of func-
ons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f

with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differen a on rule, we note that the rule extends to
mul ple composi ons like f(g(h(x))) or f(g(h(j(x)))), etc.

To mo vate the rule, let’s look at three deriva ves we can already compute.

Example 2.5.1 Exploring similar deriva ves
Find the deriva ves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different func ons and an
uppercase F.)

S In order to use the rules we already have, we must first ex-
pand each func on as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interes ng fact is that these can be rewri en as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A pa ernmight jump out at you; note how the we end upmul plying by the old
power and the new power is reduced by 1. We also always mul ply by (−1).

Notes:
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2.5 The Chain Rule

Recognize that each of these func ons is a composi on, le ng g(x) = 1−x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example a er giving the formal statements of the
Chain Rule; for now, we are just illustra ng a pa ern.

When composing func ons, we need to make sure that the new func on is
actually defined. For instance, consider f(x) =

√
x and g(x) = −x2 − 1. The

domain of f excludes all nega ve numbers, but the range of g is only nega ve
numbers. Therefore the composi on f

(
g(x)

)
=

√
−x2 − 1 is not defined for

any x, and hence is not differen able.
The following defini on takes care to ensure this problem does not arise.

We’ll focus more on the deriva ve result than on the domain/range condi ons.

Theorem 2.5.1 The Chain Rule

Let g be a differen able func on on an interval I, let the range of g be a
subset of the interval J, and let f be a differen able func on on J. Then
y = f(g(x)) is a differen able func on on I, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 2.5.1.

Example 2.5.2 Using the Chain Rule
Use the Chain Rule to find the deriva ves of the following func ons, as given in
Example 2.5.1.

S Example 2.5.1 ended with the recogni on that each of the
given func ons was actually a composi on of func ons. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.

Notes:
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Chapter 2 Deriva ves

Part of the Chain Rule uses f ′(g(x)). This means subs tute g(x) for x in the
equa on for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 2.5.2 demonstrated a par cular pa ern: when f(x) = xn, then
y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.

Theorem 2.5.2 Generalized Power Rule

Let g(x) be a differen able func on and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the deriva ve of func ons like y = (3x2 − 5x+
7 + sin x)20. While it may look in mida ng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the deriva ve–taking process step–by–step. In the example just given,
first mul ply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the deriva ve of the expression inside the
parentheses, and mul ply by that.

We now consider more examples that employ the Chain Rule.

Notes:
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Figure 2.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

2.5 The Chain Rule

Example 2.5.3 Using the Chain Rule
Find the deriva ves of the following func ons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

S

1. Consider y = sin 2x. Recognize that this is a composi on of func ons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composi on of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composi on of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 2.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equa on of the line tangent to the graph of f at x = 1.

S The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equa on of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.1.

The Chain Rule is used o en in taking deriva ves. Because of this, one can
become familiar with the basic process and learn pa erns that facilitate finding
deriva ves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

Notes:
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A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the deriva ve may look in mida ng at first, look for the pa ern. The
denominator is the same as what was inside the natural log func on; the nu-
merator is simply its deriva ve.

This pa ern recogni on process can be applied to lots of func ons. In gen-
eral, instead of wri ng “anything”, we use u as a generic func on of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar func ons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjunc onwith any of the other
rules we have already learned. We prac ce this next.

Example 2.5.5 Using the Product, Quo ent and Chain Rules
Find the deriva ves of the following func ons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

S

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the Quo ent Rule along with the Chain Rule. Again, pro-
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ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t a empt to figure out both parts at once.

Likewise, using the Quo ent Rule, approach the numerator in two steps and
handle the denominator a er comple ng that. Only simplify a erward.

We can also employ the Chain Rule itself several mes, as shown in the next
example.

Example 2.5.6 Using the Chain Rule mul ple mes
Find the deriva ve of y = tan5(6x3 − 7x).

S Recognize that we have the g(x) = tan(6x3 − 7x) func on
“inside” the f(x) = x5 func on; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
deriva ve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This func on is frankly a ridiculous func on, possessing no real prac cal
value. It is very difficult to graph, as the tangent func on has many ver cal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the deriva ve can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

Notes:
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Chapter 2 Deriva ves

It is a tradi onal mathema cal exercise to find the deriva ves of arbitrarily
complicated func ons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.7 Using the Product, Quo ent and Chain Rules

Find the deriva ve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

S This func on likely has no prac cal use outside of demon-
stra ng deriva ve skills. The answer is given below without simplifica on. It
employs the Quo ent Rule, the Product Rule, and the Chain Rule three mes.

f ′(x) = ln(x2 + 5x4) ·
[(

x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)
)
− 2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2) − sin2(e4x)

)
· 2x+20x3

x2+5x4


(
ln(x2 + 5x4)

)2 .

The reader is highly encouraged to look at each term and recognize why it
is there. (I.e., the Quo ent Rule is used; in the numerator, iden fy the “LOdHI”
term, etc.) This example demonstrates that deriva ves can be computed sys-
tema cally, no ma er how arbitrarily complicated the func on is.

The Chain Rule also has theore c value. That is, it can be used to find the
deriva ves of func ons that we have not yet learned as we do in the following
example.

Example 2.5.8 The Chain Rule and exponen al func ons
Use the Chain Rule to find the deriva ve of y = 2x.

S We only know how to find the deriva ve of one exponen al
func on, y = ex. We can accomplish our goal by rewri ng 2 in terms of e.
Recalling that ex and ln x are inverse func ons, we can write

2 = eln 2 and so y = 2x =
(
eln 2
)x

= ex(ln 2).

The func on is now the composi on y = f(g(x)), with f(x) = ex and g(x) =
x(ln 2). Since f ′(x) = ex and g ′(x) = ln 2, the Chain Rule gives

y ′ = ex(ln 2) · ln 2.
Recall that the ex(ln 2) term on the right hand side is just 2x, our original func on.
Thus, the deriva ve contains the original func on itself. We have

y ′ = y · ln 2 = 2x · ln 2.
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2.5 The Chain Rule

We can extend this process to use any base a, where a > 0 and a ̸= 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the deriva ve rule of ex, allows us to find the deriva ves of all exponen al
func ons.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 2.5.3 Deriva ves of Exponen al Func ons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differen able for all real
numbers (i.e., differen able everywhere) and

f ′(x) = ln a · ax.

Alternate Chain Rule Nota on

It is instruc ve to understand what the Chain Rule “looks like” using “ dydx” no-
ta on instead of y ′ nota on. Suppose that y = f(u) is a func on of u, where
u = g(x) is a func on of x, as stated in Theorem 2.5.1. Then, through the com-
posi on f ◦ g, we can think of y as a func on of x, as y = f(g(x)). Thus the
deriva ve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interes ng progression of nota on:

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “frac onal” nota on for the deriva ve)

Here the “frac onal” aspect of the deriva ve nota on stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not canceling these terms; the deriva ve
nota on of dy

du is one symbol. It is equally important to realize that this nota on
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mul ple variables. For instance,

Notes:
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Chapter 2 Deriva ves

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 2.5.2. The gears have 36, 18, and 6 teeth,
respec vely. That means for every revolu on of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolu on is twice as fast
as the rate at which the x gear makes a revolu on. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revolu on of u causes 3 revolu ons of y: dy

du = 3. How does
y change with respect to x? For each revolu on of x, y revolves 6 mes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So o en the
func ons that we deal with are composi ons of two or more func ons, requir-
ing us to use this rule to compute deriva ves. It is also o en used in real life
when actual func ons are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the Chain Rule, we can find

dy
dx .

In the next sec on, we use the Chain Rule to jus fy another differen a on
technique. There are many curves that we can draw in the plane that fail the
“ver cal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay s ll be interested in finding slopes of tangent lines to the circle at
various points. The next sec on shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situa ons, implicit differen a on is indispensable.

Notes:

108



Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

ve of a composi on of func ons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the deriva ve of the given func-
on.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1t )e
5t2

35. f(x) =
sin
(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equa ons of tangent and normal
lines to the graph of the func on at the given point. Note: the
func ons here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the deriva ve.
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42. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the deriva ve.

Review
43. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

44. Find the deriva ves of the following func ons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Figure 2.6.1: A graph of the implicit func-
on sin(y) + y3 = 6− x3.

2.6 Implicit Differen a on

2.6 Implicit Differen a on
In the previous sec ons we learned to find the deriva ve, dy

dx , or y
′, when y is

given explicitly as a func on of x. That is, if we know y = f(x) for some func on
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Some mes the rela onship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
rela onship between x and y; if we know x, we could figure out y. Can we s ll
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differen ate to get y ′ = 2x.

Some mes the implicit rela onship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit func on is given
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary func ons. The surprising thing is, however, that we can s ll find y ′
via a process known as implicit differen a on.

Implicit differen a on is a technique based on the Chain Rule that is used to
find a deriva ve when the rela onship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be func ons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.1)

These equa ons look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit Differen a on
Find y ′ given that sin(y) + y3 = 6− x3.

S We start by taking the deriva ve of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

Notes:
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Chapter 2 Deriva ves

The right hand side is easy; it returns−3x2.
The le hand side requiresmore considera on. We take the deriva ve term–

by–term. Using the technique derived from Equa on 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Pu ng this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

Now solve for y ′.

cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equa on for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit func ons are generally harder to deal with than explicit func ons.
With an explicit func on, given an x value, we have an explicit formula for com-
pu ng the corresponding y value. With an implicit func on, one o en has to
find x and y values at the same me that sa sfy the equa on. It is much eas-
ier to demonstrate that a given point sa sfies the equa on than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit func on sin y+ y3 = 6− x3. Plugging in 0 for y, we see the le hand
side is 0. Se ng x = 3

√
6, we see the right hand side is also 0; the equa on is

sa sfied. The following example finds the equa on of the tangent line to this
func on at this point.

Example 2.6.2 Using Implicit Differen a on to find a tangent line
Find the equa on of the line tangent to the curve of the implicitly defined func-
on sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

S In Example 2.6.1 we found that

y ′ =
−3x2

cos y+ 3y2
.

Notes:
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Figure 2.6.2: The func on sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

2.6 Implicit Differen a on

We find the slope of the tangent line at the point ( 3
√
6, 0) by subs tu ng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equa on of the tangent line to the implicitly defined func on
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differen a on. For the steps be-
low assume y is a func on of x.

1. Take the deriva ve of each term in the equa on. Treat the x terms like
normal. When taking the deriva ves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mul ply each term
by y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.

Prac cal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y ′, as the la er can be easily confused for y or y1.

Example 2.6.3 Using Implicit Differen a on
Given the implicitly defined func on y3 + x2y4 = 1+ 2x, find y ′.

S Wewill take the implicit deriva ves termby term. Thederiva-
ve of y3 is 3y2y ′.
The second term, x2y4, is a li le tricky. It requires the Product Rule as it is the

product of two func ons of x: x2 and y4. Its deriva ve is x2(4y3y ′) + 2xy4. The
first part of this expression requires a y ′ becausewe are taking the deriva ve of a
y term. The second part does not require it because we are taking the deriva ve
of x2.

The deriva ve of the right hand side is easily found to be 2. In all, we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the le side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Notes:
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Figure 2.6.3: A graph of the implicitly de-
fined func on y3 + x2y4 = 1 + 2x along
with its tangent line at the point (0, 1).
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Figure 2.6.4: A graph of the implicitly de-
fined func on sin(x2y2) + y3 = x+ y.

Chapter 2 Deriva ves

Factor out y ′ from the le side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equa on of a tangent line
to this func on at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this func on. At this point, y ′ = 2/3. So the equa on of the tangent
line is y = 2/3(x−0)+1. The func on and its tangent line are graphed in Figure
2.6.3.

No ce how our func on looks much different than other func ons we have
seen. For one, it fails the ver cal line test. Such func ons are important in many
areas of mathema cs, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit Differen a on
Given the implicitly defined func on sin(x2y2) + y3 = x+ y, find y ′.

S Differen a ng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy ′) + 2xy2

)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the deriva ves of the other terms to the reader. A er taking the
deriva ves of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.

We now have to be careful to properly solve for y ′, par cularly because of
the product on the le . It is best to mul ply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

Notes:
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Figure 2.6.6: The unit circle with its tan-
gent line at (1/2,

√
3/2).

2.6 Implicit Differen a on

A graph of this implicit func on is given in Figure 2.6.4. It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the func on in Figure

2.6.5.

Quite a few “famous” curves have equa ons that are given implicitly. We can
use implicit differen a on to find the slope at various points on those curves.
We inves gate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

S Taking deriva ves, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This sec on has shown how to find the deriva ves of implicitly defined func-
ons, whose graphs include a wide variety of interes ng and unusual shapes.

Implicit differen a on can also be used to further our understanding of “regu-
lar” differen a on.

One hole in our current understanding of deriva ves is this: what is the
deriva ve of the square root func on? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

Notes:
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We allude to a possible solu on, as we can write the square root func on as
a power func on with a ra onal (or, frac onal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.

The trouble with this is that the Power Rule was ini ally defined only for
posi ve integer powers, n > 0. While we did not jus fy this at the me, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posi ve integers. The Quo ent Rule allowed us to extend
the Power Rule to nega ve integer powers. Implicit Differen a on allows us to
extend the Power Rule to ra onal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
func on implicitly as yn = xm. Now apply implicit differen a on.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y ′ = m · xm−1

y ′ =
m
n
xm−1

yn−1 (now subs tute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1.

The above deriva on is the key to the proof extending the Power Rule to ra-
onal powers. Using limits, we can extend this once more to include all powers,

including irra onal (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for Differen a on

Let f(x) = xn, where n ̸= 0 is a real number. Then f is differen able on
its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

Notes:
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Figure 2.6.8: An astroid with a tangent
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2.6 Implicit Differen a on

This theorem allows us to say the deriva ve of xπ is πxπ−1.
We now apply this final version of the Power Rule in the next example, the

second inves ga on of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

S This is a par cularly interes ng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8, 8), we take the deriva ve
implicitly.

2
3
x−1/3 +

2
3
y−1/3y ′ = 0

2
3
y−1/3y ′ = −2

3
x−1/3

y ′ = −x−1/3

y−1/3

y ′ = −y1/3

x1/3
= − 3

√
y
x
.

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit Differen a on and the Second Deriva ve

Wecan use implicit differen a on to find higher order deriva ves. In theory,
this is simple: first find dy

dx , then take its deriva ve with respect to x. In prac ce,
it is not hard, but it o en requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second deriva ve

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

S We found that y ′ = dy
dx = −x/y in Example 2.6.5. To find y ′′,

Notes:
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we apply implicit differen a on to y ′.

y ′′ =
d
dx
(
y ′
)

=
d
dx

(
−x
y

)
(Now use the Quo ent Rule.)

= −y(1)− x(y ′)
y2

replace y ′ with−x/y:

= −y− x(−x/y)
y2

= −y+ x2/y
y2

.

While this is not a par cularly simple expression, it is usable. We can see that
y ′′ > 0 when y < 0 and y ′′ < 0 when y > 0. In Sec on 3.4, we will see how
this relates to the shape of the graph.

Logarithmic Differen a on

Consider the func on y = xx; it is graphed in Figure 2.6.9. It is well–defined
for x > 0 and we might be interested in finding equa ons of lines tangent and
normal to its graph. How do we take its deriva ve?

The func on is not a power func on: it has a “power” of x, not a constant.
It is not an exponen al func on: it has a “base” of x, not a constant.

A differen a on technique known as logarithmic differen a on becomes
useful here. The basic principle is this: take the natural log of both sides of an
equa on y = f(x), then use implicit differen a on to find y ′. We demonstrate
this in the following example.

Example 2.6.8 Using Logarithmic Differen a on
Given y = xx, use logarithmic differen a on to find y ′.

S As suggested above, we start by taking the natural log of

Notes:
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Figure 2.6.10: A graph of y = xx and its
tangent line at x = 1.5.

2.6 Implicit Differen a on

both sides then applying implicit differen a on.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln x (now use implicit differen a on)

d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(subs tute y = xx)

y ′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equa onof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equa on for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equa on of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure
2.6.10 graphs y = xx along with this tangent line.

Implicit differen a on proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of func ons. In par cular, it extended the
Power Rule to ra onal exponents, which we then extended to all real numbers.
In the next sec on, implicit differen a on will be used to find the deriva ves of
inverse func ons, such as y = sin−1 x.

Notes:
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Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

func ons and explicit func ons.

2. Implicit differen a on is based on what other differen a-
on rule?

3. T/F: Implicit differen a on can be used to find the deriva-
ve of y =

√
x.

4. T/F: Implicit differen a on can be used to find the deriva-
ve of y = x3/4.

Problems
In Exercises 5 – 12, compute the deriva ve of the given func-
on.

5. f(x) =
√
x+ 1√

x

6. f(x) = 3√x+ x2/3

7. f(t) =
√
1− t2

8. g(t) =
√
t sin t

9. h(x) = x1.5

10. f(x) = xπ + x1.9 + π1.9

11. g(x) = x+ 7√
x

12. f(t) = 5√t(sec t+ et)

In Exercises 13 – 25, find dy
dx

using implicit differen a on.

13. x4 + y2 + y = 7

14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1

16. x
y
= 10

17. y
x
= 10

18. x2e2 + 2y = 5

19. x2 tan y = 50

20. (3x2 + 2y3)4 = 2

21. (y2 + 2y− x)2 = 200

22. x2 + y
x+ y2

= 17

23. sin(x) + y
cos(y) + x

= 1

24. ln(x2 + y2) = e

25. ln(x2 + xy+ y2) = 1

26. Show that dy
dx

is the same for each of the following implicitly
defined func ons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 27 – 32, find the equa on of the tangent line to
the graph of the implicitly defined func on at the indicated
points. As a visual aid, each func on is graphed.

27. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).
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.
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28. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

(
√

0.6,
√

0.8)

.

x

.

y
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29. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4√108).
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30. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.
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31. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.
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32. x2 + y3 + 2xy = 0

(a) At (−1, 1).

(b) At
(
−1, 1

2
(−1+

√
5)
)
.

(c) At
(
−1, 1

2
(−1−

√
5)
)
.

−2 2

−2

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

In Exercises 33 – 36, an implicitly defined func on is given.

Find d2y
dx2

. Note: these are the same problems used in Exer-
cises 13 through 16.

33. x4 + y2 + y = 7

34. x2/5 + y2/5 = 1

35. cos x+ sin y = 1

36. x
y
= 10

In Exercises 37 – 42, use logarithmic differen a on to find
dy
dx

, then find the equa on of the tangent line at the indicated
x–value.

37. y = (1+ x)1/x, x = 1

38. y = (2x)x
2
, x = 1

39. y = xx

x+ 1
, x = 1

40. y = xsin(x)+2, x = π/2

41. y = x+ 1
x+ 2

, x = 1

42. y = (x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0
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Figure 2.7.1: A func on f alongwith its in-
verse f−1. (Note how it does not ma er
which func on we refer to as f; the other
is f−1.)
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Figure 2.7.2: Corresponding tangent lines
drawn to f and f−1.

Chapter 2 Deriva ves

2.7 Deriva ves of Inverse Func ons
Recall that a func on y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restric ng f to (0,∞), f is one to one.

Now recall that one to one func ons have inverses. That is, if f is one to
one, it has an inverse func on, denoted by f−1, such that if f(a) = b, then
f−1(b) = a. The domain of f−1 is the range of f, and vice-versa. For ease of
nota on, we set g = f−1 and treat g as a func on of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two func ons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflec on of f across the
line y = x. In Figure 2.7.1 we see a func on graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this rela onship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.7.2 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflec on across y = x, we
can see that the tangent line to g at the point (b, a) should have slope

1
f ′(a)

.

This then tells us that g ′(b) =
1

f ′(a)
.

Consider:

Informa on about f Informa on about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g ′(0.375) = 4/3

We have discovered a rela onship between f ′ and g ′ in a mostly graphical
way. We can realize this rela onship analy cally as well. Let y = g(x), where
again g = f−1. Wewant to find y ′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit Differen a on, take the deriva ve of both sides of

Notes:
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2.7 Deriva ves of Inverse Func ons

this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y ′ = 1

y ′ =
1

f ′(y)

y ′ =
1

f ′(g(x))
.

This leads us to the following theorem.

Theorem 2.7.1 Deriva ves of Inverse Func ons

Let fbe differen able and one to one on an open interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse func on of
f, and let f(a) = b for some a in I. Then g is a differen able func on on
J, and in par cular,
1.
(
f−1)′ (b) = g ′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g ′(x) =

1
f ′(g(x))

The results of Theorem2.7.1 are not trivial; the nota onmay seemconfusing
at first. Careful considera on, along with examples, should earn understanding.

In the next example we apply Theorem 2.7.1 to the arcsine func on.

Example 2.7.1 Finding the deriva ve of an inverse trigonometric func on
Let y = arcsin x = sin−1 x. Find y ′ using Theorem 2.7.1.

S Adop ngour previously definednota on, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g ′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illumina ng. Drawing a figure will
help, as shown in Figure 2.7.4. Recall that the sine func on can be viewed as
taking in an angle and returning a ra o of sides of a right triangle, specifically,
the ra o “opposite over hypotenuse.” Thismeans that the arcsine func on takes
as input a ra o of sides and returns an angle. The equa on y = arcsin x can
be rewri en as y = arcsin(x/1); that is, consider a right triangle where the

Notes:
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Figure 2.7.4: A right triangle defined by
y = sin−1(x/1) with the length of the
third leg found using the Pythagorean
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Figure 2.7.5: Graphs of sin x and sin−1 x
along with corresponding tangent lines.

Chapter 2 Deriva ves

hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resul ng in

d
dx
(
arcsin x

)
= g ′(x) =

1√
1− x2

.

Remember that the input x of the arcsine func on is a ra o of a side of a right
triangle to its hypotenuse; the absolute value of this ra o will never be greater
than 1. Therefore the inside of the square root will never be nega ve.

In order tomake y = sin x one to one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the deriva ve of
the arcsine func on is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach ver cal lines with undefined slopes.

In Figure 2.7.5 we see f(x) = sin x and f−1(x) = sin−1 x graphed on their re-
spec ve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a func on and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederiva ves of all the inverse trigono-
metric func ons. In Figure 2.7.3 we show the restric ons of the domains of the
standard trigonometric func ons that allow them to be inver ble.

Notes:
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2.7 Deriva ves of Inverse Func ons

Func on Domain Range
Inverse
Func on Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1 x [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1 x (−∞,∞) (−π/2, π/2)

csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1 x (−∞,∞) (0, π)

Figure 2.7.3: Domains and ranges of the trigonometric and inverse trigonometric func ons.

Theorem 2.7.2 Deriva ves of Inverse Trigonometric Func ons

The inverse trigonometric func ons are differen able on all open sets
contained in their domains (as listed in Figure 2.7.3) and their deriva ves
are as follows:

1. d
dx
(
sin−1 x

)
=

1√
1− x2

2. d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

3. d
dx
(
tan−1 x

)
=

1
1+ x2

4. d
dx
(
cos−1 x

)
= − 1√

1− x2

5. d
dx
(
csc−1 x

)
= − 1

|x|
√
x2 − 1

6. d
dx
(
cot−1 x

)
= − 1

1+ x2

Note how the last three deriva ves are merely the opposites of the first
three, respec vely. Because of this, the first three are used almost exclusively
throughout this text.

In Sec on 2.3, we stated without proof or explana on that
d
dx
(
ln x
)
=

1
x
.

We can jus fy that now using Theorem 2.7.1, as shown in the example.

Example 2.7.2 Finding the deriva ve of y = ln x
Use Theorem 2.7.1 to compute

d
dx
(
ln x
)
.

S View y = ln x as the inverse of y = ex. Therefore, using our
standard nota on, let f(x) = ex and g(x) = ln x. Wewish to find g ′(x). Theorem

Notes:
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Chapter 2 Deriva ves

2.7.1 gives:

g ′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
.

In this chapter we have defined the deriva ve, given rules to facilitate its
computa on, and given the deriva ves of a number of standard func ons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.3 Glossary of Deriva ves of Elementary Func ons

Let u and v be differen able func ons, and let a, c and n be real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
sec x

)
= sec x tan x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
sec−1 x

)
= 1

|x|
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
csc x

)
= − csc x cot x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2

Notes:
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Exercises 2.7
Terms and Concepts

1. T/F: Every func on has an inverse.

2. In your own words explain what it means for a func on to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given func ons are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) = 3
x− 5

, x ̸= 5 and

g(x) = 3+ 5x
x

, x ̸= 0

8. f(x) = x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an inver ble func on f(x) is given along
with a point that lies on its graph. Using Theorem 2.7.1, eval-
uate

(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) = 1
1+ x2

, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the deriva ve of the given func-
on.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) = sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 26, compute the deriva ve of the given func-
on in two ways:
(a) By simplifying first, then taking the deriva ve, and
(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

In Exercises 27 – 28, find the equa on of the line tangent to
the graph of f at the indicated x value.

27. f(x) = sin−1 x at x =
√

2
2

28. f(x) = cos−1(2x) at x =
√

3
4

Review
29. Find dy

dx , where x
2y− y2x = 1.

30. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

31. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Note: The extreme values of a func on
are “y” values, values the func on a ains,
not the input values.
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Figure 3.1.1: Graphs of func onswith and
without extreme values.

3: T G B
F

Our study of limits led to con nuous func ons, a certain class of func ons that
behave in a par cularly nice way. Limits then gave us an even nicer class of
func ons, func ons that are differen able.

This chapter explores many of the ways we can take advantage of the infor-
ma on that con nuous and differen able func ons provide.

3.1 Extreme Values
Given any quan ty described by a func on, we are o en interested in the largest
and/or smallest values that quan ty a ains. For instance, if a func on describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a func on describes the value of a stock, we might want
to know the highest/lowest values the stock a ained over the past year. We call
such values extreme values.

Defini on 3.1.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 3.1.1. The func on displayed in (a) has a maximum, but
no minimum, as the interval over which the func on is defined is open. In (b),
the func on has a minimum, but no maximum; there is a discon nuity in the
“natural” place for the maximum to occur. Finally, the func on shown in (c) has
both a maximum and a minimum; note that the func on is con nuous and the
interval on which it is defined is closed.

It is possible for discon nuous func ons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, con nuous func ons on a closed interval al-
ways have a maximum and minimum value.
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Figure 3.1.2: A graph of f(x) = 2x3 − 9x2
as in Example 3.1.1.

Note: The terms local minimum and local
maximum are o en used as synonyms for
rela ve minimum and rela ve maximum.

As it makes intui ve sense that an ab-
solute maximum is also a rela ve max-
imum, Defini on 3.1.2 allows a rela ve
maximum to occur at an interval’s end-
point.

Chapter 3 The Graphical Behavior of Func ons

Theorem 3.1.1 The Extreme Value Theorem

Let f be a con nuous func on defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. A er the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.

Example 3.1.1 Approxima ng extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.2. Approxi-
mate the extreme values of f.

S The graph is drawn in such away to draw a en on to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approxima on, we
approximate the extreme values to be 25 and−27.

No ce how theminimum value came at “the bo om of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the loca on of an extreme value for some interval is important, leading us to
a defini on of a rela ve maximum. In short, a “rela ve max” is a y-value that’s
the largest y-value “nearby.”

Defini on 3.1.2 Rela ve Minimum and Rela ve Maximum

Let f be defined on an interval I containing c.

1. If there is a δ > 0 such that f(c) ≤ f(x) for all x in Iwhere |x− c| <
δ, then f(c) is a rela ve minimum of f. We also say that f has a
rela ve minimum at (c, f(c)).

2. If there is a δ > 0 such that f(c) ≥ f(x) for all x in Iwhere |x− c| <
δ, then f(c) is a rela ve maximum of f. We also say that f has a
rela ve maximum at (c, f(c)).

The rela ve maximum and minimum values comprise the rela ve ex-
trema of f.

Notes:
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Figure 3.1.3: A graph of f(x) = (3x4 −
4x3 − 12x2 + 5)/5 as in Example 3.1.2.
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Figure 3.1.4: A graph of f(x) = (x −
1)2/3 + 2 as in Example 3.1.3.

3.1 Extreme Values

We briefly prac ce using these defini ons.

Example 3.1.2 Approxima ng rela ve extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 3.1.3. Approximate
the rela ve extrema of f. At each of these points, evaluate f ′.

S We s ll do not have the tools to exactly find the rela ve
extrema, but the graph does allow us to make reasonable approxima ons. It
seems f has rela ve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a rela ve maximum at the point (0, 1).

We approximate the rela ve minima to be 0 and−5.4; we approximate the
rela ve maximum to be 1.

It is straigh orward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 3.1.3 Approxima ng rela ve extrema
Approximate the rela ve extrema of f(x) = (x−1)2/3+2, shown in Figure 3.1.4.
At each of these points, evaluate f ′.

S The figure implies that f does not have any rela ve maxima,
but has a rela ve minimum at (1, 2). In fact, the graph suggests that not only
is this point a rela ve minimum, y = f(1) = 2 is the minimum value of the
func on.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate rela ve extrema, and at each such point, the deriva ve was
either 0 or it was not defined. This observa on holds for all func ons, leading
to a defini on and a theorem.

Defini on 3.1.3 Cri cal Numbers and Cri cal Points

Let f be defined at c. The value c is a cri cal number (or cri cal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a cri cal number of f, then the point (c, f(c)) is a cri cal point of f.

Notes:
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Chapter 3 The Graphical Behavior of Func ons

Theorem 3.1.2 Rela ve Extrema and Cri cal Points

Let a func on f be defined on an open interval I containing c, and let f
have a rela ve extremumat the point (c, f(c)). Then c is a cri cal number
of f.

Be careful to understand that this theorem states “Rela ve extrema on open
intervals occur at cri cal points.” It does not say “All cri cal numbers produce
rela ve extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straigh orward to determine that x = 0 is a cri cal number of f. However, f has
no rela ve extrema, as illustrated in Figure 3.1.5.

Theorem3.1.1 states that a con nuous func onon a closed intervalwill have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Our theory tells us we need only check at the cri cal
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.1 Finding Extrema on a Closed Interval

Let f be a con nuous func on defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the cri cal numbers of f in [a, b].

3. Evaluate f at each cri cal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We prac ce these ideas in the next examples.

Example 3.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
3.1.6(a).

S We follow the steps outlined in Key Idea 3.1.1. We first eval-

Notes:
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Figure 3.1.6: Finding the extreme values
of f(x) = 2x3+3x2−12x in Example 3.1.4.
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Figure 3.1.7: Finding the extreme values
of a piecewise–defined func on in Exam-
ple 3.1.5.

3.1 Extreme Values

uate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the cri cal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 = 6(x +
2)(x− 1); therefore the cri cal values of f are x = −2 and x = 1. Since x = −2
does not lie in the interval [0, 3], we ignore it. Evalua ng f at the only cri cal
number in our interval gives: f(1) = −7.

The table in Figure 3.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analy c algorithm and did not depend on any visualiza on. Figure 3.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We prac ce again.

Example 3.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 ,

graphed in Figure 3.1.7(a).

S Here f is piecewise–defined, but we can s ll apply Key Idea
3.1.1 as it is con nuous on [−4, 2] (one should check to verify that lim

x→0
f(x) =

f(0)). Evalua ng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the cri cal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the deriva ve of f does
not exist when x = 0. (From the le , the deriva ve approaches −2; from the
right the deriva ve is 1.) Thus one cri cal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0, so we find no cri cal values from se ng f ′(x) = 0.

So we have three important x values to consider: x = −4, 2 and 0. Evaluat-
ing f at each gives, respec vely, 25, 3 and 1, shown in Figure 3.1.7(b). Thus the
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Figure 3.1.9: Finding the extrema of the
half–circle in Example 3.1.7.

Note: We implicitly found the deriva ve
of x2 + y2 = 1, the unit circle, in Ex-
ample 2.6.5 as dy

dx = −x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) =

√
1− x2. We found f ′(x) =

−x√
1−x2

. Recognize that the denominator
of this frac on is y; that is, we again found
f ′(x) = dy

dx = −x/y.
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absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the
graph of f.

Example 3.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 3.1.8(a).

S We again use Key Idea 3.1.1. Evalua ng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the cri cal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the cri cal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posi ve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π,

etc. The only values to fall in the given interval of [−2, 2] are 0 and±
√
π, where√

π ≈ 1.77.
We again construct a table of important values in Figure 3.1.8(b). In this

example we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph of f confirms our results.

We consider one more example.

Example 3.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2, graphed in Figure 3.1.9(a).

S A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. Evalua ng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The cri cal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straigh orward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that con nuous func ons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next sec on, we further our study of the informa onwe can
glean from “nice” func ons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a func on (as we did at the beginning
of Chapter 2). We will see that differen able func ons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Notes:
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Exercises 3.1
Terms and Concepts

1. Describe what an “extreme value” of a func on is in your
own words.

2. Sketch the graph of a func on f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and rela ve
maxima in your own words.

4. Sketch the graph of a func on f where f has a rela ve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a cri cal value of a func on f, then f has either a
rela ve maximum or rela ve minimum at x = c.

6. Fill in the blanks: The cri cal points of a func on f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, iden fy each of the marked points as being
an absolute maximum or minimum, a rela ve maximum or
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1

.....
−5
.

5
.

1

.

2

.

(0, 2)

.

x

.

y

10. f(x) = x2
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11. f(x) = sin x
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13. f(x) = 1+ (x− 2)2/3
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14. f(x) = 3√x4 − 2x+ 1
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15. f(x) =
{

x2 x ≤ 0
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16. f(x) =
{

x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the func on
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x
2y− y2x = 1.

28. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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3.2 The Mean Value Theorem

3.2 The Mean Value Theorem
We mo vate this sec on with the following ques on: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, comple ng the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this ques on, it is clear that the average speed for the en re
trip is 50mph (i.e. 100miles in 2 hours), but the ques on is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50 mph?. The answer, under some very reasonable as-
sump ons, is “yes.”

Let’s now see why this situa on is in a calculus text by transla ng it into
mathema cal symbols.

First assume that the func on y = f(t) gives the distance (in miles) traveled
from your home at me t (in hours) where 0 ≤ t ≤ 2. In par cular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connec ng the star ng
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself is given by the deriva ve f ′(t). So,
since the answer to the ques on above is “yes,” this means that at some me
during the trip, the deriva ve takes on the value of 50 mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some me 0 ≤ c ≤ 2.

How about more generally? Given any func on y = f(x) and a range a ≤
x ≤ b does the value of the deriva ve at some point between a and b have to
match the slope of the secant line connec ng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equa on f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two func ons in an example.

Example 3.2.1 Comparing average and instantaneous rates of change
Consider func ons

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.1(a) and (b), respec vely. Both
func ons have a value of 1 at a and b. Therefore the slope of the secant line

Notes:
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connec ng the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1] such that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.

Sowhatwent “wrong”? Itmaynot be surprising to find that the discon nuity
of f1 and the corner of f2 play a role. If our func ons had been con nuous and
differen able, would we have been able to find that special value c? This is our
mo va on for the following theorem.

Theorem 3.2.1 The Mean Value Theorem of Differen a on

Let y = f(x) be a con nuous func on on the closed interval [a, b] and
differen able on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the func ons in Example 3.2.1 fail are indeed that
f1 has a discon nuity on the interval [−1, 1] and f2 is not differen able at the ori-
gin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.2 Rolle’s Theorem

Let f be con nuous on [a, b] and differen able on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.2.2 where the graph of a func on f is given, where f(a) =
f(b). It shouldmake intui ve sense that if f is differen able (and hence, con nu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a rela ve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:
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3.2 The Mean Value Theorem

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differen able on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.
Case 2: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a cri cal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 3.1.2, cmust be a cri cal number of f; since f is differen able,
we have that f ′(c) = 0, comple ng the proof of the theorem. □

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the func on

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differen able on (a, b) and con nuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c in (a, b) such
that g ′(c) = 0. But note that

0 = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the sec on, we see that the only as-
sump on we would need about our distance func on f(t) is that it be con nu-
ous and differen able for t from 0 to 2 hours (both reasonable assump ons). By
the Mean Value Theorem, we are guaranteed a me during the trip where our
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instantaneous speed is 50 mph. This fact is used in prac ce. Some law enforce-
ment agencies monitor traffic speeds while in aircra . They do not measure
speed with radar, but rather by ming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some me.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indica on about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

Example 3.2.2 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that sa sfies the Mean
Value Theorem.

S The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14
3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.2.3 f is graphed with a dashed line represen ng the aver-
age rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how

these lines are parallel (i.e., have the same slope) with the dashed line.

While the Mean Value Theorem has prac cal use (for instance, the speed
monitoring applica on men oned before), it is mostly used to advance other
theory. We will use it in the next sec on to relate the shape of a graph to its
deriva ve.

Notes:
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Exercises 3.2
Terms and Concepts

1. Explain in your own words what the Mean Value Theorem
states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises 3 – 10, a func on f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) = 1
x2 − 2x+ 1

on [0, 2].

In Exercises 11 – 20, a func on f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) = x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. f(x) = sin−1 x on [−1, 1].

Review
21. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

22. Describe the cri cal points of f(x) = cos x.

23. Describe the cri cal points of f(x) = tan x.
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Chapter 3 The Graphical Behavior of Func ons

3.3 Increasing and Decreasing Func ons
Our study of “nice” func ons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this sec on we begin to study how func ons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intui ve concept. Given the graph in Figure 3.3.1, where
would you say the func on is increasing? Decreasing? Even though we have
not defined these terms mathema cally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Defini on 3.3.1 Increasing and Decreasing Func ons

Let f be a func on defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

Informally, a func on is increasing if as x gets larger (i.e., looking le to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informa on should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelera ng vs. decelerat-
ing). If f describes the popula on of a city, we should be interested in when the
popula on is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differen able func on on an open interval I, such as the one shown in Figure
3.3.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathema cally whatmay have already been obvious: when
f is increasing, its secant lines will have a posi ve slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

Notes:
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Note: Parts 1 & 2 of Theorem 3.3.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

3.3 Increasing and Decreasing Func ons

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing func ons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posi ve.” Theorem 3.3.1 below turns this around by sta ng “If f ′ is posi ve,
then f is increasing.” This leads us to a method for finding when func ons are
increasing and decreasing.

Theorem 3.3.1 Test For Increasing/Decreasing Func ons

Let f be a con nuous func on on [a, b] and differen able on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differen able on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is con nuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value c between a and bwhere f ′(c) = 0. (It
turns out that this is s ll true even if f ′ is not con nuous on [a, b].) This leads us
to the following method for finding intervals on which a func on is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differen able func on on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the cri cal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the cri cal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.

Notes:
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Chapter 3 The Graphical Behavior of Func ons

Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

S Using Key Idea 3.3.1, we first find the cri cal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
re domain of f which is (−∞,∞). We thus break the whole real line into

three subintervals based on the two cri cal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.3.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 3.3.3: Number line for f in Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computa on. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posi ve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calcula ons by considering Figure 3.3.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jus fied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

Notes:
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3.3 Increasing and Decreasing Func ons

One could argue that just finding cri cal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the rela onship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the cri cal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straigh orward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has op ons for finding needed informa on. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solu ons are tractable only through the use of computers to do many
calcula ons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a func on to a computer and have it return maximum and
minimum values, intervals on which the func on is increasing and decreasing,
the loca ons of rela ve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Sec on 3.1 we learned the defini on of rela ve maxima and minima and
found that they occur at cri cal points. We are now learning that func ons can
switch from increasing to decreasing (and vice–versa) at cri cal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a cri cal point corresponds to a maximum, minimum, or neither.
Imagine a func on increasing un l a cri cal point at x = c, a er which it de-
creases. A quick sketch helps confirm that f(c) must be a rela ve maximum. A
similar statement can be made for rela ve minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.2 First Deriva ve Test

Let f be differen able on an interval I and let c be a cri cal number in I.

1. If the sign of f ′ switches from posi ve to nega ve at c, then f(c) is
a rela ve maximum of f.

2. If the sign of f ′ switches from nega ve to posi ve at c, then f(c) is
a rela ve minimum of f.

3. If f ′ is posi ve (or, nega ve) before and a er c, then f(c) is not a
rela ve extrema of f.

Notes:
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Example 3.3.2 Using the First Deriva ve Test
Find the intervals on which f is increasing and decreasing, and use the First
Deriva ve Test to determine the rela ve extrema of f, where

f(x) =
x2 + 3
x− 1

.

S We start by no ng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a cri cal value of
f, but we will include it in our list of cri cal values that we find next.

Using the Quo ent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the cri cal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That la er is straigh orward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two cri cal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computa ons; no ce that the denominator of f ′ is always posi ve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a nega ve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posi ve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.

Notes:

146



3.3 Increasing and Decreasing Func ons

Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posi ve numerator and (of course) a posi ve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the intervals (−∞,−1) and (3,∞) and is de-
creasing on the intervals (−1, 1) and (1, 3). Since at x = −1, the sign of f ′
switched from posi ve to nega ve, Theorem 3.3.2 states that f(−1) is a rela ve
maximum of f. At x = 3, the sign of f ′ switched from nega ve to posi ve, mean-
ing f(3) is a rela ve minimum. At x = 1, f is not defined, so there is no rela ve
extrema at x = 1.
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Figure 3.3.6: Number line for f in Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.6. Also, Figure
3.3.5 shows a graph of f, confirming our calcula ons. This figure also shows
f ′, again demonstra ng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is o en tempted to think that func ons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around cri cal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a cri cal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First Deriva ve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
iden fy the rela ve extrema.

S We again start with taking a deriva ve. Since we know we
want to solve f ′(x) = 0, we will do some algebra a er taking the deriva ve.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)

Notes:
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=
8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This deriva on of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 cri cal values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) <
0. So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we prac ce finding the sign
of f ′(p) without compu ng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “nega ve × nega ve × posi ve” giving a posi ve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posi ve factors and one nega ve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.
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Figure 3.3.7: Number line for f in Example 3.3.3.

Weconcludeby sta ng that f is increasing on the intervals (−1, 0) and (1,∞)
and decreasing on the intervals (−∞,−1) and (0, 1). The sign of f ′ changes
from nega ve to posi ve around x = −1 and x = 1, meaning by Theorem 3.3.2
that f(−1) and f(1) are rela ve minima of f. As the sign of f ′ changes from pos-
i ve to nega ve at x = 0, we have a rela ve maximum at f(0). Figure 3.3.8

Notes:
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3.3 Increasing and Decreasing Func ons

shows a graph of f, confirming our result. We also graph f ′, highligh ng once
more that f is increasing when f ′ > 0 and is decreasing when f ′ < 0.

We have seen how the first deriva ve of a func on helps determine when
the func on is going “up” or “down.” In the next sec on, we will see how the
second deriva ve helps determine how the graph of a func on curves.

Notes:
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Exercises 3.3
Terms and Concepts

1. In your own words describe what it means for a func on to
be increasing.

2. What does a decreasing func on “look like”?

3. Sketch a graph of a func on on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a func on describing a situa on where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Func ons always switch from increasing to decreasing,
or decreasing to increasing, at cri cal points.

6. A func on f has deriva ve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informa on?

Problems
In Exercises 7 – 14, a func on f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permi ed) and verify Theorem 3.3.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a func on f(x) is given.
(a) Give the domain of f.
(b) Find the cri cal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First Deriva ve Test to determine whether

each cri cal point is a rela ve maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

Review
25. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

26. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We o en state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.4.1: A func on f with a concave
up graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are increasing.
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Figure 3.4.2: A func on f with a concave
down graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admi edly terrible, but it
works.

3.4 Concavity and the Second Deriva ve

3.4 Concavity and the Second Deriva ve
Our study of “nice” func ons con nues. The previous sec on showed how the
first deriva ve of a func on, f ′, can relay important informa on about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its deriva ve, namely f ′′, which is the
second deriva ve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has rela ve maxima and minima where f ′′ = 0 or is undefined.

This sec on explores how knowing informa on about f ′′ gives informa on
about f.

Concavity

We begin with a defini on, then explore its meaning.

Defini on 3.4.1 Concave Up and Concave Down

Let f be differen able on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a func on f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from le to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. No ce how the tangent line on the le is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a func on is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the func on is increasing and concave up, then the rate
of increase is increasing. The func on is increasing at a faster and faster rate.

Now consider a func on which is concave down. We essen ally repeat the
above paragraphs with slight varia on.

The graph of a func on f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from le to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. No ce how the tangent line on the le
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a func on is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the func on is decreasing and concave down, then the
rate of decrease is decreasing. The func on is decreasing at a faster and faster
rate.

Notes:
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Figure 3.4.3: Demonstra ng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the rela on-
ships with the first and second deriva-
ves.

Note: Geometrically speaking, a func on
is concave up if its graph lies above its tan-
gent lines. A func on is concave down if
its graph lies below its tangent lines.
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Figure 3.4.4: A graph of a func on with
its inflec on points marked. The inter-
vals where concave up/down are also in-
dicated.
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Our defini on of concave up and concave down is given in terms of when
the first deriva ve is increasing or decreasing. We can apply the results of the
previous sec on and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differen able on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a defini on.

Defini on 3.4.2 Point of Inflec on

A point of inflec on is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a func on with inflec on points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posi ve to nega ve (or, nega ve to posi ve) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Points of Inflec on

If (c, f(c)) is a point of inflec on on the graph of f, then either f ′′(c) = 0
or f ′′ is not defined at c.

We have iden fied the concepts of concavity and points of inflec on. It is
now me to prac ce using these concepts; given a func on, we should be able
to find its points of inflec on and iden fy intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.1 Finding intervals of concave up/down, inflec on points
Let f(x) = x3 − 3x+ 1. Find the inflec on points of f and the intervals on which
it is concave up/down.

Notes:
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Figure 3.4.5: A number line determining
the concavity of f in Example 3.4.1.
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Figure 3.4.6: A graph of f(x) used in Ex-
ample 3.4.1.

3.4 Concavity and the Second Deriva ve

S We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflec on points, we use Theorem 3.4.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflec on.

This possible inflec on point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous sec on to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflec on point.

The number line in Figure 3.4.5 illustrates the process of determining con-
cavity; Figure 3.4.6 shows a graph of f and f ′′, confirming our results. No ce how
f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 3.4.2 Finding intervals of concave up/down, inflec on points
Let f(x) = x/(x2 − 1). Find the inflec on points of f and the intervals on which
it is concave up/down.

S We need to find f ′ and f ′′. Using the Quo ent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflec on, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflec on at x = ±1 as
they are not part of the domain, but we must s ll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posi ve. In the
numerator, the (c2 + 3) will be posi ve and the 2c term will be nega ve. Thus
the numerator is nega ve and f ′′(c) is nega ve. We conclude f is concave down
on (−∞,−1).

Notes:
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Figure 3.4.8: A graph of f(x) and f ′′(x) in
Example 3.4.2.
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Figure 3.4.9: A graph of S(t) in Example
3.4.3, modeling the sale of a product over
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Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be nega ve, the term (c2 + 3) in the numerator will be posi ve, and
the term (c2 − 1)3 in the denominator will be nega ve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posi ve and “small.” Thus
the numerator is posi ve while the denominator is nega ve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).
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−1

.

0

.

1

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

Figure 3.4.7: Number line for f in Example 3.4.2.

We conclude that f is concave up on (−1, 0) and (1,∞) and concave down
on (−∞,−1) and (0, 1). There is only one point of inflec on, (0, 0), as f is not
defined at x = ±1. Our work is confirmed by the graph of f in Figure 3.4.8. No-
ce how f is concave up whenever f ′′ is posi ve, and concave down when f ′′ is

nega ve.

Recall that rela ve maxima and minima of f are found at cri cal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the rela ve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflec on points of f.

What does a “rela ve maximum of f ′ ”mean? The deriva ve measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest nega vely–sloped tangent
line.

We u lize this concept in the next example.

Example 3.4.3 Understanding inflec on points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the me in years, shown in Figure 3.4.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

S We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Se ng S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the nega ve value of t since it does not lie in

Notes:

154



.....

1

.

2

.

3

.
−10

.

10

.

20

.
S ′(t)

.

S(t)

.

t

.

y
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Clearly f is always concave up, despite the
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Figure 3.4.12: Demonstra ng the fact
that rela ve maxima occur when the
graph is concave down and rela ve min-
ima occur when the graph is concave up.

3.4 Concavity and the Second Deriva ve

the domain of our func on S).
This is both the inflec on point and the point of maximum decrease. This

is the point at which things first start looking up for the company. A er the
inflec on point, it will s ll take some me before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.4.10. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every cri cal point corresponds to a rela ve extrema; f(x) = x3 has a
cri cal point at (0, 0) but no rela ve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflec on” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.11.

The Second Deriva ve Test

The first deriva ve of a func on gave us a test to find if a cri cal value cor-
responded to a rela ve maximum, minimum, or neither. The second deriva ve
gives us another way to test if a cri cal point is a local maximum or minimum.
The following theorem officially states something that is intui ve: if a cri cal
value occurs in a region where a func on f is concave up, then that cri cal value
must correspond to a rela ve minimum of f, etc. See Figure 3.4.12 for a visual-
iza on of this.

Theorem 3.4.3 The Second Deriva ve Test

Let c be a cri cal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second Deriva ve Test relates to the First Deriva ve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a cri cal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from nega ve
to posi ve at c. This means the func on goes from decreasing to increasing, in-
dica ng a local minimum at c.

Notes:
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Example 3.4.4 Using the Second Deriva ve Test
Let f(x) = 100/x+ x. Find the cri cal points of f and use the Second Deriva ve
Test to label them as rela ve maxima or minima.

S We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the cri cal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a cri cal value.) We find the cri cal values
are x = ±10. Evalua ng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evalua ng f ′′(−10) = −0.1 < 0, determining a rela ve maximum
at x = −10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second deriva ves of a func on
relate informa on about the graph of that func on. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the loca ons of rela ve extrema and inflec on points. In Chapter 1
we saw how limits explained asympto c behavior. In the next sec on we com-
bine all of this informa on to produce accurate sketches of func ons.

Notes:
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a func on f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a func on f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a func on to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a func on.

4. Is is possible for a func on to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a func on.

Problems

In Exercises 5 – 14, a func on f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permi ed) and verify Theorem 3.4.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a func on f(x) is given.
(a) Find the possible points of inflec on of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a func on f(x) is given. Find the cri cal
points of f and use the Second Deriva ve Test, when possi-
ble, to determine the rela ve extrema. (Note: these are the
same func ons as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)
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37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a func on f(x) is given. Find the x val-
ues where f ′(x) has a rela ve maximum or minimum. (Note:
these are the same func ons as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2
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3.5 Curve Sketching

3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a func on based
on its first and second deriva ves. While we have been trea ng the proper es
of a func on separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the func on
without plo ng lots of extraneous points.

Why bother? Graphing u li es are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not par cularly fast – it will require
me (but it is not hard). So again: why bother?
We are a emp ng to understand the behavior of a func on f based on the

informa on given by its deriva ves. While all of a func on’s deriva ves relay
informa on about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interac ons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to sta ng that one understands howan engineworks a er looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of func ons and gives a framework for pu ng that
informa on together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given func on f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
en re real line then find restric ons, such aswhere a denominator
is 0 or where nega ves appear under the radical.

2. Find the cri cal values of f.

3. Find the possible points of inflec on of f.

4. Find the loca on of any ver cal asymptotes of f (usually done in
conjunc on with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the func on.

(con nued)

Notes:
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Key Idea 3.5.1 Curve Sketching – Con nued

6. Create a number line that includes all cri cal points, possible
points of inflec on, and loca ons of ver cal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each cri cal point and possible point of inflec on.
Plot these points on a set of axes. Connect these pointswith curves
exhibi ng the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

S We follow the steps outlined in the Key Idea.

1. The domain of f is the en re real line; there are no values x for which f(x)
is not defined.

2. Find the cri cal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
Quadra c Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

3. Find the possible points of inflec on of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

4. There are no ver cal asymptotes.

5. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 3.5.1. We mark each subinterval as increasing or

Notes:
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Figure 3.5.2: Sketching f in Example 3.5.1.

3.5 Curve Sketching

decreasing, concave up or down, using the techniques used in Sec ons
3.3 and 3.4.

..

1
9 (10−

√
37)

≈ 0.435

.

10
9 ≈ 1.111

.

1
9 (10+

√
37)

≈ 1.787

.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. up

Figure 3.5.1: Number line for f in Example 3.5.1.

7. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and
connect the points with straight lines. In Figure 3.5.2(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.5.2(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 3.5.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

S We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restric ons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the cri cal values of f, we first find f ′(x). Using the Quo ent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not cri cal values. The only cri cal
value is x = 1/2.

3. To find the possible points of inflec on, we find f ′′(x), again employing
the Quo ent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (se ng the numerator equal to 0 and solving
for x, we find the only roots to this quadra c are imaginary) and f ′′ is

Notes:
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Figure 3.5.4: Sketching f in Example 3.5.2.

Chapter 3 The Graphical Behavior of Func ons

undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The ver cal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 3.5.3. Wemark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a rela ve maximum at
x = 1/2; concavity changes only at the ver cal asymptotes.

..

−2

.

1
2

.

3

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up

Figure 3.5.3: Number line for f in Example 3.5.2.

7. In Figure 3.5.4(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the func on looks like (these lines effec vely only convey increas-
ing/decreasing informa on). In Figure 3.5.4(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.5.4(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 3.5.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

S We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider restric-
ons. The only restric ons come when the denominator is 0, but this

never occurs. Therefore the domain of f is all real numbers, R.

2. We find the cri cal values of f by se ng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

Notes:
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Figure 3.5.6: Sketching f in Example 3.5.3.

3.5 Curve Sketching

3. We find the possible points of inflec on by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no ver cal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the cri cal points and possible points on a number line as shown
in Figure 3.5.5 and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
−5.579

.
−4

.
−1.305

.
0

.
1.064

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 decr

f ′′ < 0 c. down

Figure 3.5.5: Number line for f in Example 3.5.3.

7. In Figure 3.5.6(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.6(b), we add concavity. Figure 3.5.6(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
pu ng than we are. In general, computers graph func ons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connec ng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate no ceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:
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Mathema ca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.7, a graph of y = sin x is given, generated by Mathema ca.
The small points represent each of the places Mathema ca sampled the func-
on. No ce how at the “bends” of sin x, lots of points are used; where sin x is

rela vely straight, fewer points are used. (Many points are also used at the end-
points to ensure the “end behavior” is accurate.) In fact, in the interval of length
0.2 centered around π/2,Mathema ca plots 72 of the 431 points plo ed; that
is, it plots about 17% of its points in a subinterval that accounts for about 3% of
the total interval length.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.5.7: A graph of y = sin x generated byMathema ca.

How doesMathema ca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
deriva ves of a func on work together to provide a measurement of “curvi-
ness.” Mathema ca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this sec on is not “How to graph a func on when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a func on is largely determined by understanding the behavior of the
func on at a fewkey places.” In Example 3.5.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applica ons of our understanding of deriva ves beyond curve
sketching. The next chapter explores some of these applica ons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differen a on.

Notes:
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of func ons, it is useful to find
the cri cal points.

4. T/F: When sketching graphs of func ons, it is useful to find
the possible points of inflec on.

5. T/F: When sketching graphs of func ons, it is useful to find
the horizontal and ver cal asymptotes.

6. T/F: When sketching graphs of func ons, one need not plot
any points at all.

Problems
In Exercises 7 – 12, prac ce using Key Idea 3.5.1 by applying
the principles to the given func ons with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given func on us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a func on with the parameters a and b
are given. Describe the cri cal points and possible points of
inflec on of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differen a on to find dy
dx

and d2y
dx2 . Use this informa on to jus fy the sketch of the

unit circle.
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Figure 4.1.1: Demonstra ng the geo-
metric concept behindNewton’sMethod.
Note how x3 is very close to a solu on to
f(x) = 0.

4: A
D

In Chapter 3, we learned how the first and second deriva ves of a func on influ-
ence its graph. In this chapter we explore other applica ons of the deriva ve.

4.1 Newton’s Method
Solving equa ons is one of the most important things we do in mathema cs,
yet we are surprisingly limited in what we can solve analy cally. For instance,
equa ons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar func ons. Fortunately, there are methods that
can give us approximate solu ons to equa ons like these. These methods can
usually give an approxima on correct to as many decimal places as we like. In
Sec on 1.5 we learned about the Bisec on Method. This sec on focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an ini al guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will o en converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equa on of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equa on:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approxima on is be er than it ac-
tually is. These issues will be discussed at
the end of the sec on.

Chapter 4 Applica ons of the Deriva ve

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approxima on xn, we can find the next approxima on, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differen able func on on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an ini al approxima on of the root. (This is
o en done by looking at a graph of f.)

2. Create successive approxima ons itera vely; given an approxima-
on xn, compute the next approxima on xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the itera ons when successive approxima ons do not differ
in the first d places a er the decimal point.

Let’s prac ce Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places a er
the decimal, using Newton’s Method and an ini al approxima on of x0 = 1.

S To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the

Notes:
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Figure 4.1.2: A graph of f(x) = x3−x2−1
in Example 4.1.1.

4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 itera ons of Newton’s Method to find a root accurate to the
first 3 places a er the decimal; our final approxima on is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
ini al approxima on of x0 = 1 was not par cularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of ini al calcula on,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate ini al approxima on.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calcula on. Start by pressing 1 and then Enter.
(We have just entered our ini al guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each mewepress the Enter key, we are finding the successive approxima ons,
x1, x2, …, and each one is ge ng closer to the root. In fact, once we get past
around x7 or so, the approxima ons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pre y confident that we have found an accurate approxima on.

Using a calculator in this manner makes the calcula ons simple; many iter-
a ons can be computed very quickly.

Notes:
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used to find an ini al approxima on of its
root.

Chapter 4 Applica ons of the Deriva ve

Example 4.1.2 Using Newton’s Method to find where func ons intersect
Use Newton’s Method to approximate a solu on to cos x = x, accurate to 5
places a er the decimal.

S Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equa ons like f(x) = g(x). However, this is
not a problem; we can rewrite the la er equa on as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. Wri en this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
star ng value, x0. Consider Figure 4.1.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is pre y close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can con nue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpu ng
our ini al approxima on. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approxima ons. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approxima ons x2 and x3 did not differ for at least the first 5 places a er the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interes ng to see how we
found an approxima on, accurate to as many decimal places as our calculator
displays, in just 4 itera ons.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computa on in this problem.

Notes:
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Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

4.1 Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approxima on is stored in the variable oldx. We con nue looping un l
the difference between two successive approxima ons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the ini al guess, x0? Generally, the closer to the
actual root the ini al guess is, the be er. However, some ini al guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a par cularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analy cally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjus ng the ini al approxima on x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approxima on is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.1.5(a) shows graphically the calcula on of x1; no ce how it is farther from the
root than x0. Figures 4.1.5(b) and (c) show the calcula on of x2 and x3, which are
even farther away; our successive approxima ons are ge ng worse. (It turns
out that in this par cular example, each successive approxima on is twice as far
from the true answer as the previous approxima on.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
me,” and it is generally very fast. Once the approxima ons get close to the root,

Notes:
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Newton’s Method can as much as double the number of correct decimal places
with each successive approxima on. A course in Numerical Analysis will intro-
duce the reader to more itera ve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.
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Exercises 4.1
Terms and Concepts
1. T/F: Given a func on f(x), Newton’s Method produces an

exact solu on to f(x) = 0.

2. T/F: In order to get a solu on to f(x) = 0 accurate to d
places a er the decimal, at least d + 1 itera ons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 8, the roots of f(x) are known or are easily
found. Use 5 itera ons of Newton’s Method with the given
ini al approxima on to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9 – 12, use Newton’s Method to approximate all
roots of the given func ons accurate to 3 places a er the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good ini al approx-
ima ons.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13 – 16, use Newton’s Method to approximate
when the given func ons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good ini al approx-
ima ons.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This sec on relies heavily on im-
plicit differen a on, so referring back to
Sec on 2.6 may help.

Chapter 4 Applica ons of the Deriva ve

4.2 Related Rates
When two quan es are related by an equa on, knowing the value of one quan-
ty can determine the value of the other. For instance, the circumference and

radius of a circle are related by C = 2πr; knowing that C = 6πin determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quan ty is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

S The circumference and radius of a circle are related by C =
2πr. We are given informa on about how the length of r changes with respect
to me; that is, we are told dr

dt = 5in/hr. We want to know how the length of C
changes with respect to me, i.e., we want to know dC

dt .
Implicitly differen ate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π ≈ 31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:
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S

1. We can answer this ques on two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the deriva ve of both sides with respect to t, employing implicit differen-
a on.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16in2/s.

2. To start, we need an equa on that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informa on.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a func on of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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Figure 4.2.1: A sketch of a police car
(at bo om) a emp ng to measure the
speed of a car (at right) in Example 4.2.3.

Chapter 4 Applica ons of the Deriva ve

circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle is dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (inten onally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25in/s.

Example 4.2.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, a ached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersec on of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

S Using the diagram in Figure 4.2.1, let’s label what we know
about the situa on. As both the police officer and other driver are 1/2mile from
the intersec on, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 30mph; that is, dA
dt = −30. The

reason this rate of change is nega ve is that A is ge ng smaller; the distance
between the officer and the intersec on is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

We need an equa on that relatesB toA and/or C. The Pythagorean Theorem

Notes:
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Note: Example 4.2.3 is both interes ng
and imprac cal. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.

..

θ

.

10

.
x

.
100mph

Figure 4.2.2: Tracking a speeding car (at
le ) with a rota ng camera.

4.2 Related Rates

is a good choice: A2 + B2 = C2. Differen ate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates
A camera is placed on a tripod 10 from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promo onal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

S We seek informa on about how fast the camera is to turn;
therefore, we need an equa on that will relate an angle θ to the posi on of the
camera and the speed and posi on of the car.

Figure 4.2.2 suggests we use a trigonometric equa on. Le ng x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = −100mph (as in the last example,

since x is ge ng smaller as the car travels, dx
dt is nega ve). We need to convert

the measurements so they use the same units; rewrite −100mph in terms of
/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280
m

· 1
3600

hr
s

= −146.6 /s.

Now take the deriva ve of both sides of Equa on (4.1) using implicit differen -

Notes:
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a on:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
ma cs bears this out. In Equa on (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67 /s, we have

dθ
dt

= −1rad
10

146.67 /s = −14.667radians/s.

We find that dθ
dt is nega ve; this matches our diagram in Figure 4.2.2 for θ is

ge ng smaller as the car approaches the camera.
What is the prac cal meaning of −14.667radians/s? Recall that 1 circular

revolu on goes through 2π radians, thus 14.667rad/s means 14.667/(2π) ≈
2.33 revolu ons per second. The nega ve sign indicates the camera is rota ng
in a clockwise fashion.

We introduced the deriva ve as a func on that gives the slopes of tangent
lines of func ons. This chapter emphasizes using the deriva ve in other ways.
Newton’s Method uses the deriva ve to approximate roots of func ons; this
sec on stresses the “rate of change” aspect of the deriva ve to find a rela on-
ship between the rates of change of two related quan es.

In the next sec on we use Extreme Value concepts to op mize quan es.

Notes:

178



Exercises 4.2
Terms and Concepts
1. T/F: Implicit differen a on is o en used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situa on introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2mile from the intersec on, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is−80mph?

6. Consider the traffic situa on introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situa ons.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersec on, while the other car
is 1 mile from the intersec on traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersec on, while the other car is
1/2 mile from the intersec on traveling west and the
radar reading is−80mph?

7. An F-22 aircra is flying at 500mph with an eleva on of
10,000 on a straight–line path thatwill take it directly over
an an –aircra gun.

.

.

.

. θ.

x

.

10,000

How fast must the gun be able to turn to accurately track
the aircra when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircra is flying at 500mph with an eleva on of
100 on a straight–line path that will take it directly over
an an –aircra gun as in Exercise 7 (note the lower eleva-
on here).

How fast must the gun be able to turn to accurately track
the aircra when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24 . ladder is leaning against a house while the base is
pulled away at a constant rate of 1 /s.

.

.

.

24

.
1 /s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30 /min by a winch located 10 above the deck of the
boat.

. .

.

.

10

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20 deep and 10 across at
the top, is being filled with water at a rate of 10 3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when star ng at empty?
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12. A rope, a ached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connec on point between
rope and weight.

..
30

.
2 /s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ) and begins to walk away at a rate
of 2 /s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situa on described in Exercise 12. Suppose
the man starts 40 from the weight and begins to walk
away at a rate of 2 /s.

(a) How long is the rope?

(b) How fast is theweight rising a er theman haswalked
10 feet?

(c) How fast is theweight rising a er theman haswalked
30 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon li s off from ground rising ver cally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the eleva on of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5 3/sec; the physical proper es of the sand, in conjunc-
on with gravity, ensure that the cone’s height is roughly

2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.

4.3 Op miza on

4.3 Op miza on
In Sec on 3.1 we learned about extreme values – the largest and smallest values
a func on a ains on an interval. We mo vated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this sec on we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situa ons that require us to create the appropriate mathema cal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of op miza on.

Example 4.3.1 Op miza on: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

S One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situa on. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area func on – a er
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle func ons with 2 variables; we need to
reduce this down to a single variable. We know more about the situa on: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equa on:

Perimeter = 100 = 2x+ 2y.

We now have 2 equa ons and 2 unknowns. In the la er equa on, we solve
for y:

y = 50− x.

Now subs tute this expression for y in the area equa on:

Area = A(x) = x(50− x).

Note we now have an equa on of one variable; we can truly call the Area a
func on of x.

Notes:
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This func on onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get nega ve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the cri cal points, we take the deriva ve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only cri cal point. We evaluate
A(x) at the endpoints of our interval and at this cri cal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625 2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 . with maxi-
mum area is a square, with sides of length 25 .

This example is very simplis c and a bit contrived. (A er all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equa ons that de-
scribe a situa on, reduce an equa on to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equa ons are o en
not reducible to a single variable (hence mul –variable calculus is needed) and
the equa ons themselves may be difficult to form. Understanding the princi-
ples here will provide a good founda on for the mathema cs you will likely en-
counter later.

We outline here the basic process of solving these op miza on problems.

Key Idea 4.3.1 Solving Op miza on Problems

1. Understand the problem. Clearly iden fy what quan ty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equa ons relevant to the context of the problem, using the
informa on given. (One of these should describe the quan ty to
be op mized. We’ll call this the fundamental equa on.)

3. If the fundamental equa on defines the quan ty to be op mized
as a func on of more than one variable, reduce it to a single vari-
able func on using subs tu ons derived from the other equa-
ons.

(con nued). . .

Notes:
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Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.

4.3 Op miza on

Key Idea 4.3.1 Solving Op miza on Problems – Con nued

4. Iden fy the domain of this func on, keeping in mind the context
of the problem.

5. Find the extreme values of this func on on the determined do-
main.

6. Iden fy the values of all relevant quan es of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 Op miza on: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

S We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equa on. This defines area as a func on of two
variables, so we need another equa on to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equa on to a single variable. In the
perimeter equa on, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a func on of one variable.

Notes:
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Figure 4.3.3: Running a power line from
the power sta on to an offshore facility
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Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.
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4. We want the area to be nonnega ve. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The la er inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the cri cal points. We have A′(x) = 50 − x; se ng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
2.

Keep in mind as we do these problems that we are prac cing a process; that
is, we are learning to turn a situa on into a system of equa ons. These equa-
ons allow us to write a certain quan ty as a func on of one variable, which we

then op mize.

Example 4.3.3 Op miza on: minimizing cost
A power line needs to be run from a power sta on located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power sta on to
the facility.

It costs $50/ . to run a power line along the land, and $130/ . to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

S Wewill follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate solu ons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connec ng the two loca ons with a straight line. However, this requires
that all the wire be laid underwater, the most costly op on. Second, we could
minimize the underwater length by running a wire all 5000 . along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The op mal solu on likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

Notes:
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By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost func on.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This func on only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we s ll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the cri cal values of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Se ng c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3

≈ 416.67.

Evalua ng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 ., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 .

Notes:
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In the exercises you will see a variety of situa ons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equa ons from situa ons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next sec on introduces our final applica on of the deriva ve: differen-
als. Given y = f(x), they offer a method of approxima ng the change in y a er

x changes by a small amount.

Notes:
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Exercises 4.3
Terms and Concepts

1. T/F: An “op miza on problem” is essen ally an “extreme
values” problem in a “story problem” se ng.

2. T/F: This sec on teaches one to find the extreme values of
a func on that has more than one variable.

Problems

3. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of 100.

4. Find the minimum sum of two posi ve numbers whose
product is 500.

5. Find the maximum sum of two posi ve numbers whose
product is 500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimiza on in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross sec on, i.e., 2w+ 2h).

What is the maximum volume of a package with a square
cross sec on (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly propor onal
to its cross sec onal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a s ck into a lake for her dog to fetch;
the s ck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the s ck before swimming. The dog runs about 22 /s and
swims about 1.5 /s.
How far along the shore should the dog run to minimize
the me it takes to get to the s ck? (Hint: the figure from
Example 4.3.3 can be useful.)

16. A woman throws a s ck into a lake for her dog to fetch;
the s ck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the s ck before swimming. The dog runs about 22 /s and
swims about 1.5 /s.
How far along the shore should the dog run tominimize the
me it takes to get to the s ck? (Google “calculus dog” to learn

more about a dog’s ability to minimize mes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.4.1: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to es -
mate sin 1.1.

Chapter 4 Applica ons of the Deriva ve

4.4 Differen als
In Sec on 2.2 we explored the meaning and use of the deriva ve. This sec on
starts by revisi ng some of those ideas.

Recall that the deriva ve of a func on f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equa on

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approxima ons of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see how we are approxima ng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approxima on this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represen ng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a func on approximates well the values of that func on
near x = c.

As the x-value changes from c to c +∆x, the y-value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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4.4 Differen als

Replacing f(c+∆x) with its tangent line approxima on, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equa on is important; it becomes the basis of the upcoming Def-
ini on and Key Idea. In short, it says that when the x-value changes from c to
c+∆x, the y value of a func on f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defini-
on.

Defini on 4.4.1 Differen als of x and y.

Let y = f(x) be differen able. The differen al of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
en al of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equa on: f ′(x) = dy/dx. This states that
the deriva ve of f with respect to x is the differen al of y divided by the differ-
en al of x; this is not the alternate nota on for the deriva ve, dy

dx . This la er
nota on was chosen because of the frac on–like quali es of the deriva ve, but
again, it is one symbol and not a frac on.

It is helpful to organize our new concepts and nota ons in one place.

Key Idea 4.4.1 Differen al Nota on

Let y = f(x) be a differen able func on.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e.,∆x = dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by Equa on (4.3), is an approxima on of
the change in y value as x changes by∆x; dy ≈ ∆y.

Notes:
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What is the value of differen als? Like many mathema cal concepts, differ-
en als provide both prac cal and theore cal benefits. We explore both here.

Example 4.4.1 Finding and using differen als
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

S The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differen al to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approxima on is really good!)

So why bother?
In “most” real life situa ons, we do not know the func on that describes

a par cular behavior. Instead, we can only take measurements of how things
change – measurements of the deriva ve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direc on (i.e., the velocity) of water at any loca on. It is very hard
to create a func on that describes the overall flow, hence it is hard to predict
where a floa ng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differen als. Over small
intervals, the path taken by a floa ng object is essen ally linear. Differen als
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
al Equa ons courses.
We use differen als once more to approximate the value of a func on. Even

though calculators are very accessible, it is neat to see how these techniques can
some mes be used to easily compute something that looks rather hard.

Notes:
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4.4 Differen als

Example 4.4.2 Using differen als to approximate a func on value
Approximate

√
4.5.

S We expect
√
4.5 ≈ 2, yet we can do be er. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differen als,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

Differen als are important when we discuss integra on. When we study
that topic, we will use nota on such as∫

f(x) dx

quite o en. While we don’t discuss here what all of that nota on means, note
the existence of the differen al dx. Proper handling of integrals comes with
proper handling of differen als.

In light of that, we prac ce finding differen als in general.

Example 4.4.3 Finding differen als
In each of the following, find the differen al dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

S

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

Notes:
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Chapter 4 Applica ons of the Deriva ve

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differen al dy of y = f(x) is really no harder than finding the
deriva ve of f; we justmul ply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a prac cal use of differen als as they offer a good method of
making certain approxima ons. Another use is error propaga on. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this la er value as f(x) for some func on f.
As the true length is x + ∆x, one really should have computed f(x + ∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differen als.

Example 4.4.4 Using differen als to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, es mate the propagated error in the mass
of the ball bearing.

S Themass of a ball bearing is found using the equa on “mass
= volume× density.” In this situa on themass func on is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differen al of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Notes:
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4.4 Differen als

Is this error significant? It certainly depends on the applica on, but we can get
an idea by compu ng the rela ve error. The ra o between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the deriva ve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the deriva ve by studying how it relates to the graph of a func on
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the deriva ve to yet more uses:

• Equa on solving (Newton’s Method),

• Related Rates (furthering our use of the deriva ve to find instantaneous
rates of change),

• Op miza on (applied extreme values), and

• Differen als (useful for various approxima ons and for something called
integra on).

In the next chapters, we will consider the “reverse” problem to compu ng
the deriva ve: given a func on f, can we find a func on whose deriva ve is f?
Being able to do so opens up an incredible world of mathema cs and applica-
ons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differen able func on y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: Differen als are important in the study of integra on.

5. How are differen als and tangent lines related?

6. T/F: In real life, differen als are used to approximate func-
on values when the func on itself is not known.

Problems
In Exercises 7 – 16, use differen als to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17 – 30, compute the differen al dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. f(x) = ln
(
sec x

)
Exercises 31 – 34 use differen als to approximate propagated
error.

31. A set of plas c spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bo om. What
is the propagated error if the memeasurement is accurate
to 2/10ths of a second and the measured me is:

(a) 2 seconds?

(b) 5 seconds?

33. What is the propagated error in the measurement of the
cross sec onal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

34. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 35 – 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compu ng.)

35. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.
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l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the ques ons of Exercise 35, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.

37. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercises 35 – 37 are essen ally
the same. Which setup gives the most accurate result?

39. Consider the setup in Exercise 37. This me, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?
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5: I
We have spent considerable me considering the deriva ves of a func on and
their applica ons. In the following chapters, we are going to star ng thinking
in “the other direc on.” That is, given a func on f(x), we are going to consider
func ons F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these func ons will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 An deriva ves and Indefinite Integra on
Given a func on y = f(x), a differen al equa on is one that incorporates y, x,
and the deriva ves of y. For instance, a simple differen al equa on is:

y ′ = 2x.

Solving a differen al equa on amounts to finding a func on y that sa sfies
the given equa on. Take a moment and consider that equa on; can you find a
func on y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one solu on: y = x2. “Find-

ing another” may have seemed impossible un l one realizes that a func on like
y = x2 + 1 also has a deriva ve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the func on y = x2 + 123, 456, 789 also has a deriva-
ve of 2x. The differen al equa on y ′ = 2x has many solu ons. This leads us

to some defini ons.

Defini on 5.1.1 An deriva ves and Indefinite Integrals

Let a func on f(x) be given. An an deriva ve of f(x) is a func on F(x)
such that F ′(x) = f(x).

The set of all an deriva ves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our defini on: we refer to an an deriva ve of f, as op-
posed to the an deriva ve of f, since there is always an infinite number of them.



Chapter 5 Integra on

We o en use upper-case le ers to denote an deriva ves.
Knowing one an deriva ve of f allows us to find infinitely more, simply by

adding a constant. Not only does this give usmore an deriva ves, it gives us all
of them.

Theorem 5.1.1 An deriva ve Forms

Let F(x) and G(x) be an deriva ves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.

Given a func on f defined on an interval I and one of its an deriva ves F,
we know all an deriva ves of f on I have the form F(x) + C for some constant
C. Using Defini on 5.1.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral nota on.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

Integra on
symbol

.

Differen al
of x

.

One
an deriva ve

.

Constant of
integra on

Figure 5.1.1: Understanding the indefinite integral nota on.

Figure 5.1.1 shows the typical nota on of the indefinite integral. The inte-
gra on symbol,

∫
, is in reality an “elongated S,” represen ng “take the sum.”

We will later see how sums and an deriva ves are related.
The func on we want to find an an deriva ve of is called the integrand. It

contains the differen al of the variable we are integra ngwith respect to. The
∫

symbol and the differen al dx are not “bookends” with a func on sandwiched in
between; rather, the symbol

∫
means “find all an deriva ves of what follows,”

and the func on f(x) and dx are mul plied together; the dx does not “just sit
there.”

Let’s prac ce using this nota on.

Notes:
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Example 5.1.1 Evalua ng indefinite integrals
Evaluate

∫
sin x dx.

S We are asked to find all func ons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one solu on: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integra on.
So: ∫

sin x dx = − cos x+ C.

A commonly asked ques on is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of an differen a on is really solving a differen al ques on. The
integral ∫

sin x dx

presents us with a differen al, dy = sin x dx. It is asking: “What is y?” We found
lots of solu ons, all of the form y = − cos x+ C.

Le ng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What func ons have a differen al of the form dy?” The answer
is “Func ons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find an deriva-
ves of more complicated func ons. In this sec on, we will simply explore the

rules of indefinite integra on, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s prac ce once more before sta ng integra on rules.

Example 5.1.2 Evalua ng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

S We seek a func on F(x) whose deriva ve is 3x2 + 4x + 5.
When taking deriva ves, we can consider func ons term–by–term, so we can
likely do that here.

What func ons have a deriva ve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:
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What func ons have a deriva ve of 4x? Here the x term is raised to the first
power, so we likely seek a quadra c. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what func ons have a deriva ve of 5? Func ons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integra on; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the deriva ve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both prac cally and
theore cally. In general, taking deriva ves is easier than finding an deriva ves
so checking our work is easy and vital as we learn.

We also see that taking the deriva ve of our answer returns the func on in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

Differen a on “undoes” the work done by an differen a on.

Theorem 2.7.3 gave a list of the deriva ves of common func ons we had
learned at that point. We restate part of that list here to stress the rela onship
between deriva ves and an deriva ves. This list will also be useful as a glossary
of common an deriva ves as we learn.

Notes:
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5.1 An deriva ves and Indefinite Integra on

Theorem 5.1.2 Deriva ves and An deriva ves

Common Differen a on Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant Mul ple

Rule: we can temporarily ignore constants when finding an deriva ves,
just as we did when compu ng deriva ves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mul plied by

Notes:
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Chapter 5 Integra on

5, but “5 mes a constant” is s ll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In prac ce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integra on. There are two impor-
tant things to keep in mind:

1. No ce the restric on that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presen ng an differen a on as the “inverse opera on” of

differen a on. Here is a useful quote to remember:
“Inverse opera ons do the opposite things in the opposite
order.”

When taking a deriva ve using the Power Rule, we first mul ply by
the power, then second subtract 1 from the power. To find the an-
deriva ve, do the opposite things in the opposite order: first add

one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Ini al Value Problems

In Sec on 2.3we saw that the deriva ve of a posi on func on gave a velocity
func on, and the deriva ve of a velocity func on describes accelera on. We
can now go “the other way:” the an deriva ve of an accelera on func on gives
a velocity func on, etc. While there is just one deriva ve of a given func on,
there are infinitely many an deriva ves. Therefore we cannot ask “What is the
velocity of an object whose accelera on is−32 /s2?”, since there is more than
one answer.

Notes:
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5.1 An deriva ves and Indefinite Integra on

We can find the answer if we provide more informa on with the ques on,
as done in the following example. O en the addi onal informa on comes in the
form of an ini al value, a value of the func on that one knows beforehand.

Example 5.1.3 Solving ini al value problems
The accelera on due to gravity of a falling object is −32 /s2. At me t = 3,
a falling object had a velocity of −10 /s. Find the equa on of the object’s
velocity.

S We want to know a velocity func on, v(t). We know two
things:

• The accelera on, i.e., v ′(t) = −32, and

• the velocity at a specific me, i.e., v(3) = −10.

Using the first piece of informa on, we know that v(t) is an an deriva ve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equa on to understand the mo on
of the object: when t = 0, the object had a velocity of v(0) = 86 /s. Since the
velocity is posi ve, the object was moving upward.

When did the object begin moving down? Immediately a er v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its accelera on and its velocity at a single point in me.

Example 5.1.4 Solving ini al value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

S We start by finding f ′(t), which is an an deriva ve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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Chapter 5 Integra on

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the ini al value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integra ng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This sec on introduced an deriva ves and the indefinite integral. We found
they are needed when finding a func on given informa on about its deriva-
ve(s). For instance, we found a velocity func on given an accelera on func-
on.
In the next sec on, we will see how posi on and velocity are unexpectedly

related by the areas of certain regions on a graph of the velocity func on. Then,
in Sec on 5.4, wewill see howareas and an deriva ves are closely ed together.
This connec on is incredibly important, as indicated by the nameof the theorem
that describes it: The Fundamental Theorem of Calculus.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “an deriva ve” in your own words.

2. Is it more accurate to refer to “the” an deriva ve of f(x) or
“an” an deriva ve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse opera ons do the
things in the order.”

5. What is an “ini al value problem”?

6. The deriva ve of a posi on func on is a func-
on.

7. The an deriva ve of an accelera on func on is a
func on.

8. If F(x) is an an deriva ve of f(x), and G(x) is an an deriva-
ve of g(x), give an an deriva ve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem inves gates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of an deriva-
ves, depending on whether x > 0 or x < 0. In

one expression, give a formula for
∫

1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given ini al
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
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36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informa on gained from the first and second deriva-
ves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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Figure 5.2.2: The total displacement is the
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 /s for 10 seconds. How far away from its star ng point is the ob-
ject?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
on. In this case, Distance = 5 /s× 10s= 50 feet.
It is interes ng to note that this solu on of 50 feet can be represented graph-

ically. Consider Figure 5.2.1, where the constant velocity of 5 /s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 .

Now consider a slightly harder situa on (and not par cularly realis c): an
object travels in a straight line with a constant velocity of 5 /s for 10 seconds,
then instantly reverses course at a rate of 2 /s for 4 seconds. (Since the object
is traveling in the opposite direc on when reversing course, we say the velocity
is a constant−2 /s.) How far away from the star ng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 .

Hence the object is 42 feet from its star ng loca on.
We can again depict this situa on graphically. In Figure 5.2.2 we have the

veloci es graphed as straight lines on [0, 10] and [10, 14], respec vely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.1 Finding posi on using velocity
The velocity of an object moving straight up/down under the accelera on of
gravity is given as v(t) = −32t+48, where me t is given in seconds and velocity
is in /s. When t = 0, the object had a height of 0 .

1. What was the ini al velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at me t = 2?

S It is straigh orward to find the ini al velocity; at me t = 0,
v(0) = −32 · 0+ 48 = 48 /s.

Notes:
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Chapter 5 Integra on

To answer ques ons about the height of the object, we need to find the
object’s posi on func on s(t). This is an ini al value problem, which we studied
in the previous sec on. We are told the ini al height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the cri cal points of s by
se ng its deriva ve equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(No ce how we ended up just finding when the velocity was 0 /s!) The first
deriva ve test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36 .

The height at me t = 2 is now straigh orward to compute: it is s(2) = 32 .

While we have answered all three ques ons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straigh orward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “nega ve” area. That is, it represents the object coming back
toward its star ng posi on. So to find the maximum distance from the star ng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48 /s = 36 ,

which matches our previous calcula on of the maximum height.
Finally, to find the height of the object at me t = 2 we calculate the total

“signed area” (where some area is nega ve) under the velocity func on from
t = 0 to t = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the star ng posi on at t = 0 to the posi on at me t = 2. That
is,

Displacement = Area above the t–axis− Area below t–axis.

Notes:
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5.2 The Definite Integral

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48 /s)− 1

2
(.5s)(16 /s) = 32 .

This also matches our previous calcula on of the height at t = 2.
No ce howweanswered each ques on in this example in twoways. Our first

methodwas tomanipulate equa ons using our understanding of an deriva ves
and deriva ves. Our second method was geometric: we answered ques ons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a rela onship between area under a ve-
locity func on and displacement, but it does imply a rela onship exists. Sec on
5.4 will fully establish fact that the area under a velocity func on is displace-
ment.

Given a graph of a func on y = f(x), we will find that there is great use in
compu ng the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

Defini on 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integra on.

By our defini on, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous sec on introduced the indefinite integral, which related to an-
deriva ves. We have now defined the definite integral, which relates to areas

under a func on. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Sec on 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this nota on makes a bit more sense, as we
are adding up areas under the func on f.

Notes:
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We prac ce using this nota on.

Example 5.2.2 Evalua ng definite integrals
Consider the func on f given in Figure 5.2.4.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

S

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“nega ve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.
Again, the region is a triangle, with height 5 mes that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 1

2 (15)(1) = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the proper es of the definite integral, given
here.

Notes:
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5.2 The Definite Integral

Theorem 5.2.1 Proper es of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jus fica on of Theorem 5.2.1 here.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this s ll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a conven on to make other proper-
esworkwell. (Later wewill see how this property has a jus fica on all its

own, not necessarily in support of other proper es.) Suppose b < a < c.
The discussion from the previous point clearly jus fies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we s ll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

Notes:
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How do Equa ons (5.1) and (5.2) relate? Start with Equa on (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jus fies changing the sign and switching the bounds of inte-

gra on on the −
∫ a

b
f(x) dx term; when this is done, Equa ons (5.1) and

(5.2) are equivalent.
The conclusion is this: by adop ng the conven on of Property (3), Prop-
erty (2) holds no ma er the order of a, b and c. Again, in the next sec on
we will see another jus fica on for this property.

4,5. Each of these may be non–intui ve. Property (5) states that when one
scales a func on by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both Proper es (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 Evalua ng definite integrals using Theorem 5.2.1.
Consider the graph of a func on f(x) shown in Figure 5.2.6. Answer the follow-
ing:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

S

1.
∫ b
a f(x) dx has a posi ve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a nega ve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posi ve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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Figure 5.2.7: A graph of f(x) = 2x − 4 in
(a) and f(x) =

√
9− x2 in (b), from Exam-

ple 5.2.4.
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Figure 5.2.8: A graph of a velocity in Ex-
ample 5.2.5.

5.2 The Definite Integral

The area defini on of the definite integral allows us to use geometry to com-
pute the definite integral of some simple func ons.

Example 5.2.4 Evalua ng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

S

1. It is useful to sketch the func on in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area computa on is
straigh orward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as nega ve area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding mo on given velocity
Consider the graph of a velocity func on of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity func on gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its star ng posi on.

S Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15 /s.

At me t = 0, the displacement is 0; the object is at its star ng posi on. At
me t = a, the object has moved backward 11 feet. Between mes t = a and

Notes:
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Figure 5.2.9: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 Integra on

t = b, the object moves forward 38 feet, bringing it into a posi on 27 feet for-
ward of its star ng posi on. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its star ng posi on.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x2 is shaded. What
is its area? The func on y = x2 is rela vely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next sec on we will explore how to find the areas of such regions.

Notes:

214



Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5 – 10, a graph of a func on f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11 – 14, a graph of a func on f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
on.

11.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15 – 16, a graph of the velocity func on of an ob-
ject moving in a straight line is given. Answer the ques ons
based on that graph.

15.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y ( /s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 3]?

16.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y ( /s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in /s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48 .)

18. An object is thrown straight up with a velocity, in /s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s ini al velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

ini al height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 – 22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find nonzero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23 – 26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find nonzero values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 27 – 30, evaluate the given indefinite integral.

27.
∫ (

x3 − 2x2 + 7x− 9
)
dx

28.
∫ (

sin x− cos x+ sec2 x
)
dx

29.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

30.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.3.2: Approxima ng
∫ 4
0 (4x −

x2) dx using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 Integra on

5.3 Riemann Sums
In the previous sec on we defined the definite integral of a func on on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the sec on with a region whose area was not simple to
compute. In this sec on we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approxima on, then refine that approxima on to make it be er, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approxima ng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approxima on; we are including area in the rectangle
that is not under the parabola.

We have an approxima on of the area, using one rectangle. How can we
refine our approxima on tomake it be er? The key to this sec on is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This par ons the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Le Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Le Hand
Rule says to evaluate the func on at the le –hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the Le Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
func on at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the func on at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proxima ng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

these rules.

Notes:
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Figure 5.3.3: Approxima ng
∫ 4
0 (4x −

x2) dx in Example 5.3.1. In (a), the Le
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.

5.3 Riemann Sums

Example 5.3.1 Using the Le Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the Le Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

S We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3(a) we see 4 rectangles drawn on f(x) = 4x − x2 using the Le
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our Le Hand Rule
approxima on:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.3(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangle seem to be the mirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approxima on gives the same answer as before, though calculated a differ-
ent way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.3(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approxima on of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approxima ons of
∫ 4
0 (4x− x2) dx: 10 and 11.

Summa on Nota on

It is hard to tell at this moment which is a be er approxima on: 10 or 11?
We can con nue to refine our approxima on by using more rectangles. The
nota on can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summa on nota on to ameliorate this problem.

Notes:
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Chapter 5 Integra on

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wri ng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summa on nota on and write

..

9∑
i=1

ai.

.i=index
of summa on

. lower
bound

.

upper
bound

.

summand

Figure 5.3.4: Understanding summa on nota on.

The upper case sigma represents the term “sum.” The index of summa on
in this example is i; any symbol can be used. By conven on, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s prac ce using this nota on.

Example 5.3.2 Using summa on nota on
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posi ve odd integers). Evaluate
the following summa ons:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2

S

1.
6∑

i=1
ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the star ng value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1
(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84.

It might seem odd to stress a new, concise way of wri ng summa ons only
to write each term out as we add them up. It is. The following theorem gives
some of the proper es of summa ons that allow us to work with them without
wri ng individual terms. Examples will follow.

Theorem 5.3.1 Proper es of Summa ons

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Example 5.3.3 Evalua ng summa ons using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).

Notes:
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Figure 5.3.5: Dividing [0, 4] into 16
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Chapter 5 Integra on

S

6∑
i=1

(2i− 1) =
6∑

i=1
2i−

6∑
i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wri ng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful prepara on.

Figure 5.3.5 shows a number line of [0, 4] divided, or par oned, into 16
equally spaced subintervals. Wedenote 0 as x1; wehavemarked the values of x5,
x9, x13 and x17. We couldmark themall, but the figurewould get crowded. While
it is easy to figure that x10 = 2.25, in general, we want a method of determining
the value of xi without consul ng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. star ng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had par oned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than crea ng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the Le Hand Rule, the height of the i th rectangle will be f(xi).
Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approxima ng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

Le Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us prac ce using the Right Hand Rule and the summa on formulas introduced
in Theorem 5.3.1.

Example 5.3.4 Approxima ng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summa on formulas

with 16 and 1000 equally spaced intervals.

S Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+
(
(i+ 1)− 1

)
∆x

= i∆x

Notes:
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Figure 5.3.6: Approxima ng
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Chapter 5 Integra on

Using the summa on formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

(∆x = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very li le computa on.
In Figure 5.3.6 the func on and the 16 rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approxima on.

No ce Equa on (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of ∆x), we can use that equa on to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
Equa on (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 10.666656

Using many, many rectangles, we have a likely good approxima on of∫ 4
0 (4x− x2)∆x. That is,∫ 4

0
(4x− x2) dx ≈ 10.666656.

Notes:
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5.3 Riemann Sums

Before the above example, we statedwhat the summa ons for the Le Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evalua ng f at a par cular point
in each subinterval. For instance, the Le Hand Rule states that each rect-
angle’s height is determined by evalua ng f at the le hand endpoint of
the subinterval the rectangle lives on.

One could par on an interval [a, b]with subintervals that do not have the same
size. We refer to the length of the i th subinterval as∆xi. Also, one could deter-
mine each rectangle’s height by evalua ng f at any point ci in the i th subinterval.
Thus the height of the i th subinterval would be f(ci), and the area of the i th rect-
angle would be f(ci)∆xi. These ideas are formally defined below.

Defini on 5.3.1 Par on

A par on ∆x of a closed interval [a, b] is a set of numbers x1, x2, . . .
xn+1 where

a = x1 < x2 < . . . < xn < xn+1 = b.

The length of the i th subinterval, [xi, xi+1], is ∆xi = xi+1 − xi. If [a, b] is
par oned into subintervals of equal length, we let ∆x represent the
length of each subinterval.

The size of the par on, denoted ||∆x||, is the length of the largest
subinterval of the par on.

Summa ons of rectangleswith area f(ci)∆xi are named a ermathema cian
Georg Friedrich Bernhard Riemann, as given in the following defini on.

Defini on 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let∆x be a par on of [a, b]
and let ci denote any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

Notes:
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Figure 5.3.7: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

Chapter 5 Integra on

Figure 5.3.7 shows the approxima ng rectangles of a Riemann sumof
∫ 4
0 (4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a par cular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construc on makes computa ons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea 5.3.1 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of an equally spaced par on is xi = a + (i − 1)∆x.
(Thus x1 = a and xn+1 = b.)

3. The Le Hand Rule summa on is:
n∑

i=1
f(xi)∆x.

4. The Right Hand Rule summa on is:
n∑

i=1
f(xi+1)∆x.

5. The Midpoint Rule summa on is:
n∑

i=1
f
(
xi + xi+1

2

)
∆x.

Let’s do another example.

Example 5.3.5 Approxima ng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

S Following Key Idea 5.3.1, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

Notes:
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Figure 5.3.8: Approxima ng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.

5.3 Riemann Sums

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summa on
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summa on techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that o en each rectangle
includes area that should not be counted, but misses other area that should.
When the par on size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our func on is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the func on is nega ve, the rectangles have a “nega ve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
nega ve, the area is counted as nega ve.

No ce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calcula ons un l the very end.

Notes:
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Chapter 5 Integra on

Mathema cians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n un l the very end.

Example 5.3.6 Approxima ngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

S Using Key Idea 5.3.1, we know ∆x = 4−0
n = 4/n. We also

find xi = 0 +∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6

(
recall

∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.
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5.3 Riemann Sums

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathema cs has been
limited to geometry and algebra (finding areas and manipula ng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathema cs tell us that as n gets large, the
approxima on gets be er. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantas c result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approxima on of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This sec on started with a fundamental calculus technique: make an ap-
proxima on, refine the approxima on to make it be er, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s prac ce this again.

Example 5.3.7 Approxima ngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

S Following Key Idea 5.3.1, we have ∆x = 5−(−1)
n = 6/n.

We have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have
xi+1 = (−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:
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Figure 5.3.9: Approxima ng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 Integra on

plifica ons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summa on)

= ∆x4
n∑

i=1
i3 − 3∆x3

n∑
i=1

i2 + 3∆x2
n∑

i=1
i−

n∑
i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approxima ng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approxima on of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approxima on of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not–very–restric ve condi ons, that yes, it will al-
ways work.

Notes:

230



5.3 Riemann Sums

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi+1)∆x

can be rewri en as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summa on as a func on of n.

An n value is given (where n is a posi ve integer), and the sum of areas of n
equally spaced rectangles is returned, using the Le Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the Le Hand Rule,

• SR(n) =
n∑

i=1
f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the defini on of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums were defined in Defini on 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the nota on of Defini on 5.3.1, let ∆xi denote the length
of the i th subinterval in a par on of [a, b] and let ||∆x|| represent the length
of the largest subinterval in the par on: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be par oned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the par on is growing to

Notes:
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infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but ge ng small, and the height of each rectangle is
not necessarily determined by a par cular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be con nuous on the closed interval [a, b] and let SL(n), SR(n),
SM(n),∆x,∆xi and ci be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few sec ons here.

• Knowing the “area under the curve” can be useful. One commonexample:
the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the Le Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

Notes:
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5.3 Riemann Sums

We first learned of deriva ves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next sec onwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connec on between
the indefinite integral and the definite integral.

Notes:
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approxima ons to get an exact answer.

2. What is the upper bound in the summa on
14∑
i=7

(48i− 201)?

3. This sec on approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 12, write out each term of the summa on and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13 – 16, write each sum in summa on nota on.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17 – 24, evaluate the summa on using Theorem
5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ . . .+ 99+ 100

24. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 5.3.1 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem5.3.1, to eval-
uate the summa ons given in Exercises 25 – 28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3
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In Exercises 29 – 34, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

29.
∫ 3

−3
x2 dx, with 6 rectangles using the Le Hand Rule.

30.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

31.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

32.
∫ 3

0
2x dx, with 5 rectangles using the Le Hand Rule.

33.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

34.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 35 – 40, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 5.3.6

and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

35.
∫ 1

0
x3 dx, using the Right Hand Rule.

36.
∫ 1

−1
3x2 dx, using the Le Hand Rule.

37.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

38.
∫ 4

1
(2x2 − 3) dx, using the Le Hand Rule.

39.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

40.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 41 – 46, find an an deriva ve of the given func-
on.

41. f(x) = 5 sec2 x

42. f(x) = 7
x

43. g(t) = 4t5 − 5t3 + 8

44. g(t) = 5 · 8t

45. g(t) = cos t+ sin t

46. f(x) = 1√
x
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Figure 5.4.1: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

Chapter 5 Integra on

5.4 The Fundamental Theorem of Calculus

Let f(t)be a con nuous func ondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this concept into a func on by le ng
the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this func on using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in par cular, we can compute its
deriva ve. While thismay seem like an innocuous thing to do, it has far–reaching
implica ons, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1

Let f be con nuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

en able func on on (a, b), and

F ′(x) = f(x).

Ini ally this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1
Let F(x) =

∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

S Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x.

This simple example reveals something incredible: F(x) is an an deriva ve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compu ng an an-
deriva ve. Consider a func on f defined on an open interval containing a, b

and c. Suppose we want to compute
∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using
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the proper es of the definite integral found in Theorem 5.2.1, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using an deriva ves! This is the second part of the
Fundamental Theorem of Calculus.

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2

Let f be con nuous on [a, b] and let F be any an deriva ve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of me in the previous sec on studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

S We need an an deriva ve of f(x) = 4x− x2. All an deriva-
ves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous sec on, just
with much less work.

Nota on: A special nota on is o en used in the process of evalua ng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-
ing F(b)− F(a), the nota on F(x)

∣∣∣b
a
is used. Thus the solu on to Example 5.4.2

would be wri en as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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The Constant C: Any an deriva ve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evalua ng F(b) − F(a), so it does not ma er what value is picked. This being
the case, we might as well let C = 0.

Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

S

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interes ng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interes ng; the integrand is a constant func on, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
No ce how the evalua on of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

Understanding Mo on with the Fundamental Theorem of
Calculus

We established, star ng with Key Idea 2.2.1, that the deriva ve of a posi on
func on is a velocity func on, and the deriva ve of a velocity func on is an ac-
celera on func on. Now consider definite integrals of velocity and accelera on

func ons. Specifically, if v(t) is a velocity func on, what does
∫ b

a
v(t) dtmean?
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The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any an deriva ve of v(t). Since v(t) is a velocity func on, V(t)
must be a posi on func on, and V(b)− V(a)measures a change in posi on, or
displacement.

Example 5.4.4 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20 /s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

S Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the ini al height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4 .)

Integra ng a rate of change func on gives total change. Velocity is the rate
of posi on change; integra ng velocity gives the total change of posi on, i.e.,
displacement.

Integra ng a speed func on gives a similar, though different, result. Speed
is also the rate of posi on change, but does not account for direc on. So inte-
gra ng a speed func on gives total change of posi on, without the possibility
of “nega ve posi on change.” Hence the integral of a speed func on gives dis-
tance traveled.

As accelera on is the rate of velocity change, integra ng an accelera on
func on gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.
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The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F ′(x) = f(x). Using other nota on,

d
dx
(
F(x)

)
= f(x). While we have

just prac ced evalua ng definite integrals, some mes finding an deriva ves is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. Func ons wri en as F(x) =

∫ x
a f(t) dt are useful in such

situa ons.
It may be of further use to compose such a func on with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the deriva ve of such a func on? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 5.4.5 The FTC, Part 1, and the Chain Rule

Find the deriva ve of F(x) =
∫ x2

2
ln t dt.

S We can view F(x) as being the func on G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

Prac ce this once more.

Example 5.4.6 The FTC, Part 1, and the Chain Rule

Find the deriva ve of F(x) =
∫ 5

cos x
t3 dt.
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Figure 5.4.3: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 5.4.7.

5.4 The Fundamental Theorem of Calculus

S Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

ve of F is straigh orward:

F ′(x) = sin x cos3 x.

Area Between Curves

Consider con nuous func ons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.2. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathema cal nota on, the area is

∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

Proper es of the definite integral allow us to simplify this expression to

∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.3 Area Between Curves

Let f(x) and g(x) be con nuous func ons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.7 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

S It will help to sketch these two func ons, as done in Figure
5.4.3. The region whose area we seek is completely bounded by these two
func ons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
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gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

Chapter 5 Integra on

3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.3, the area is

∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

The Mean Value Theorem and Average Value

Consider the graph of a func on f in Figure 5.4.4 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.4.5; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too li le,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.
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under the curve” is 0.

5.4 The Fundamental Theorem of Calculus

Theorem 5.4.4 The Mean Value Theorem of Integra on

Let f be con nuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existen al statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.4 is directly connected to the Mean Value Theorem of
Differen a on, given as Theorem 3.2.1; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.8 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

S We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 5.4.3.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.4.6 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

Let f be a func on on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shi ed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.4.7 for an illustra on of this. In this sense, we can say that f(c) is the average
value of f on [a, b].
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The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewri en as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, par on the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Mul ply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1
f(ci)

1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a defini on.

Defini on 5.4.1 The Average Value of f on [a, b]

Let f be con nuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

Notes:

244
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An applica on of this defini on is given in the following example.

Example 5.4.9 Finding the average value of a func on
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in /s.

What is the average velocity of the object?

S By our defini on, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 /s.

We can understand the above example through a simpler situa on. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/ me = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.9? We calculate
this by integra ng its velocity func on:

∫ 3
0 (t − 1)2 dt = 3 . Its final posi on

was 3 feet from its ini al posi on a er 3 seconds: its average velocity was 1 /s.

This sec on has laid the groundwork for a lot of great mathema cs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
an deriva ves. Since the previous sec on established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compu ng an deriva ves is much
more difficult than compu ng deriva ves. The next chapter is devoted to tech-
niques of finding an deriva ves so that a wide variety of definite integrals can
be evaluated. Before that, the next sec on explores techniques of approximat-
ing the value of definite integrals beyond using the Le Hand, Right Hand and
Midpoint Rules. These techniques are invaluable when an deriva ves cannot
be computed, or when the actual func on f is unknown and all we know is the
value of f at certain x-values.
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integra on is most commonly used when
evalua ng definite integrals?

3. T/F: If f is a con nuous func on, then F(x) =
∫ x

a
f(t) dt is

also a con nuous func on.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3√x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posi ve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posi ve, even

integer.

30. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.
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In Exercises 31 – 34, find a value c guaranteed by the Mean
Value Theorem.

31.
∫ 2

0
x2 dx

32.
∫ 2

−2
x2 dx

33.
∫ 1

0
ex dx

34.
∫ 16

0

√
x dx

In Exercises 35 – 40, find the average value of the func on on
the given interval.

35. f(x) = sin x on [0, π/2]

36. y = sin x on [0, π]

37. y = x on [0, 4]

38. y = x2 on [0, 4]

39. y = x3 on [0, 4]

40. g(t) = 1/t on [1, e]

In Exercises 41 – 46, a velocity func on of an object moving
along a straight line is given. Find the displacement of the
object over the given me interval.

41. v(t) = −32t+ 20 /s on [0, 5]

42. v(t) = −32t+ 200 /s on [0, 10]

43. v(t) = 10 /s on [0, 3].

44. v(t) = 2tmph on [−1, 1]

45. v(t) = cos t /s on [0, 3π/2]

46. v(t) = 4√t /s on [0, 16]

In Exercises 47 – 50, an accelera on func on of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given me interval.

47. a(t) = −32 /s2 on [0, 2]

48. a(t) = 10 /s2 on [0, 5]

49. a(t) = t /s2 on [0, 2]

50. a(t) = cos t /s2 on [0, π]

In Exercises 51 – 54, sketch the given func ons and find the
area of the enclosed region.

51. y = 2x, y = 5x, and x = 3.

52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

53. y = x2 − 2x+ 5, y = 5x− 5.

54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 55 – 58, find F ′(x).

55. F(x) =
∫ x3+x

2

1
t
dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t+ 2) dt

58. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.5.1: Graphically represen ng
three definite integrals that cannot be
evaluated using an deriva ves.
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5.5 Numerical Integra on
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compu ng an-
deriva ves. Despite the power of this theorem, there are s ll situa ons where

we must approximate the value of the definite integral instead of finding its ex-
act value. The first situa on we explore is where we cannot compute the an-
deriva ve of the integrand. The second case is when we actually do not know

the func on in the integrand, but only its valuewhen evaluated at certain points.

An elementary func on is any func on that is a combina on of polynomial,
nth root, ra onal, exponen al, logarithmic and trigonometric func ons. We can
compute the deriva ve of any elementary func on, but there aremany elemen-
tary func ons of which we cannot compute an an deriva ve. For example, the
following func ons do not have an deriva ves that we can express with ele-
mentary func ons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the an deriva ves of e−x2 is to simply write∫
e−x2 dx.
This sec on outlines three common methods of approxima ng the value of

definite integrals. We describe each as a systema c method of approxima ng
area under a curve. By approxima ng this area accurately, we find an accurate
approxima on of the corresponding definite integral.

We will apply the methods we learn in this sec on to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.5.1.

The Le and Right Hand Rule Methods

In Sec on 5.3 we addressed the problem of evalua ng definite integrals by
approxima ng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approxima ng definite integrals.

We start with a review of nota on. Let f be a con nuous func on on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We par on [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
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Figure 5.5.2: Approxima ng
∫ 1
0 e−x2 dx in

Example 5.5.1.

5.5 Numerical Integra on

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 5.3.1 states that to use the Le Hand Rule we use the summa on
n∑

i=1
f(xi)∆x and to use the Right Hand Rule we use

n∑
i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

Example 5.5.1 Approxima ng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the Le and Right Hand Rules with 5 equally

spaced subintervals.

S We begin by par oning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the Le Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.5.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this par cular case, the Le Hand
Rule is an over approxima on and the Right Hand Rule is an under approxima-
on. To get a be er approxima on, we could use more rectangles, as we did in
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.5.3: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.2.
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Figure 5.5.4: Approxima ng∫ π
2

− π
4
sin(x3) dx in Example 5.5.2.
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Sec on 5.3. We could also average the Le and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places a er the decimal, is 0.7468, showing
our average is a good approxima on.

Example 5.5.2 Approxima ng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the Le and Right Hand Rules with 10 equally

spaced subintervals.

S We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.5.3, we give the exact values of the endpoints, their decimal approxima ons,
and decimal approxima ons of sin(x3) evaluated at these points.

Once this table is created, it is straigh orward to approximate the definite
integral using the Le and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The Le Hand Rule sums the first 10 values
of sin(x3i ) and mul plies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mul plies by∆x. Therefore we have:

Le Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the Le and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places a er the decimal, is 0.460. Our ap-

proxima ons were once again fairly good. The rectangles used in each approx-
ima on are shown in Figure 5.5.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approxima on.

The Trapezoidal Rule

In Example 5.5.1 we approximated the value of
∫ 1

0
e−x2 dxwith 5 rectangles

of equal width. Figure 5.5.2 shows the rectangles used in the Le and Right
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Figure 5.5.6: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.5.7: A table of values of e−x2 .

5.5 Numerical Integra on

Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approxima ons will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e−x2 on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a be er
approxima on of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proxima on of the area!)
The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

Example 5.5.3 Approxima ng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

S To compute the areas of the 5 trapezoids in Figure 5.5.5, it
will again be useful to create a table of values as shown in Figure 5.5.7.

The le most trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the le most trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summa onwasmul plied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summa on as:
1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.
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Now no ce that all numbers except for the first and the last are added twice.
Therefore we can write the summa on even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,
x2, . . ., xn+1, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

Example 5.5.4 Using the Trapezoidal Rule

Revisit Example 5.5.2 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

S Werefer back to Figure 5.5.3 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.69

)
+ (−0.67)

]
= 0.4275.

No ce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this sec on;
the real work is crea ng a table of xi and f(xi) values. Once this is completed, ap-
proxima ng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computa ons and make using lots
of subintervals easy.

Also no ce the approxima ons the Trapezoidal Rule gives. It is the average
of the approxima ons given by the Le and Right Hand Rules! This effec vely
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Figure 5.5.8: A graph of a func on f and
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5.5 Numerical Integra on

renders the Le and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approxima on is needed, one is gener-
ally be er off using the Trapezoidal Rule instead of either the Le or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Le Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a func on f with constant func ons
on small subintervals and then computes the definite integral of these constant
func ons. The Trapezoidal Rule is really approxima ng a func on fwith a linear
func on on a small subinterval, then computes the definite integral of this linear
func on. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approxima ng fwith a constant func-
on and then with a linear func on. What is next? A quadra c func on. By

approxima ng the curve of a func on with lots of parabolas, we generally get
an even be er approxima on of the definite integral. We call this process Simp-
son’s Rule, named a er Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant func on that goes through that
point. Given two points, we can create a linear func on that goes through those
points. Given three points, we can create a quadra c func on that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let fbe the quadra c func on that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.5.8. A func on f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equa on from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approxima on for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)
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Figure 5.5.9: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

func on.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.5.10: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.6.

Chapter 5 Integra on

No ce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using Equa on (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summa on have the pa ern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.5 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

S We begin bymaking a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 5.5.1 we stated that the correct answer, accurate to 4
places a er the decimal, was 0.7468. Our approxima on with Simpson’s Rule,
with 4 subintervals, is be er than our approxima on with the Trapezoidal Rule
using 5!

Figure 5.5.9(b) shows f(x) = e−x2 along with its approxima ng parabolas,
demonstra ng how good our approxima on is. The approxima ng curves are
nearly indis nguishable from the actual func on.

Example 5.5.6 Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

S Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.
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Figure 5.5.11: Approxima ng∫ π
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sin(x3) dx in Example 5.5.6 with

Simpson’s Rule and 10 equally spaced
intervals.

5.5 Numerical Integra on

Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proxima on iswithin one 1/100th of the correct value. The graph in Figure 5.5.11
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this sec on thus far in the following Key
Idea.

Key Idea 5.5.1 Numerical Integra on

Let f be a con nuous func on on [a, b], let n be a posi ve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

Le Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several ques ons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approxima ng?

3. If there is value to approxima ng, how are we supposed to know if the
approxima on is any good?
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These are good ques ons, and their answers are educa onal. In the exam-
ples, the right answer was never computed. Rather, an approxima on accurate
to a certain number of places a er the decimal was given. In Example 5.5.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approxima ons were computed using numerical integra on but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approxima on s ll has its place.
How are we to tell if the approxima on is any good?

“Trial and error” provides one way. Using technology, make an approxima-
on with, say, 10, 100, and 200 subintervals. This likely will not take much me

at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approxima on will be. For instance, the formula might state that the approx-
ima on is within 0.1 of the correct answer. If the approxima on is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approxima on as accurate as one likes. Theorem
5.5.1 states what these bounds are.

Theorem 5.5.1 Error Bounds in the Trapezoidal Rule and
Simpson’s Rule

1. Let ET be the error in approxima ng
∫ b

a
f(x) dx using the Trape-

zoidal Rule with n subintervals.
If f has a con nuous 2nd deriva ve on [a, b] and M is any upper
bound of

∣∣f ′′(x)∣∣ on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approxima ng
∫ b

a
f(x) dx using Simpson’s

Rule with n subintervals.
If f has a con nuous 4th deriva ve on [a, b] and M is any upper
bound of

∣∣f (4)∣∣ on [a, b], then

ES ≤
(b− a)5

180n4
M.
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Figure 5.5.12: Graphing f ′′(x) in Example
5.5.7 to help establish error bounds.
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There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
i vely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term rela ng to the 4th deriva ve of f.
Consider a cubic polynomial: it’s 4th deriva ve is 0. Therefore, the error in
approxima ng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.3 and 5.5.5 and compute the error bounds using
Theorem 5.5.1 in the following example.

Example 5.5.7 Compu ng error bounds

Find the error bounds when approxima ng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

S
Trapezoidal Rule with n = 5:

We start by compu ng the 2nd deriva ve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.5.12 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 5.5.1.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error es ma on formula states that our approxima on of 0.7445 found
in Example 5.5.3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 5.5.1.

Simpson’s Rule with n = 4:
We start by compu ng the 4th deriva ve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).
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Figure 5.5.13: Graphing f (4)(x) in Exam-
ple 5.5.7 to help establish error bounds.

Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.5.14: Speed data collected at 30
second intervals for Example 5.5.8.

Chapter 5 Integra on

Figure 5.5.13 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value
of f (4), in absolute value, is 12. Thus we letM = 12 and apply the error formula
from Theorem 5.5.1.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error es ma on formula states that our approxima onof 0.74683 found
in Example 5.5.5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 5.5.1.

At the beginning of this sec on we men oned two main situa ons where
numerical integra on was desirable. We have considered the case where an
an deriva ve of the integrand cannot be computed. We now inves gate the
situa on where the integrand is not known. This is, in fact, the most widely
used applica on of Numerical Integra on methods. “Most of the me” we ob-
serve behavior but do not know “the” func on that describes it. We instead
collect data about the behavior and make approxima ons based on this data.
We demonstrate this in an example.

Example 5.5.8 Approxima ng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.5.14. Approximate
the distance they traveled.

S Recall that by integra ng a speed func on we get distance
traveled. We have informa on about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is conver ng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
me is measured in 30 second increments.
We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?

Since we start at me t = 0, we have that a = 0. The final recorded me came
a er 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about an deriva ves and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a func on and the x-axis. We defined these areas as the definite integral of
the func on, using a nota on very similar to the nota on of the indefinite inte-
gral. The Fundamental Theorem of Calculus ed these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using an deriva ves.

We ended the chapter by no ng that an deriva ves are some mes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approxima ons of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applica ons of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integra on, analogous to learning
rules like the Product, Quo ent and Chain Rules of differen a on.
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Exercises 5.5
Terms and Concepts

1. T/F: Simpson’s Rule is a method of approxima ng an-
deriva ves.

2. What are the two basic situa ons where approxima ng the
value of a definite integral is necessary?

3. Why are the Le and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approxima ng por ons of a
func on with what type of func on?

Problems
In Exercises 5 – 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
∫ 1

−1
x2 dx

6.
∫ 10

0
5x dx

7.
∫ π

0
sin x dx

8.
∫ 4

0

√
x dx

9.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
∫ 1

0
x4 dx

11.
∫ 2π

0
cos x dx

12.
∫ 3

−3

√
9− x2 dx

In Exercises 13 – 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
∫ 1

0
cos
(
x2
)
dx

14.
∫ 1

−1
ex

2
dx

15.
∫ 5

0

√
x2 + 1 dx

16.
∫ π

0
x sin x dx

17.
∫ π/2

0

√
cos x dx

18.
∫ 4

1
ln x dx

19.
∫ 1

−1

1
sin x+ 2

dx

20.
∫ 6

0

1
sin x+ 2

dx

In Exercises 21 – 24, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
∫ π

0
sin x dx

22.
∫ 4

1

1√
x
dx

23.
∫ π

0
cos
(
x2
)
dx

24.
∫ 5

0
x4 dx

In Exercises 25 – 26, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cen meters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

25. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1
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6
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5. 6.

6

.
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6: T
A

The previous chapter introduced the an deriva ve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applica ons of definite integrals than just area. As eval-
ua ng definite integrals will become important, we will want to find an deriva-
ves of a variety of func ons.
This chapter is devoted to exploring techniques of an differen a on. While

not every func on has an an deriva ve in terms of elementary func ons (a
concept introduced in the sec on on Numerical Integra on), we can s ll find
an deriva ves of a wide variety of func ons.

6.1 Subs tu on
We mo vate this sec on with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without star ng with f(x)
as we did?

This sec on explores integra on by subs tu on. It allows us to “undo the
Chain Rule.” Subs tu on allows us to evaluate the above integral without know-
ing the original func on first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subs tu on. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.



Chapter 6 Techniques of An differen a on

We have established u as a func on of x, so now consider the differen al of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremul plied; the dx is not “just si ng there.”
Return to the original integral and do some subs tu ons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This sec on contains numerous examples through which the reader will gain
understanding and mathema cal maturity enabling them to regard subs tu on
as a natural tool when evalua ng integrals.

We stated before that integra on by subs tu on “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differen able func ons and consider the deriva-
ve of their composi on:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

Integra on by subs tu on works by recognizing the “inside” func on g(x) and
replacing it with a variable. By se ng u = g(x), we can rewrite the deriva ve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.
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6.1 Subs tu on

Theorem 6.1.1 Integra on by Subs tu on

Let F and g be differen able func ons, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subs tu on is to make the integra on step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the an deriva ve of the deriva ve of F

is just F, plus a constant. The “work” involved is making the proper subs tu on.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 Integra ng by subs tu on
Evaluate

∫
x sin(x2 + 5) dx.

S Knowing that subs tu on is related to the Chain Rule, we
choose to let u be the “inside” func on of sin(x2+5). (This is not always a good
choice, but it is o en the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mul plica on is commuta ve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subs tute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

ua ng the deriva ve of the right hand side.

Example 6.1.2 Integra ng by subs tu on
Evaluate

∫
cos(5x) dx.

S Again let u replace the “inside” func on. Le ng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equa on by 5 to obtain 1

5du = dx. We can now subs tute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differen a on.

The previous example exhibited a common, and simple, type of subs tu on.
The “inside” func on was a linear func on (in this case, y = 5x). When the
inside func on is linear, the resul ng integra on is very predictable, outlined
here.

Key Idea 6.1.1 Subs tu on With A Linear Func on

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Le ng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it a er going through all of the steps.
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Example 6.1.3 Integra ng by subs tu ng a linear func on
Evaluate

∫
7

−3x+ 1
dx.

S View the integrand as the composi on of func ons f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of subs -
tu on, we let u = −3x+1, the inside func on. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equa on by −3 to obtain −du/3 = dx.
We can now evaluate the integral through subs tu on.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = −3. One may
want to con nue wri ng out all the steps un l they are comfortable with this
par cular shortcut.

Not all integrals that benefit from subs tu on have a clear “inside” func on.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 Integra ng by subs tu on
Evaluate

∫
sin x cos x dx.

S There is not a composi onof func onhere to exploit; rather,
just a product of func ons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is o en beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subs tu on becomes very straigh orward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral le ng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subs tu on.” The next example
demonstrates how subs tu ons can be made that o en strike the new learner
as being “nonstandard.”

Example 6.1.5 Integra ng by subs tu on
Evaluate

∫
x
√
x+ 3 dx.

S Recognizing the composi on of func ons, set u = x + 3.
Then du = dx, giving what seems ini ally to be a simple subs tu on. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this par cular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 Integra ng by subs tu on
Evaluate

∫
1

x ln x
dx.

S This is another example where there does not seem to be
an obvious composi on of func ons. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, se ng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interes ng; the natural log of the natural log. Take the deriva-
ve to confirm this answer is indeed correct.

Integrals Involving Trigonometric Func ons

Sec on 6.3 delves deeper into integrals of a variety of trigonometric func-
ons; here we use subs tu on to establish a founda on that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our an deriva-
ve knowledge. We know the an deriva ves of the sine and cosine func ons;

what about the other standard func ons tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 Integra on by subs tu on: an deriva ves of tan x
Evaluate

∫
tan x dx.

S The previous paragraph established that we did not know
the an deriva ves of tangent, hence we must assume that we have learned
something in this sec on that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composi on of func-
ons may not be immediately obvious, recognize that cos x is “inside” the 1/x

func on. Therefore, we see if se ng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example 6.1.8 Integra ng by subs tu on: an deriva ves of sec x
Evaluate

∫
sec x dx.

S This example employs a wonderful trick: mul ply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of le field, but it works beau fully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find an deriva ves of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 An deriva ves of Trigonometric Func ons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example 6.1.9 Integra on by subs tu on: powers of cos x and sin x
Evaluate

∫
cos2 x dx.

S We have a composi on of func ons as cos2 x =
(
cos x

)2.
However, se ng u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equa on is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 6.1.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

We’ll make significant use of this power–reducing technique in future sec ons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integra on is tenuous and one may think that working with
the integrand will improperly change the results. Integra on by subs tu on
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integra on
easier to perform.

Example 6.1.10 Integra on by subs tu on: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

S One may try to start by se ng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with ra onal func ons (i.e., quo ents made up of polynomial
func ons), it is an almost universal rule that everything works be er when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 mes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

Integra ng x + 2 is simple. The frac on can be integrated by se ng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that a er dividing, subs tu on was able to be
done. In later sec ons we’ll develop techniques for handling ra onal func ons
where subs tu on is not directly feasible.

Example 6.1.11 Integra on by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subs tu on.

S We already know how to integrate this par cular example.
Rewrite

√
x as x 1

2 and simplify the frac on:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subs tu on as its implementa on is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫
(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situa on, sub-
s tu on is arguably more work than our other method. The fantas c thing is
that it works. It demonstrates how flexible integra on is.

Subs tu on and Inverse Trigonometric Func ons

When studying deriva ves of inverse func ons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how Subs tu on can be used to “undo” certain deriva ves that
are the result of the Chain Rule applied to Inverse Trigonometric func ons. We
begin with an example.

Example 6.1.12 Integra ngby subs tu on: inverse trigonometric func ons
Evaluate

∫
1

25+ x2
dx.

S The integrand looks similar to the deriva ve of the arctan-
gent func on. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

=
1
25

1
1+

( x
5
)2 .
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6.1 Subs tu on

Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using Subs tu on. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric func ons. The results are
summarized here.

Theorem 6.1.3 Integrals Involving Inverse Trigonometric Func ons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s prac ce using Theorem 6.1.3.

Example 6.1.13 Integra ngby subs tu on: inverse trigonometric func ons
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx, 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.

Notes:
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S Each can be answered using a straigh orward applica on of
Theorem 6.1.3.

1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Most applica ons of Theorem 6.1.3 are not as straigh orward. The next
examples show some common integrals that can s ll be approached with this
theorem.

Example 6.1.14 Integra ng by subs tu on: comple ng the square
Evaluate

∫
1

x2 − 4x+ 13
dx.

S Ini ally, this integral seems to have nothing in commonwith
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent func on.

We see this by comple ng the square in the denominator. We give a brief
reminder of the process here.

Start with a quadra c with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, ge ng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9

Notes:
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6.1 Subs tu on

We can now integrate this using the arctangent rule. Technically, we need to
subs tute first with u = x− 2, but we can employ Key Idea 6.1.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Example 6.1.15 Integrals requiring mul ple methods
Evaluate

∫
4− x√
16− x2

dx.

S This integral requires two different methods to evaluate it.
We get to those methods by spli ng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straigh orward applica on of Theorem6.1.3;
the second integral is handled by subs tu on, with u = 16−x2. We handle each
separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.

Subs tu on and Definite Integra on

This sec on has focused on evalua ng indefinite integrals as we are learning
a new technique for finding an deriva ves. However, much of the me integra-
on is used in the context of a definite integral. Definite integrals that require

subs tu on can be calculated using the following workflow:

Notes:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subs tu on.

2. Ignore the bounds; use subs tu on to evaluate
∫

f(x) dx and find an an-

deriva ve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subs tu on offers an alterna ve that is powerful
and amazing (and a li le me saving).

At its heart, (using the nota on of Theorem 6.1.1) subs tu on converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the subs tu on of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subs tu on is performed.

Theorem 6.1.4 Subs tu on with Definite Integrals

Let F and g be differen able func ons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 6.1.4 states that once you convert to integra ng with re-
spect to u, you do not need to switch back to evalua ng with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and subs tu on: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 6.1.4.

S Observing the composi on of func ons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the la er
equa on by 3 to get du/3 = dx.

By se ng u = 3x− 1, we are implicitly sta ng that g(x) = 3x− 1. Theorem
6.1.4 states that the new lower bound is g(0) = −1; the new upper bound is
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Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.
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y = sin x cos x
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Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.

6.1 Subs tu on

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

No ce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this par cular situa on, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and subs tu on: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 6.1.4.

S Wesaw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the la er here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

Integra on by subs tu on is a powerful and useful integra on technique.
The next sec on introduces another technique, called Integra on by Parts. As
subs tu on “undoes” the Chain Rule, integra on by parts “undoes” the Product
Rule. Together, these two techniques provide a strong founda ononwhichmost
other integra on techniques are based.
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Exercises 6.1
Terms and Concepts

1. Subs tu on “undoes” what deriva ve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of Subs tu on.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use Subs tu on to evaluate the indefi-
nite integral involving trigonometric func ons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jus fy it through Subs tu on.

24.
∫

csc x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jus fy it through Subs tu on.

In Exercises 25 – 32, use Subs tu on to evaluate the indefi-
nite integral involving exponen al func ons.

25.
∫

e3x−1dx

26.
∫

ex
3
x2dx

27.
∫

ex
2−2x+1(x− 1)dx

28.
∫

ex + 1
ex

dx

29.
∫

ex

ex + 1
dx

30.
∫

ex − e−x

e2x
dx

31.
∫

33xdx

32.
∫

42xdx

In Exercises 33 – 36, use Subs tu on to evaluate the indefi-
nite integral involving logarithmic func ons.

33.
∫

ln x
x

dx

34.
∫ (

ln x
)2

x
dx
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35.
∫ ln

(
x3
)

x
dx

36.
∫

1
x ln (x2)

dx

In Exercises 37 – 42, use Subs tu on to evaluate the indefi-
nite integral involving ra onal func ons.

37.
∫

x2 + 3x+ 1
x

dx

38.
∫

x3 + x2 + x+ 1
x

dx

39.
∫

x3 − 1
x+ 1

dx

40.
∫

x2 + 2x− 5
x− 3

dx

41.
∫

3x2 − 5x+ 7
x+ 1

dx

42.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 43 – 52, use Subs tu on to evaluate the indefi-
nite integral involving inverse trigonometric func ons.

43.
∫

7
x2 + 7

dx

44.
∫

3√
9− x2

dx

45.
∫

14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

48.
∫

x√
1− x4

dx

49.
∫

1
x2 − 2x+ 8

dx

50.
∫

2√
−x2 + 6x+ 7

dx

51.
∫

3√
−x2 + 8x+ 9

dx

52.
∫

5
x2 + 6x+ 34

dx

In Exercises 53 – 78, evaluate the indefinite integral.

53.
∫

x2

(x3 + 3)2
dx

54.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

55.
∫

x√
1− x2

dx

56.
∫

x2 csc2
(
x3 + 1

)
dx

57.
∫

sin(x)
√

cos(x)dx

58.
∫

sin
(
5x+ 1

)
dx

59.
∫

1
x− 5

dx

60.
∫

7
3x+ 2

dx

61.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

62.
∫

2x+ 7
x2 + 7x+ 3

dx

63.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

64.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

65.
∫

x
x4 + 81

dx

66.
∫

2
4x2 + 1

dx

67.
∫

1
x
√
4x2 − 1

dx

68.
∫

1√
16− 9x2

dx

69.
∫

3x− 2
x2 − 2x+ 10

dx

70.
∫

7− 2x
x2 + 12x+ 61

dx

71.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

72.
∫

x3

x2 + 9
dx
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73.
∫

x3 − x
x2 + 4x+ 9

dx

74.
∫

sin(x)
cos2(x) + 1

dx

75.
∫

cos(x)
sin2(x) + 1

dx

76.
∫

cos(x)
1− sin2(x)

dx

77.
∫

3x− 3√
x2 − 2x− 6

dx

78.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx
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6.2 Integra on by Parts

6.2 Integra on by Parts
Here’s a simple integral that we can’t yet evaluate:∫

x cos x dx.

It’s a simple ma er to take the deriva ve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this sec on introduces
Integra on by Parts, a method of integra on that is based on the Product Rule
for deriva ves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are func ons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wri en u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the le side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Solving for the second integral we have∫
uv ′ dx = uv−

∫
u ′v dx.

Using differen al nota on, we can write du = u ′(x)dx and dv = v ′(x)dx and
the expression above can be wri en as follows:∫

u dv = uv−
∫

v du.

This is the Integra on by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 6.2.1 Integra on by Parts

Let u and v be differen able func ons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.
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Let’s try an example to understand our new technique.

Example 6.2.1 Integra ng using Integra on by Parts
Evaluate

∫
x cos x dx.

S The key to Integra on by Parts is to iden fy part of the in-
tegrand as “u” and part as “dv.” Regular prac ce will help one make good iden-
fica ons, and later we will introduce some principles that help. For now, let

u = x and dv = cos x dx.
It is generally useful to make a small table of these values as done below.

Right now we only know u and dv as shown on the le of Figure 6.2.1; on the
right we fill in the rest of what we need. If u = x, then du = dx. Since
dv = cos x dx, v is an an deriva ve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.2.1: Se ng up Integra on by Parts.

Now subs tute all of this into the Integra on by Parts formula, giving∫
x cos x dx = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the an deriva ve contains a product, x sin x. This product is what
makes Integra on by Parts necessary.

The example above demonstrates how Integra on by Parts works in general.
We try to iden fy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integra on by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integra ng x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = Exponen al.

Notes:
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6.2 Integra on by Parts

If the integrand contains both a logarithmic and an algebraic term, in general
le ng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 6.2.2 Integra ng using Integra on by Parts
Evaluate

∫
xex dx.

S The integrand contains anAlgebraic term (x) and an Exponen al
term (ex). Our mnemonic suggests le ng u be the algebraic term, so we choose
u = x and dv = ex dx. Then du = dx and v = ex as indicated by the tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.2.2: Se ng up Integra on by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integra on by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the an deriva ves contain a product term.

Example 6.2.3 Integra ng using Integra on by Parts
Evaluate

∫
x2 cos x dx.

S Themnemonic suggests le ngu = x2 insteadof the trigono-
metric func on, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.2.3: Se ng up Integra on by Parts.
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The Integra on by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integra on by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.2.4: Se ng up Integra on by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C.

Example 6.2.4 Integra ng using Integra on by Parts
Evaluate

∫
ex cos x dx.

S This is a classic problem. Our mnemonic suggests le ng u
be the trigonometric func on instead of the exponen al. In this par cular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.2.5: Se ng up Integra on by Parts.

No ce that du is no simpler than u, going against our general rule (but bear
with us). The Integra on by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.
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6.2 Integra on by Parts

The integral on the right is not much different than the one we started with, so
it seems like we have go en nowhere. Let’s keep working and apply Integra on
by Parts to the new integral, using u = ex and dv = sin x dx. This leads us to the
following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.2.6: Se ng up Integra on by Parts (again).

The Integra on by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a li le and adding the constant of integra on, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C.

Example 6.2.5 Integra ng using Integra on by Parts: an deriva ve of ln x
Evaluate

∫
ln x dx.

S Onemay have no ced that we have rules for integra ng the
familiar trigonometric func ons and ex, but we have not yet given a rule for
integra ng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its an deriva ve by a
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clever applica on of Integra on by Parts. Set u = ln x and dv = dx. This is a
good, sneaky trick to learn as it can help in other situa ons. This determines
du = (1/x) dx and v = x as shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.2.7: Se ng up Integra on by Parts.

Pu ng this all together in the Integra on by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

Example 6.2.6 Integra ng using Int. by Parts: an deriva ve of arctan x
Evaluate

∫
arctan x dx.

S The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The Integra on by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be solved by subs tu on. Taking u = 1 + x2, we
get du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u| + C, which becomes ln(1 + x2) + C
(we can drop the absolute values as 1 + x2 is always pos ve). Therefore, the
answer is ∫

arctan x dx = x arctan x− 1
2
ln(1+ x2) + C.
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6.2 Integra on by Parts

Subs tu on Before Integra on

When taking deriva ves, it was common to employ mul ple rules (such as
using both theQuo ent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integra on techniques. In
par cular, here we illustrate making an “unusual” subs tu on first before using
Integra on by Parts.

Example 6.2.7 Integra on by Parts a er subs tu on
Evaluate

∫
cos(ln x) dx.

S The integrand contains a composi on of func ons, leading
us to think Subs tu on would be beneficial. Le ng u = ln x, we have du =
1/x dx. This seems problema c, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse func ons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and Integra on By Parts

So far we have focused only on evalua ng indefinite integrals. Of course, we
can use Integra on by Parts to evaluate definite integrals as well, as Theorem
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6.2.1 states. We do so in the next example.

Example 6.2.8 Definite integra on using Integra on by Parts

Evaluate
∫ 2

1
x2 ln x dx.

S Our mnemonic suggests le ng u = ln x, hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln x v = ?
du = ? dv = x2 dx

⇒ u = ln x v = x3/3
du = 1/x dx dv = x2 dx

Figure 6.2.8: Se ng up Integra on by Parts.

The Integra on by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07.

In general, Integra on by Parts is useful for integra ng certain products of
func ons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric func ons.
As stated before, integra on is generally more difficult than deriva on. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.
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6.2 Integra on by Parts

While the first is calculated easilywith Integra on by Parts, the second is best
approached with Subs tu on. Taking things one step further, the third integral
has no answer in terms of elementary func ons, so none of the methods we
learn in calculus will get us the exact answer.

Integra on by Parts is a very useful method, second only to Subs tu on. In
the following sec ons of this chapter, we con nue to learn other integra on
techniques. The next sec on focuses on handling integrals containing trigono-
metric func ons.

Notes:

291



Exercises 6.2
Terms and Concepts

1. T/F: Integra on by Parts is useful in evalua ng integrands
that contain products of func ons.

2. T/F: Integra on by Parts can be thought of as the “opposite
of the Chain Rule.”

3. For what is “LIATE” useful?

4. T/F: If the integral that results from Integra on by Parts ap-
pears to also need Integra on by Parts, then a mistake was
made in the orginal choice of “u”.

Problems
In Exercises 5 – 34, evaluate the given indefinite integral.

5.
∫

x sin x dx

6.
∫

xe−x dx

7.
∫

x2 sin x dx

8.
∫

x3 sin x dx

9.
∫

xex
2
dx

10.
∫

x3ex dx

11.
∫

xe−2x dx

12.
∫

ex sin x dx

13.
∫

e2x cos x dx

14.
∫

e2x sin(3x) dx

15.
∫

e5x cos(5x) dx

16.
∫

sin x cos x dx

17.
∫

sin−1 x dx

18.
∫

tan−1(2x) dx

19.
∫

x tan−1 x dx

20.
∫

sin−1 x dx

21.
∫

x ln x dx

22.
∫

(x− 2) ln x dx

23.
∫

x ln(x− 1) dx

24.
∫

x ln(x2) dx

25.
∫

x2 ln x dx

26.
∫

(ln x)2 dx

27.
∫

(ln(x+ 1))2 dx

28.
∫

x sec2 x dx

29.
∫

x csc2 x dx

30.
∫

x
√
x− 2 dx

31.
∫

x
√
x2 − 2 dx

32.
∫

sec x tan x dx

33.
∫

x sec x tan x dx

34.
∫

x csc x cot x dx

In Exercises 35 – 40, evaluate the indefinite integral a er first
making a subs tu on.

35.
∫

sin(ln x) dx

36.
∫

e2x cos
(
ex
)
dx
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37.
∫

sin(
√
x) dx

38.
∫

ln(
√
x) dx

39.
∫

e
√

x dx

40.
∫

eln x dx

In Exercises 41 – 49, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 5 – 13.

41.
∫ π

0
x sin x dx

42.
∫ 1

−1
xe−x dx

43.
∫ π/4

−π/4
x2 sin x dx

44.
∫ π/2

−π/2
x3 sin x dx

45.
∫ √

ln 2

0
xex

2
dx

46.
∫ 1

0
x3ex dx

47.
∫ 2

1
xe−2x dx

48.
∫ π

0
ex sin x dx

49.
∫ π/2

−π/2
e2x cos x dx
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6.3 Trigonometric Integrals
Func ons involving trigonometric func ons are useful as they are good at de-
scribing periodic behavior. This sec on describes several techniques for finding
an deriva ves of certain combina ons of trigonometric func ons.

Integrals of the form
∫

sinm x cosn x dx
In learning the technique of Subs tu on, we saw the integral

∫
sin x cos x dx

in Example 6.1.4. The integra onwas not difficult, and one could easily evaluate
the indefinite integral by le ng u = sin x or by le ng u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm x cosn x dx,

where m, n are nonnega ve integers. Our strategy for evalua ng these inte-
grals is to use the iden ty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric func on into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea 6.3.1 Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnega ve integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then ∫
sinm x cosn x dx =

∫
(1− cos2 x)k sin x cosn x dx = −

∫
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using subs tu ons similar to that outlined above we have∫
sinm x cosn x dx =

∫
um(1− u2)k du,

where u = sin x and du = cos x dx.

3. If bothm and n are even, use the power–reducing iden es

cos2 x = 1+ cos(2x)
2

and sin2 x = 1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.
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6.3 Trigonometric Integrals

We prac ce applying Key Idea 6.3.1 in the next examples.

Example 6.3.1 Integra ng powers of sine and cosine
Evaluate

∫
sin5 x cos8 x dx.

S The power of the sine term is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
∫
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subs tu on and expanding the integrand gives∫
(1−cos2)2 cos8 x sin x dx = −

∫
(1−u2)2u8 du = −

∫ (
1−2u2+u4

)
u8 du = −

∫ (
u8−2u10+u12

)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

Example 6.3.2 Integra ng powers of sine and cosine
Evaluate

∫
sin5 x cos9 x dx.

S Thepowers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.3.1 to either power. We choose
to work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos9 x as

cos9 x = cos8 x cos x
= (cos2 x)4 cos x
= (1− sin2 x)4 cos x
= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx.
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Figure 6.3.1: A plot of f(x) and g(x) from
Example 6.3.2 and the Technology Note.

Chapter 6 Techniques of An differen a on

Now subs tute and integrate, using u = sin x and du = cos x dx.∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx =∫

u5(1− 4u2 + 6u4 − 4u6 + u8) du =

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 + 3

5
u10 − 1

3
u12 + 1

14
u14 + C

=
1
6
sin6 x− 1

2
sin8 x+ 3

5
sin10 x+ . . .

− 1
3
sin12 x+ 1

14
sin14 x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipula on, etc.) are important.
Nowadays problems of this sort are o en solved using a computer algebra sys-
tem. The powerful programMathema ca® integrates

∫
sin5 x cos9 x dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our answer in Example 6.3.2, which is

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 6.3.1 shows a graph of f and g; they are clearly not equal, but they differ
only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different an deriva ves of the same func on, meaning both answers are
correct.

Example 6.3.3 Integra ng powers of sine and cosine
Evaluate

∫
cos4 x sin2 x dx.

S The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.∫

cos4 x sin2 x dx =
∫ (

1+ cos(2x)
2

)2(1− cos(2x)
2

)
dx

=

∫
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate, especiallywith Key Idea 6.1.1. The cos2(2x)
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cos3(2x) term is a cosine func on with an odd
power, requiring a subs tu on as done before. We integrate each in turn below.
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6.3 Trigonometric Integrals

∫
cos(2x) dx =

1
2
sin(2x) + C.

∫
cos2(2x) dx =

∫
1+ cos(4x)

2
dx =

1
2
(
x+

1
4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).

Le ng u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx =

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Pu ng all the pieces together, we have∫
cos4 x sin2 x dx =

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

Func ons that contain products of sines and cosines of differing periods are
important in many applica ons including the analysis of sound waves. Integrals
of the form∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
Example 6.3.4 Integra ng products of sin(mx) and cos(nx)

Evaluate
∫

sin(5x) cos(2x) dx.

S The applica on of the formula and subsequent integra on
are straigh orward:∫

sin(5x) cos(2x) dx =
∫

1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C

Integrals of the form
∫

tanm x secn x dx.

When evalua ng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a func on using pow-
ers of cos x, leading to an easy subs tu on.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2 x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subs tu on. This strategy is outlined in the following Key Idea.
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6.3 Trigonometric Integrals

Key Idea 6.3.2 Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnega ve integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ∫
tanm x secn x dx =

∫
tanm x(1+ tan2 x)k−1 sec2 x dx =

∫
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ∫
tanm x secn x dx =

∫
(sec2 x− 1)k secn−1 x sec x tan x dx =

∫
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use Integra on By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ∫
tanm x dx =

∫
tanm−2 sec2 x dx︸ ︷︷ ︸
apply rule #1

−
∫

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items 1 and 2 of Key Idea 6.3.2 are rela vely
straigh orward, but the techniques in items 3 and 4 can be rather tedious. A
few examples will help with these methods.

Notes:

299



Chapter 6 Techniques of An differen a on

Example 6.3.5 Integra ng powers of tangent and secant
Evaluate

∫
tan2 x sec6 x dx.

S Since the power of secant is even, we use rule #1 from Key
Idea 6.3.2 and pull out a sec2 x in the integrand. We convert the remaining pow-
ers of secant into powers of tangent.∫

tan2 x sec6 x dx =
∫

tan2 x sec4 x sec2 x dx

=

∫
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now subs tute, with u = tan x, with du = sec2 x dx.

=

∫
u2
(
1+ u2

)2 du
We leave the integra on and subsequent subs tu on to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

Example 6.3.6 Integra ng powers of tangent and secant
Evaluate

∫
sec3 x dx.

S We apply rule #3 from Key Idea 6.3.2 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use Integra-
on by Parts; the rule suggests le ng dv = sec2 x dx, meaning that u = sec x.

u = sec x v = ?
du = ? dv = sec2 x dx

⇒ u = sec x v = tan x
du = sec x tan x dx dv = sec2 x dx

Figure 6.3.2: Se ng up Integra on by Parts.

Employing Integra on by Parts, we have∫
sec3 x dx =

∫
sec x︸︷︷︸

u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
∫

sec x tan2 x dx.
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This new integral also requires applying rule #3 of Key Idea 6.3.2:

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx+
∫

sec x dx

= sec x tan x−
∫

sec3 x dx+ ln | sec x+ tan x|

In previous applica ons of Integra on by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
sec3 x dx to

both sides, giving:

2
∫

sec3 x dx = sec x tan x+ ln | sec x+ tan x|∫
sec3 x dx =

1
2

(
sec x tan x+ ln | sec x+ tan x|

)
+ C

We give one more example.

Example 6.3.7 Integra ng powers of tangent and secant
Evaluate

∫
tan6 x dx.

S We employ rule #4 of Key Idea 6.3.2.∫
tan6 x dx =

∫
tan4 x tan2 x dx

=

∫
tan4 x

(
sec2 x− 1

)
dx

=

∫
tan4 x sec2 x dx−

∫
tan4 x dx

Integrate the first integral with subs tu on, u = tan x; integrate the second by
employing rule #4 again.

=
1
5
tan5 x−

∫
tan2 x tan2 x dx

=
1
5
tan5 x−

∫
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

∫
tan2 x sec2 x dx+

∫
tan2 x dx

Notes:
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Again, use subs tu on for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

∫ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C.

These la er examples were admi edly long, with repeated applica ons of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solu on method is. A trigonometric func on of
a high power can be systema cally reduced to trigonometric func ons of lower
powers un l all an deriva ves can be computed.

The next sec on introduces an integra on technique known as Trigonomet-
ric Subs tu on, a clever combina on of Subs tu on and the Pythagorean The-
orem.
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Exercises 6.3
Terms and Concepts

1. T/F:
∫

sin2 x cos2 x dx cannot be evaluated using the tech-
niques described in this sec on since both powers of sin x
and cos x are even.

2. T/F:
∫

sin3 x cos3 x dx cannot be evaluated using the tech-
niques described in this sec on since both powers of sin x
and cos x are odd.

3. T/F: This sec on addresses how to evaluate indefinite inte-
grals such as

∫
sin5 x tan3 x dx.

4. T/F: Some mes computer programs evaluate integrals in-
volving trigonometric func ons differently than one would
using the techniques of this sec on. When this is the case,
the techniques of this sec on have failed and one should
only trust the answer given by the computer.

Problems
In Exercises 5 – 28, evaluate the indefinite integral.

5.
∫

sin x cos4 x dx

6.
∫

sin3 x cos x dx

7.
∫

sin3 x cos2 x dx

8.
∫

sin3 x cos3 x dx

9.
∫

sin6 x cos5 x dx

10.
∫

sin2 x cos7 x dx

11.
∫

sin2 x cos2 x dx

12.
∫

sin x cos x dx

13.
∫

sin(5x) cos(3x) dx

14.
∫

sin(x) cos(2x) dx

15.
∫

sin(3x) sin(7x) dx

16.
∫

sin(πx) sin(2πx) dx

17.
∫

cos(x) cos(2x) dx

18.
∫

cos
(π
2
x
)
cos(πx) dx

19.
∫

tan4 x sec2 x dx

20.
∫

tan2 x sec4 x dx

21.
∫

tan3 x sec4 x dx

22.
∫

tan3 x sec2 x dx

23.
∫

tan3 x sec3 x dx

24.
∫

tan5 x sec5 x dx

25.
∫

tan4 x dx

26.
∫

sec5 x dx

27.
∫

tan2 x sec x dx

28.
∫

tan2 x sec3 x dx

In Exercises 29 – 35, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

29.
∫ π

0
sin x cos4 x dx

30.
∫ π

−π

sin3 x cos x dx

31.
∫ π/2

−π/2
sin2 x cos7 x dx

32.
∫ π/2

0
sin(5x) cos(3x) dx

33.
∫ π/2

−π/2
cos(x) cos(2x) dx

34.
∫ π/4

0
tan4 x sec2 x dx

35.
∫ π/4

−π/4
tan2 x sec4 x dx 303
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6.4 Trigonometric Subs tu on
In Sec on 5.2 we defined the definite integral as the “signed area under the
curve.” In that sec on we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π
2

(6.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integra on techniques, including Sub-

s tu on and Integra on by Parts, yet we are s ll unable to evaluate the above
integral without resor ng to a geometric interpreta on. This sec on introduces
Trigonometric Subs tu on, amethod of integra on that fills this gap in our inte-
gra on skill. This techniqueworks on the sameprinciple as Subs tu on as found
in Sec on 6.1, though it can feel “backward.” In Sec on 6.1, we set u = f(x), for
some func on f, and replaced f(x) with u. In this sec on, we will set x = f(θ),
where f is a trigonometric func on, then replace x with f(θ).

We start by demonstra ng this method in evalua ng the integral in Equa on
(6.1). A er the example, wewill generalize themethod and givemore examples.

Example 6.4.1 Using Trigonometric Subs tu on

Evaluate
∫ 3

−3

√
9− x2 dx.

S We begin by no ng that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Se ng x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to subs tute.
We also wish to change our bounds of integra on. The bound x = −3 corre-
sponds to θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the
bound of x = 3 is replaced by the bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3|3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always posi ve, so we can drop the absolute value bars,
then employ a power–reducing formula:
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6.4 Trigonometric Subs tu on

=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π/2

−π/2

=
9
2
π.

This matches our answer from before.

We now describe in detail Trigonometric Subs tu on. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
la onships between x and θ.

Key Idea 6.4.1 Trigonometric Subs tu on

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−1(x/a), for−π/2 ≤ θ ≤ π/2.

On this interval, cos θ ≥ 0, so
√
a2 − x2 = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, dx = a sec2 θ dθ

Thus θ = tan−1(x/a), for−π/2 < θ < π/2.

On this interval, sec θ > 0, so
√
x2 + a2 = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−1(x/a). If x/a ≥ 1, then 0 ≤ θ < π/2;
if x/a ≤ −1, then π/2 < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ 1, and
0 ≤ θ < π/2. On this interval, tan θ ≥ 0, so
√
x2 − a2 = a tan θ

..
a

.

√
x2 − a2

.

x

. θ

Notes:
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Example 6.4.2 Using Trigonometric Subs tu on
Evaluate

∫
1√

5+ x2
dx.

S Using Key Idea 6.4.1(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. Subs tu ng, we have:∫

1√
5+ x2

dx =
∫

1√
5+ 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln
∣∣ sec θ + tan θ

∣∣+ C.

While the integra on steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea 6.4.1(b) helps. With x =
√
5 tan θ,

we have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5+ x2
dx = ln

∣∣ sec θ + tan θ
∣∣+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic iden ty to simplify
it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5
(√

x2 + 5+ x
)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣√x2 + 5+ x

∣∣+ C

= ln
∣∣√x2 + 5+ x

∣∣+ C,

where the ln
(
1/

√
5
)
term is absorbed into the constant C. (In Sec on 6.6 we

will learn another way of approaching this problem.)

Notes:

306



6.4 Trigonometric Subs tu on

Example 6.4.3 Using Trigonometric Subs tu on
Evaluate

∫ √
4x2 − 1 dx.

S Westart by rewri ng the integrand so that it looks like
√
x2 − a2

for some value of a: √
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

So we have a = 1/2, and following Key Idea 6.4.1(c), we set x = 1
2 sec θ, and

hence dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these subs tu-

ons: ∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1
2

)2

dx

=

∫
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

∫ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1
2
tan2 θ sec θ dθ

=
1
2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1
2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 6.3.6, finding its an deriva ves to be∫
sec3 θ dθ =

1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1
2

∫ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
− ln | sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln | sec θ + tan θ|) + C.
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = 1/2, and x = 1

2 sec θ, the reference triangle in Key Idea 6.4.1(c)
shows that

tan θ =
√

x2 − 1/4
/
(1/2) = 2

√
x2 − 1/4 and sec θ = 2x.

Thus
1
4

(
sec θ tan θ − ln

∣∣ sec θ + tan θ
∣∣)+ C =

1
4

(
2x · 2

√
x2 − 1/4− ln

∣∣2x+ 2
√

x2 − 1/4
∣∣)+ C

=
1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

Example 6.4.4 Using Trigonometric Subs tu on

Evaluate
∫ √

4− x2

x2
dx.

S We use Key Idea 6.4.1(a) with a = 2, x = 2 sin θ, dx =
2 cos θ and hence

√
4− x2 = 2 cos θ. This gives∫ √

4− x2

x2
dx =

∫
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 6.4.1(a), we have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus∫ √

4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

Trigonometric Subs tu on can be applied inmany situa ons, even those not
of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we ap-

ply it to an integral we already know how to handle.
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Example 6.4.5 Using Trigonometric Subs tu on
Evaluate

∫
1

x2 + 1
dx.

S Weknow the answer already as tan−1 x+C. Weapply Trigono-
metric Subs tu on here to show that we get the same answer without inher-
ently relying on knowledge of the deriva ve of the arctangent func on.

Using Key Idea 6.4.1(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thus∫

1
x2 + 1

dx =
∫

1
sec2 θ

sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
∫

1
x2 + 1

dx = tan−1 x+C.

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and iden es can be combined
to obtain a solu on.

Example 6.4.6 Using Trigonometric Subs tu on
Evaluate

∫
1

(x2 + 6x+ 10)2
dx.

S We start by comple ng the square, then make the subs tu-
on u = x+ 3, followed by the trigonometric subs tu on of u = tan θ:∫

1
(x2 + 6x+ 10)2

dx =
∫

1(
(x+ 3)2 + 1

)2 dx =
∫

1
(u2 + 1)2

du.

Now make the subs tu on u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.
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Applying a power reducing formula, we have

=

∫ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (6.2)

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
iden ty sin(2θ) = 2 sin θ cos θ and using the reference triangle found in Key
Idea 6.4.1(b), we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the subs tu on u = x+3. We start with the expres-
sion in Equa on (6.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

Sta ng our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Subs tu on,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then conver ng back to x) and then
evaluate using the original bounds. It is much more straigh orward, though, to
change the bounds as we subs tute.

Example 6.4.7 Definite integra on and Trigonometric Subs tu on

Evaluate
∫ 5

0

x2√
x2 + 25

dx.

S Using Key Idea 6.4.1(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we subs tute, we can also change the

bounds of integra on.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
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6.4 Trigonometric Subs tu on

original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have∫ 5

0

x2√
x2 + 25

dx =
∫ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
∫ π/4

0
tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 6.4.3 where we found∫
tan2 θ sec θ dθ =

1
2
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

25
∫ π/4

0
tan2 θ sec θ dθ =

25
2
(
sec θ tan θ − ln | sec θ + tan θ|

)∣∣∣∣∣
π/4

0

=
25
2
(√

2− ln(
√
2+ 1)

)
≈ 6.661.

The following equali es are very usefulwhenevalua ng integrals using Trigono-
metric Subs tu on.

Key Idea 6.4.2 Useful Equali es with Trigonometric Subs tu on

1. sin(2θ) = 2 sin θ cos θ

2. cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

3.
∫

sec3 θ dθ =
1
2

(
sec θ tan θ + ln

∣∣ sec θ + tan θ
∣∣)+ C

4.
∫

cos2 θ dθ =

∫
1
2
(
1+ cos(2θ)

)
dθ =

1
2
(
θ + sin θ cos θ

)
+ C.

The next sec on introduces Par al Frac onDecomposi on, which is an alge-
braic technique that turns “complicated” frac ons into sums of “simpler” frac-
ons, making integra on easier.
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Exercises 6.4
Terms and Concepts
1. Trigonometric Subs tu on works on the same principles as

Integra on by Subs tu on, though it can feel “ ”.

2. If one uses Trigonometric Subs tu on on an integrand con-
taining

√
25− x2, then one should set x = .

3. Consider the Pythagorean Iden ty sin2 θ + cos2 θ = 1.

(a) What iden ty is obtained when both sides are di-
vided by cos2 θ?

(b) Use the new iden ty to simplify 9 tan2 θ + 9.

4. Why does Key Idea 6.4.1(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems
In Exercises 5 – 16, apply Trigonometric Subs tu on to eval-
uate the indefinite integrals.

5.
∫ √

x2 + 1 dx

6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx

8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx

10.
∫ √

x2 − 16 dx

11.
∫ √

4x2 + 1 dx

12.
∫ √

1− 9x2 dx

13.
∫ √

16x2 − 1 dx

14.
∫

8√
x2 + 2

dx

15.
∫

3√
7− x2

dx

16.
∫

5√
x2 − 8

dx

In Exercises 17 – 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric Subs tu on.

17.
∫ √

x2 − 11
x

dx

18.
∫

1
(x2 + 1)2

dx

19.
∫

x√
x2 − 3

dx

20.
∫

x2
√
1− x2 dx

21.
∫

x
(x2 + 9)3/2

dx

22.
∫

5x2√
x2 − 10

dx

23.
∫

1
(x2 + 4x+ 13)2

dx

24.
∫

x2(1− x2)−3/2 dx

25.
∫ √

5− x2
7x2

dx

26.
∫

x2√
x2 + 3

dx

In Exercises 27 – 32, evaluate the definite integrals by mak-
ing the proper trigonometric subs tu on and changing the
bounds of integra on. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

27.
∫ 1

−1

√
1− x2 dx

28.
∫ 8

4

√
x2 − 16 dx

29.
∫ 2

0

√
x2 + 4 dx

30.
∫ 1

−1

1
(x2 + 1)2

dx

31.
∫ 1

−1

√
9− x2 dx

32.
∫ 1

−1
x2
√
1− x2 dx
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6.5 Par al Frac on Decomposi on

In this sec onwe inves gate the an deriva ves of ra onal func ons. Recall that
ra onal func ons are func ons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such func ons arise in many contexts, one of which
is the solving of certain fundamental differen al equa ons.

We begin with an example that demonstrates the mo va on behind this
sec on. Consider the integral

∫
1

x2 − 1
dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the an deriva ve
as being the arctangent func on). It can be solved using Trigonometric Subs -
tu on, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus

∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This sec on teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a ra onal func on f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadra c terms. The following Key Idea states how to decompose a
ra onal func on into a sum of ra onal func ons whose denominators are all of
lower degree than q.
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Key Idea 6.5.1 Par al Frac on Decomposi on

Let
p(x)
q(x)

be a ra onal func on, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposi on of p(x)

q(x)
will contain the sum

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. Quadra c Terms: Let x2+bx+ c divide q(x), where (x2+bx+ c)n
is the highest power of x2 + bx + c that divides q(x). Then the
decomposi on of p(x)

q(x) will contain the sum

B1x+ C1
x2 + bx+ c

+
B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

1. Mul ply all frac ons by q(x), clearing the denominators. Collect
like terms.

2. Equate the resul ng coefficients of the powers of x and solve the
resul ng system of linear equa ons.

The following examples will demonstrate how to put this Key Idea into prac-
ce. Example 6.5.1 stresses the decomposi on aspect of the Key Idea.

Example 6.5.1 Decomposing into par al frac ons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

without solving

for the resul ng coefficients.

S The denominator is already factored, as both x2+ x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x+ 5) is a linear term that divides the denominator, there will be a

A
x+ 5

Notes:
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term in the decomposi on.
As (x− 2)3 divides the denominator, we will have the following terms in the

decomposi on:
B

x− 2
,

C
(x− 2)2

and
D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B
x− 2

+
C

(x− 2)2
+

D
(x− 2)3

+

Ex+ F
x2 + x+ 2

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.”

Example 6.5.2 Decomposing into par al frac ons
Perform the par al frac on decomposi on of

1
x2 − 1

.

S The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

.

To solve for A and B, first mul ply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)
x+ 1

= A(x+ 1) + B(x− 1)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

1 = (A+ B)x+ (A− B).

Notes:
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Note: Equa on 6.3 offers a direct route to
finding the values of A, B and C. Since the
equa on holds for all values of x, it holds
in par cular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)2 = 9A. Since the le hand side
is s ll 1, we have 1 = 9A. HenceA = 1/9.
Likewise, the equality holds when x =
−2; this leads to the equa on 1 = −3C.
Thus C = −1/3.
Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

Chapter 6 Techniques of An differen a on

For clarity’s sake, rewrite the le hand side as

0x+ 1 = (A+ B)x+ (A− B).

On the le , the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A+ B.

Likewise, on the le , we have a constant term of 1; on the right, the constant
term is (A− B). Therefore we have 1 = A− B.

We have two linear equa ons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1 ⇒ A = 1/2

B = −1/2 .

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.

Example 6.5.3 Integra ng using par al frac ons
Use par al frac on decomposi on to integrate

∫
1

(x− 1)(x+ 2)2
dx.

S Wedecompose the integrand as follows, as described by Key
Idea 6.5.1:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
.

To solve for A, B and C, we mul ply both sides by (x− 1)(x+ 2)2 and collect like
terms:

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (6.3)
= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C
= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equa ons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equa ons of three unknowns lead to a unique solu on:

A = 1/9, B = −1/9 and C = −1/3.

Notes:
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example 6.5.3.

6.5 Par al Frac on Decomposi on

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integrated with a simple subs tu onwith u = x−1 or u = x+2
(or by directly applying Key Idea 6.1.1 as the denominators are linear func ons).
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 6.5.4 Integra ng using par al frac ons

Use par al frac on decomposi on to integrate
∫

x3

(x− 5)(x+ 3)
dx.

S Key Idea 6.5.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 6.5.1, we can rewrite the new ra onal func on as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5)
= (A+ B)x+ (3A− 5B).

This implies that:

19 = A+ B
30 = 3A− 5B.

Solving this system of linear equa ons gives

125/8 = A
27/8 = B.

Notes:
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We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.

Example 6.5.5 Integra ng using par al frac ons

Use par al frac on decomposi on to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

S The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)
= (A+ B)x2 + (6A+ B+ C)x+ (11A+ C).

This implies that:

7 = A+ B
31 = 6A+ B+ C
54 = 11A+ C.

Solving this system of linear equa ons gives the nice result of A = 5, B = 2 and
C = −1. Thus∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx =
∫ (

5
x+ 1

+
2x− 1

x2 + 6x+ 11

)
dx.

The first termof this new integrand is easy to evaluate; it leads to a 5 ln |x+1|
term. The second term is not hard, but takes several steps and uses subs tu on
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadra c in the denominator and a linear

term in the numerator. This leads us to try subs tu on. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6

Notes:
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term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subs tu on, leading to a ln |x2+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An an deriva ve of the la er term can be found using Theorem 6.1.3 and sub-
s tu on: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln |x2 + 6x+ 11| − 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately a er seeing the problem.
Rather, given the ini al problem, we break it down into smaller problems that
are easier to solve. The final answer is a combina on of the answers of the
smaller problems.

Par al Frac on Decomposi on is an important tool when dealing with ra o-
nal func ons. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewri ng a frac on in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next sec on introduces new func ons, called the Hyperbolic Func ons.
They will allow us to make subs tu ons similar to those found when studying
Trigonometric Subs tu on, allowing us to approach evenmore integra onprob-
lems.

Notes:
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Exercises 6.5
Terms and Concepts
1. Fill in the blank: Par al Frac on Decomposi on is amethod

of rewri ng func ons.

2. T/F: It is some mes necessary to use polynomial division
before using Par al Frac on Decomposi on.

3. Decompose 1
x2 − 3x

without solving for the coefficients, as
done in Example 6.5.1.

4. Decompose 7− x
x2 − 9

without solving for the coefficients, as
done in Example 6.5.1.

5. Decompose x− 3
x2 − 7

without solving for the coefficients, as
done in Example 6.5.1.

6. Decompose 2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 6.5.1.

Problems
In Exercises 7 – 26, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

6x+ 4
3x2 + 4x+ 1

dx

11.
∫

x+ 7
(x+ 5)2

dx

12.
∫

−3x− 20
(x+ 8)2

dx

13.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

14.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

15.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

16.
∫

x2 + x+ 1
x2 + x− 2

dx

17.
∫

x3

x2 − x− 20
dx

18.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

19.
∫

1
x3 + 2x2 + 3x

dx

20.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

21.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

22.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

23.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

24.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

25.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

26.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

In Exercises 27 – 30, evaluate the definite integral.

27.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

28.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

29.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

30.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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Figure 6.6.1: Using trigonometric func-
ons to define points on a circle and hy-

perbolic func ons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

Pronuncia on Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

6.6 Hyperbolic Func ons

6.6 Hyperbolic Func ons
The hyperbolic func ons are a set of func ons that have many applica ons to
mathema cs, physics, and engineering. Among many other applica ons, they
are used to describe the forma on of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applica on to the theory
of special rela vity. This sec on defines the hyperbolic func ons and describes
many of their proper es, especially their usefulness to calculus.

These func ons are some mes referred to as the “hyperbolic trigonometric
func ons” as there are many, many connec ons between them and the stan-
dard trigonometric func ons. Figure 6.6.1 demonstrates one such connec on.
Just as cosine and sine are used to define points on the circle defined by x2+y2 =
1, the func ons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their defini on.

Defini on 6.6.1 Hyperbolic Func ons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

These hyperbolic func ons are graphed in Figure 6.6.2. In the graphs of
cosh x and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As
x gets “large,” cosh x and sinh x each act like ex/2; when x is a large nega ve
number, cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

No ce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have ver cal asymptotes at x = 0. Also note the ranges of these
func ons, especially tanh x: as x → ∞, both sinh x and cosh x approach ex/2,
hence tanh x approaches 1.

The following example explores some of the proper es of these func ons
that bear remarkable resemblance to the proper es of their trigonometric coun-
terparts.

Notes:
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Figure 6.6.2: Graphs of the hyperbolic func ons.

Example 6.6.1 Exploring proper es of hyperbolic func ons
Use Defini on 6.6.1 to rewrite the following expressions.

1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)
S

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

Notes:
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2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use iden ty from #1.

=
cosh2 x
cosh2 x

= 1.

So tanh2 x+ sech2 x = 1.

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x.

So d
dx

(
cosh x

)
= sinh x.

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x.

So d
dx

(
sinh x

)
= cosh x.

6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x.

So d
dx

(
tanh x

)
= sech2 x.

Notes:
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The following Key Idea summarizes many of the important iden es relat-
ing to hyperbolic func ons. Each can be verified by referring back to Defini on
6.6.1.

Key Idea 6.6.1 Useful Hyperbolic Func on Proper es

Basic Iden es

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

Deriva ves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln | sinh x |+ C

We prac ce using Key Idea 6.6.1.

Example 6.6.2 Deriva ves and integrals of hyperbolic func ons
Evaluate the following deriva ves and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

S

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic Iden ty found in
Key Idea 6.6.1: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Notes:
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Using another Basic Iden ty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subs tu on, with u = 7t − 3 and du = 7dt. Applying Key
Ideas 6.1.1 and 6.6.1 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponen als:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

Inverse Hyperbolic Func ons

Just as the inverse trigonometric func ons are useful in certain integra ons,
the inverse hyperbolic func ons are useful with others. Figure 6.6.3 shows the
restric ons on the domains to make each func on one-to-one and the resul ng
domains and ranges of their inverse func ons. Their graphs are shown in Figure
6.6.4.

Because the hyperbolic func ons are defined in terms of exponen al func-
ons, their inverses can be expressed in terms of logarithms as shown in Key Idea

6.6.2. It is o en more convenient to refer to sinh−1 x than to ln
(
x+

√
x2 + 1

)
,

especially when one is working on theory and does not need to compute actual
values. On the other hand, when computa ons are needed, technology is o en
helpful but many hand-held calculators lack a convenient sinh−1 x bu on. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situa on, the logarithmic representa on is useful. The reader is not encouraged
tomemorize these, but rather know they exist and know how to use themwhen
needed.

Notes:
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Func on Domain Range
cosh x [0,∞) [1,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1)
sech x [0,∞) (0, 1]
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

Func on Domain Range
cosh−1 x [1,∞) [0,∞)
sinh−1 x (−∞,∞) (−∞,∞)
tanh−1 x (−1, 1) (−∞,∞)
sech−1 x (0, 1] [0,∞)
csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 6.6.3: Domains and ranges of the hyperbolic and inverse hyperbolic func ons.
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Figure 6.6.4: Graphs of the hyperbolic func ons and their inverses.

Key Idea 6.6.2 Logarithmic defini ons of Inverse Hyperbolic Func ons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0
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6.6 Hyperbolic Func ons

The following Key Ideas give the deriva ves and integrals rela ng to the in-
verse hyperbolic func ons. In Key Idea 6.6.4, both the inverse hyperbolic and
logarithmic func on representa ons of the an deriva ve are given, based on
Key Idea 6.6.2. Again, these la er func ons are o en more useful than the for-
mer. Note how inverse hyperbolic func ons can be used to solve integrals we
used Trigonometric Subs tu on to solve in Sec on 6.4.

Key Idea 6.6.3 Deriva ves Involving Inverse Hyperbolic Func ons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

Key Idea 6.6.4 Integrals Involving Inverse Hyperbolic Func ons

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
∫

1
a2 − x2

dx =


1
a tanh

−1 ( x
a

)
+ C x2 < a2

1
a coth

−1 ( x
a

)
+ C a2 < x2

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+

√
a2 − x2

)
+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We prac ce using the deriva ve and integral formulas in the following ex-
ample.
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Chapter 6 Techniques of An differen a on

Example 6.6.3 Deriva ves and integrals involving inverse hyperbolic
func ons

Evaluate the following.

1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1
x2 − 1

dx

3.
∫

1√
9x2 + 10

dx

S

1. Applying Key Idea 6.6.3 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5
)2 − 1

· 3
5
.

2. Mul plying the numerator anddenominator by (−1) gives:
∫

1
x2 − 1

dx =∫
−1

1− x2
dx. The second integral can be solved with a direct applica on

of item #3 from Key Idea 6.6.4, with a = 1. Thus∫
1

x2 − 1
dx = −

∫
1

1− x2
dx

=

 − tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (6.4)

We should note that this exact problem was solved at the beginning of
Sec on 6.5. In that example the answer was given as 1

2 ln |x−1|− 1
2 ln |x+

1|+ C. Note that this is equivalent to the answer given in Equa on 6.4, as
ln(a/b) = ln a− ln b.

3. This requires a subs tu on, then item #2 of Key Idea 6.6.4 can be applied.
Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1
3

∫
1√

u2 + 10
du.
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6.6 Hyperbolic Func ons

Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.

This sec on covers a lot of ground. New func ons were introduced, along
with some of their fundamental iden es, their deriva ves and an deriva ves,
their inverses, and the deriva ves and an deriva ves of these inverses. Four
Key Ideas were presented, each including quite a bit of informa on.

Do not view this sec on as containing a source of informa on to be memo-
rized, but rather as a reference for future problem solving. Key Idea 6.6.4 con-
tains perhaps the most useful informa on. Know the integra on forms it helps
evaluate and understand how to use the inverse hyperbolic answer and the log-
arithmic answer.

The next sec on takes a brief break from demonstra ng new integra on
techniques. It instead demonstrates a technique of evalua ng limits that re-
turn indeterminate forms. This technique will be useful in Sec on 6.8, where
limits will arise in the evalua on of certain definite integrals.
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Exercises 6.6
Terms and Concepts

1. In Key Idea 6.6.1, the equa on
∫

tanh x dx = ln(cosh x)+C

is given. Why is “ln | cosh x|” not used – i.e., why are abso-
lute values not necessary?

2. The hyperbolic func ons are used to define points on the
right hand por on of the hyperbola x2 − y2 = 1, as shown
in Figure 6.6.1. How can we use the hyperbolic func ons to
define points on the le hand por on of the hyperbola?

Problems
In Exercises 3 – 10, verify the given iden ty using Defini on
6.6.1, as done in Example 6.6.1.

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x = cosh 2x+ 1
2

6. sinh2 x = cosh 2x− 1
2

7. d
dx

[sech x] = − sech x tanh x

8. d
dx

[coth x] = − csch2 x

9.
∫

tanh x dx = ln(cosh x) + C

10.
∫

coth x dx = ln | sinh x|+ C

In Exercises 11 – 22, find the deriva ve of the given func on.

11. f(x) = sinh 2x

12. f(x) = cosh2 x

13. f(x) = tanh(x2)

14. f(x) = ln(sinh x)

15. f(x) = sinh x cosh x

16. f(x) = x sinh x− cosh x

17. f(x) = sech−1(x2)

18. f(x) = sinh−1(3x)

19. f(x) = cosh−1(2x2)

20. f(x) = tanh−1(x+ 5)

21. f(x) = tanh−1(cos x)

22. f(x) = cosh−1(sec x)

In Exercises 23 – 28, find the equa on of the line tangent to
the func on at the given x-value.

23. f(x) = sinh x at x = 0

24. f(x) = cosh x at x = ln 2

25. f(x) = tanh x at x = − ln 3

26. f(x) = sech2 x at x = ln 3

27. f(x) = sinh−1 x at x = 0

28. f(x) = cosh−1 x at x =
√
2

In Exercises 29 – 44, evaluate the given indefinite integral.

29.
∫

tanh(2x) dx

30.
∫

cosh(3x− 7) dx

31.
∫

sinh x cosh x dx

32.
∫

x cosh x dx

33.
∫

x sinh x dx

34.
∫

1√
x2 + 1

dx

35.
∫

1√
x2 − 9

dx

36.
∫

1
9− x2

dx

37.
∫

2x√
x4 − 4

dx

38.
∫ √

x√
1+ x3

dx

39.
∫

1
x4 − 16

dx

40.
∫

1
x2 + x

dx
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41.
∫

ex

e2x + 1
dx

42.
∫

sinh−1 x dx

43.
∫

tanh−1 x dx

44.
∫

sech x dx (Hint: mul ply by cosh x
cosh x ; set u = sinh x.)

In Exercises 45 – 48, evaluate the given definite integral.

45.
∫ 1

−1
sinh x dx

46.
∫ ln 2

− ln 2
cosh x dx

47.
∫ 1

0
tanh−1 x dx

48.
∫ 2

0

1√
x2 + 1

dx
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Chapter 6 Techniques of An differen a on

6.7 L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integra on, this sec on
is not about integra on. Rather, it is concerned with a technique of evalua ng
certain limits that will be useful in the following sec on, where integra on is
once more discussed.

Our treatment of limits exposed us to the no on of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is

0/0; rather, we use 0/0 as nota on to describe the fact that both the numerator
and denominator approach 0. The expression 0/0 has no numeric value; other
work must be done to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quan ty is growing
without bound and is being divided by another quan ty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mul ply zero by infinity.” Instead,
it means “one quan ty is shrinking to zero, and is being mul plied by a quan ty
that is growing without bound.” We cannot determine from such a descrip on
what the result of such a limit will be.

This sec on introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms 0/0 and ∞/∞. We’ll also show how algebraic
manipula on can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 6.7.1 L’Hôpital’s Rule, Part 1

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differen able func-
ons on an open interval I containing c, and g ′(x) ̸= 0 on I except possi-

bly at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will o en use “LHR” as an abbrevia on of “l’Hôpital’s Rule.”
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6.7 L’Hôpital’s Rule

Example 6.7.1 Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→2

x2 + x− 6
x2 − 3x+ 2

S

1. We proved this limit is 1 in Example 1.3.4 using the Squeeze Theorem.
Here we use l’Hôpital’s Rule to show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

2. lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. lim
x→0

x2

1− cos x
by LHR
= lim

x→0

2x
sin x

.

This la er limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→2

x2 + x− 6
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 3)
(x− 2)(x− 1)

= lim
x→2

x+ 3
x− 1

= 5.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→2

x2 + x− 6
x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1
2x− 3

= 5.

Note that at each stepwhere l’Hôpital’s Rule was applied, it was needed: the
ini al limit returned the indeterminate form of “0/0.” If the ini al limit returns,
for example, 1/2, then l’Hôpital’s Rule does not apply.

Notes:
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Chapter 6 Techniques of An differen a on

The following theorem extends our ini al version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 6.7.2 L’Hôpital’s Rule, Part 2

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
en able on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

2. Let f and g be differen able func ons on the open interval (a,∞)
for some value a, where g ′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

returns either “0/0” or “∞/∞”. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

A similar statement can be made for limits where x approaches
−∞.

Example 6.7.2 Using l’Hôpital’s Rule with limits involving∞
Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

2. lim
x→∞

ex

x3
.

S

1. We can evaluate this limit already using Theorem 1.6.1; the answer is 3/4.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

2. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x
by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
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6.7 L’Hôpital’s Rule

has important implica ons in compu ng when considering efficiency of
algorithms.)

Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to ra os of func ons. When faced with
an indeterminate form such as 0 ·∞ or∞−∞, we can some mes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.7.3 Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln x

4. lim
x→∞

x2 − ex

S

1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeterminate form

0 · ∞. We rewrite the expression x · e1/x as e
1/x

1/x
; now, as x → 0+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x
by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

Interpreta on: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates to 0 · 0
which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit ini ally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
=

1
1
= 1.
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Chapter 6 Techniques of An differen a on

Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
= 0.

Interpreta on: since this limit evaluates to 0, it means that for large x,
there is essen ally no difference between ln(x + 1) and ln x; their differ-
ence is essen ally 0.

4. The limit lim
x→∞

x2−ex ini ally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out x2; x2 − ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x
by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

x2 − ex = −∞.

Interpreta on: as x gets large, the difference between x2 and ex grows
very large.

Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it o en helps
to employ the natural logarithmic func on. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.7.1 Evalua ng Limits Involving Indeterminate Forms
00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.
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6.7 L’Hôpital’s Rule

Example 6.7.4 Using l’Hôpital’s Rule with indeterminate forms involving
exponents

Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

S

1. This is equivalent to a special limit given in Theorem 1.3.5; these limits
have important applica ons within mathema cs and finance. Note that
the exponent approaches∞ while the base approaches 1, leading to the
indeterminate form 1∞. Let f(x) = (1+ 1/x)x; the problem asks to eval-
uate lim

x→∞
f(x). Let’s first evaluate lim

x→∞
ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

This produces the indeterminate form 0/0, so we apply l’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1.We return to the original limit and apply Key Idea

6.7.1.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider
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f(x) = xx
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Figure 6.7.1: A graph of f(x) = xx sup-
por ng the fact that as x → 0+, f(x) → 1.

Chapter 6 Techniques of An differen a on

first lim
x→0+

ln
(
f(x)
)
.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key Idea

6.7.1.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 6.7.1.

Our brief revisit of limits will be rewarded in the next sec on where we con-
sider improper integra on. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0
f(x) dx. Improper integra on

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applica ons, in addi on to genera ng ideas that are
enlightening.
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Exercises 6.7
Terms and Concepts
1. List the different indeterminate forms described in this sec-

on.

2. T/F: l’Hôpital’s Rule provides a faster method of compu ng
deriva ves.

3. T/F: l’Hôpital’s Rule states that d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks:

The Quo ent Rule is applied to f(x)
g(x)

when taking
;

l’Hôpital’s Rule is applied to f(x)
g(x)

when taking certain
.

6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a func on f(x) such that lim
x→1

f(x) returns “00”.

8. Create a func on f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems
In Exercises 9 – 54, evaluate the given limit.

9. lim
x→1

x2 + x− 2
x− 1

10. lim
x→2

x2 + x− 6
x2 − 7x+ 10

11. lim
x→π

sin x
x− π

12. lim
x→π/4

sin x− cos x
cos(2x)

13. lim
x→0

sin(5x)
x

14. lim
x→0

sin(2x)
x+ 2

15. lim
x→0

sin(2x)
sin(3x)

16. lim
x→0

sin(ax)
sin(bx)

17. lim
x→0+

ex − 1
x2

18. lim
x→0+

ex − x− 1
x2

19. lim
x→0+

x− sin x
x3 − x2

20. lim
x→∞

x4

ex

21. lim
x→∞

√
x

ex

22. lim
x→∞

1
x2
ex

23. lim
x→∞

ex√
x

24. lim
x→∞

ex

2x

25. lim
x→∞

ex

3x

26. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

27. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

28. lim
x→∞

ln x
x

29. lim
x→∞

ln(x2)
x

30. lim
x→∞

(
ln x
)2

x

31. lim
x→0+

x · ln x

32. lim
x→0+

√
x · ln x

33. lim
x→0+

xe1/x

34. lim
x→∞

x3 − x2

35. lim
x→∞

√
x− ln x

36. lim
x→−∞

xex

37. lim
x→0+

1
x2
e−1/x

38. lim
x→0+

(1+ x)1/x
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39. lim
x→0+

(2x)x

40. lim
x→0+

(2/x)x

41. lim
x→0+

(sin x)x Hint: use the Squeeze Theorem.

42. lim
x→1+

(1− x)1−x

43. lim
x→∞

(x)1/x

44. lim
x→∞

(1/x)x

45. lim
x→1+

(ln x)1−x

46. lim
x→∞

(1+ x)1/x

47. lim
x→∞

(1+ x2)1/x

48. lim
x→π/2

tan x cos x

49. lim
x→π/2

tan x sin(2x)

50. lim
x→1+

1
ln x

− 1
x− 1

51. lim
x→3+

5
x2 − 9

− x
x− 3

52. lim
x→∞

x tan(1/x)

53. lim
x→∞

(ln x)3

x

54. lim
x→1

x2 + x− 2
ln x
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6.8 Improper Integra on

6.8 Improper Integra on
We begin this sec on by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

No ce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two s pula ons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The func on f(x) was con nuous on [a, b] (ensuring that the range of f
was finite).

In this sec on we consider integrals where one or both of the above condi-
ons do not hold. Such integrals are called improper integrals.

Notes:
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Figure 6.8.2: A graph of f(x) = 1
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Improper Integrals with Infinite Bounds

Defini on6.8.1 Improper Integrals with Infinite Bounds; Converge,
Diverge

1. Let f be a con nuous func on on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a con nuous func on on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a con nuous func on on (−∞,∞). Let c be any real num-
ber; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.1 Evalua ng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

S

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx = lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.8.2.

Notes:

342



.....

f(x) =
1
x

. 1. 5. 10.

0.5

.

1

.
x

.

y

Figure 6.8.3: A graph of f(x) = 1
x in Exam-

ple 6.8.1.
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Figure 6.8.4: A graph of f(x) = ex in Ex-
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Figure 6.8.5: A graph of f(x) = 1
1+x2 in

Example 6.8.1.

6.8 Improper Integra on

2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.8.2 and 6.8.3; no ce how the graph of
f(x) = 1/x is no ceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.8.4.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of Defini on 6.8.1. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.8.5.

Notes:

343



.....

f(x) =
ln x
x2

.
1

.
5

.
10

.

0.2

.

0.4

.

x

.

y

Figure 6.8.6: A graph of f(x) = ln x
x2 in Ex-

ample 6.8.2.
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The previous sec on introduced l’Hôpital’s Rule, a method of evalua ng lim-
its that return indeterminate forms. It is not uncommon for the limits resul ng
from improper integrals to need this rule as demonstrated next.

Example 6.8.2 Improper integra on and l’Hôpital’s Rule
Evaluate the improper integral

∫ ∞

1

ln x
x2

dx.

S This integral will require the use of Integra on by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integra on
was infinite. We now consider another type of improper integra on, where the
range of the integrand is infinite.

Notes:
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Note: In Defini on 6.8.2, c can be one of
the endpoints (a or b). In that case, there
is only one limit to consider as part of the
defini on.
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Figure 6.8.7: A graph of f(x) = 1√
x in Ex-

ample 6.8.3.

.....

f(x) =
1
x2

.
−1
.

−0.5
.

0.5
.

1
.

5

.

10

. x.

y

Figure 6.8.8: A graph of f(x) = 1
x2 in Ex-

ample 6.8.3.

6.8 Improper Integra on

Defini on 6.8.2 Improper Integra on with Infinite Range

Let f(x) be a con nuous func on on [a, b] except at c, a ≤ c ≤ b, where
x = c is a ver cal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Example 6.8.3 Improper integra on of func ons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

S

1. A graph of f(x) = 1/
√
x is given in Figure 6.8.7. No ce that f has a ver cal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathema cs when considering
the infinite).

2. The func on f(x) = 1/x2 has a ver cal asymptote at x = 0, as shown
in Figure 6.8.8, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2. (!)

Notes:
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Figure 6.8.9: Plo ng func ons of the
form 1/x p in Example 6.8.4.

Chapter 6 Techniques of An differen a on

Clearly the area in ques on is above the x-axis, yet the area is supposedly
nega ve! Why does our answer not match our intui on? To answer this,
evaluate the integral using Defini on 6.8.2.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

O en mes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integra ng.

Our first tool is to understand the behavior of func ons of the form
1
xp

.

Example 6.8.4 Improper integra on of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

S We begin by integra ng and then evalua ng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:
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Note: We used the upper and lower
bound of “1” in Key Idea 6.8.1 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper Integra on

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 6.8.1 that when p = 1
the integral also diverges.

Figure 6.8.9 graphs y = 1/x with a dashed line, along with graphs of y =
1/xp, p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing
line between convergence and divergence.

The result of Example 6.8.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 6.8.1 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We o en use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 6.8.1 Direct Comparison Test for Improper Integrals

Let f and g be con nuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.8.10: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 6.8.5.
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Example 6.8.5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

S

1. The func on f(x) = e−x2 does not have an an deriva ve expressible in
terms of elementary func ons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.8.10, e−x2 <

1/x2 on [1,∞). We know from Key Idea 6.8.1 that
∫ ∞

1

1
x2

dx converges,

hence
∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 6.8.1 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek

to compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem6.8.1, we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.8.11 illustrates this.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a li le
“too nice.” For instance, it was convenient that

1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 6.8.1.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:

348



.....

f(x) =
1

√
x2 + 2x + 5

.

f(x) =
1
x

.
5

.
10

.
15

.
20

.

0.2

.

x

.

y

Figure 6.8.12: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 6.8.6.

6.8 Improper Integra on

Theorem 6.8.2 Limit Comparison Test for Improper Integrals

Let f and g be con nuous func ons on [a,∞)where f(x) > 0 and g(x) >
0 for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example 6.8.6 Determining convergence of improper integrals
Determine the convergence of

∫ ∞

3

1√
x2 + 2x+ 5

dx.

S As x gets large, the denominator of the integrand will begin
to behave much like y = x. So we compare 1√

x2 + 2x+ 5
to 1

x
with the Limit

Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evalua onof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situa on, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root func on. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets
very large, the func on 1√

x2 + 2x+ 5
looks verymuch like 1

x
. Sincewe know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.8.12 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, il-

lustra ng that as x gets large, the func ons become indis nguishable.
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Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a li le more difficult to employ,
they are omi ed from this text.

This chapter has explored many integra on techniques. We learned Subs -
tu on, which “undoes” the Chain Rule of differen a on, as well as Integra on
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric func ons and introduced the hyperbolic func ons,
which are closely related to the trigonometric func ons. All techniques effec-
vely have this goal in common: rewrite the integrand in a new way so that the

integra on step is easier to see and implement.
As stated before, integra on is, in general, hard. It is easy to write a func on

whose an deriva ve is impossible to write in terms of elementary func ons,
and evenwhen a func on does have an an deriva ve expressible by elementary
func ons, it may be really hard to discover what it is. The powerful computer
algebra systemMathema ca® has approximately 1,000 pages of code dedicated
to integra on.

Do not let this difficulty discourage you. There is great value in learning in-
tegra on techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integra on.

The next chapter stresses the uses of integra on. We generally do not find
an deriva ves for an deriva ve’s sake, but rather because they provide the so-
lu on to some typeof problem. The following chapter introduces us to a number
of different problems whose solu on is provided by integra on.

Notes:
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Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two s pula-

ons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 34, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

3

1
x2 − 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ 1

0
x2 ln x dx

29.
∫ ∞

1

ln x
x

dx

30.
∫ 1

0
ln x dx

31.
∫ ∞

1

ln x
x2

dx

32.
∫ ∞

1

ln x√
x
dx

33.
∫ ∞

0
e−x sin x dx

34.
∫ ∞

0
e−x cos x dx
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In Exercises 35 – 44, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what func on the integrand is being com-
pared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx

36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

38.
∫ ∞

1
e−x ln x dx

39.
∫ ∞

5
e−x2+3x+1 dx

40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1
x2 + sin x

dx

42.
∫ ∞

0

x
x2 + cos x

dx

43.
∫ ∞

0

1
x+ ex

dx

44.
∫ ∞

0

1
ex − x

dx
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7: A
I

We begin this chapter with a reminder of a few key concepts from Chapter 5.
Let f be a con nuous func on on [a, b]which is par oned into n equally spaced
subintervals as

a = x1 < x2 < · · · < xn < xn+1 = b.

Let ∆x = (b − a)/n denote the length of the subintervals, and let ci be any
x-value in the i th subinterval. Defini on 5.3.2 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are o en used to approximate some quan-
ty (area, volume, work, pressure, etc.). The approxima on becomes exact by

taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.2 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using an deriva ves.

This chapter employs the following technique to a variety of applica ons.
Suppose the value Q of a quan ty is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 Applica on of Definite Integrals Strategy

Let a quan ty be given whose value Q is to be computed.

1. Divide the quan ty into n smaller “subquan es” of value Qi.

2. Iden fy a variable x and func on f(x) such that each subquan ty
can be approximated with the product f(ci)∆x, where ∆x repre-
sents a small change in x. Thus Qi ≈ f(ci)∆x. A sample approxi-
ma on f(ci)∆x of Qi is called a differen al element.

3. Recognize that Q =

n∑
i=1

Qi ≈
n∑

i=1
f(ci)∆x, which is a Riemann

Sum.

4. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense a er we have had a chance to use it
several mes. We begin with Area Between Curves, which we addressed briefly
in Sec on 5.4.
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Figure 7.1.1: Subdividing a region into
ver cal slices and approxima ng the ar-
eas with rectangles.

Chapter 7 Applica ons of Integra on

7.1 Area Between Curves
We are o en interested in knowing the area of a region. Forget momentarily
that we addressed this already in Sec on 5.4 and approach it instead using the
technique described in Key Idea 7.0.1.

LetQ be the area of a region bounded by con nuous func ons f and g. If we
break the region into many subregions, we have an obvious equa on:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systema cally break a region into subre-

gions. A graph will help. Consider Figure 7.1.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
par cularly efficient way is to “slice” it ver cally, as shown in Figure 7.1.1 (b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many op ons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 7.1.1 (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differen al element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem7.1.1 Area Between Curves
(restatement of Theorem 5.4.3)

Let f(x) and g(x) be con nuous func ons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 7.1.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 7.1.2.

Notes:
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Figure 7.1.3: Graphing a region enclosed
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Figure 7.1.4: Graphing a region for Exam-
ple 7.1.3.

7.1 Area Between Curves

S The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.

Example 7.1.2 Finding total area enclosed by curves
Find the total area of the region enclosed by the func ons f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.1.3.

S A quick calcula on shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by compu ng
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integra on returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12+ 8/3
= 37/12 = 3.083 units2.

The previous example makes note that we are expec ng area to be posi ve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “nega ve area.” That doesn’t apply here; area is
to be posi ve.

The previous example also demonstrates that we o en have to break a given
region into subregions before applying Theorem 7.1.1. The following example
shows another situa on where this is applicable, along with an alternate view
of applying the Theorem.

Example 7.1.3 Finding area: integra ng with respect to y
Find the area of the region enclosed by the func ons y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 7.1.4.

Notes:
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Figure 7.1.5: The region used in Example
7.1.3 with boundaries relabeled as func-
ons of y.

Chapter 7 Applica ons of Integra on

S We give two approaches to this problem. In the first ap-
proach, we no ce that the region’s “top” is defined by two different curves.
On [0, 1], the top func on is y =

√
x + 2; on [1, 2], the top func on is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3.

The second approach is clever and very useful in certain situa ons. We are
used to viewing curves as func ons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as func ons of y: input a y-value and
an x-value is returned. We can rewrite the equa ons describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y+ 1.

Figure 7.1.5 shows the region with the boundaries relabeled. A differen al
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “bo om” x-value
is the smaller, i.e., the le most. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integra ng the above func on with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “bo om” func ons exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 7.1.4 computes the area of a trian-
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Notes:
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Figure 7.1.7: (a) A sketch of a lake, and (b)
the lake with length measurements.

7.1 Area Between Curves

Example 7.1.4 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+
5
2 , as shown in Figure 7.1.6.

S Recognize that there are two “top” func ons to this region,
causing us to use two definite integrals.

Total Area =

∫ 2

1

(
(x+ 1)− (−1

2
x+

5
2
)
)
dx+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5
2
)
)
dx

= 3/4+ 3/4
= 3/2.

We can also approach this by conver ng each func on into a func on of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstra on purposes.

The “top” func on is always x = 7−y
2 while there are two “bo om” func-

ons. Being mindful of the proper integra on bounds, we have

Total Area =

∫ 2

1

(7− y
2

− (5− 2y)
)
dy+

∫ 3

2

(7− y
2

− (y− 1)
)
dy

= 3/4+ 3/4
= 3/2.

Of course, the final answer is the same. (It is interes ng to note that the area of
all 4 subregions used is 3/4. This is coincidental.)

Whilewehave focused on producing exact answers, we are also able tomake
approxima ons using the principle of Theorem 7.1.1. The integrand in the theo-
rem is a distance (“top minus bo om”); integra ng this distance func on gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integra on techniques developed in Sec on 5.5. The fol-
lowing example demonstrates this.

Example 7.1.5 Numerically approxima ng area
To approximate the area of a lake, shown in Figure 7.1.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 7.1.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

S The measurements of length can be viewed as measuring
“top minus bo om” of two func ons. The exact answer is found by integra ng∫ 12

0

(
f(x) − g(x)

)
dx, but of course we don’t know the func ons f and g. Our

discrete measurements instead allow us to approximate.

Notes:
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Chapter 7 Applica ons of Integra on

We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2
3

(
1 · 0+ 4 · 2.25+ 2 · 5.08+ 4 · 6.35+ 2 · 5.21+ 4 · 2.76+ 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, units2 = (100 )2 =
10, 000 2, giving a total area of 440, 133 2. (Since we are approxima ng, we’d
likely say the area was about 440, 000 2, which is a li le more than 10 acres.)

In the next sec on we apply our applica ons–of–integra on techniques to
finding the volumes of certain solids.

Notes:
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Exercises 7.1
Terms and Concepts

1. T/F: The area between curves is always posi ve.

2. T/F: Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

4. Describe a situa on where it is advantageous to find an
area enclosed by curves through integra on with respect
to y instead of x.

Problems

In Exercises 5 – 12, find the area of the shaded region in the
given graph.
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.....
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.
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.

1

.
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y
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.
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.
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.

2

.
π

.
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.

x

.

y
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y = sin x

.
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.

1

.

2

.

π

.

π/2
.

x

.

y

9.

...

..

y = sin(4x)

.
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.

1

.

2

.
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.
π/8.

x
.

y
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.....
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.
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.
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.
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π
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12.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y

In Exercises 13 – 20, find the total area enclosed by the func-
ons f and g.

13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1

14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin x, g(x) = 2x/π

16. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4

17. f(x) = x, g(x) =
√
x

18. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3

19. The func ons f(x) = cos(x) and g(x) = sin x intersect
infinitely many mes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

20. The func ons f(x) = cos(2x) and g(x) = sin x intersect
infinitely many mes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 21 – 26, find the area of the enclosed region in
two ways:

1. by trea ng the boundaries as func ons of x, and

2. by trea ng the boundaries as func ons of y.

21.

.....
1

.
2

.
3

.

1

.

2

.

y = x2 + 1

.

y = 1
4 (x − 3)2 + 1

.

y = 1

. x.

y

22.

.....

y =
√

x

.

y = −2x + 3

.

y = − 1
2 x

.

1

.

2

. −1.

−0.5

.

0.5

.

1

.

x

.

y

23.

.....

y = x2

.

y = x + 2

.
−1

.
1

.
2

.

2

.

4

. x.

y

24.

x = 1
2 y

2

x = − 1
2 y + 1

1 2

−2

−1

1

x

y

25.

.....

y = x1/3

.

y =
√

x − 1/2

. 0.5. 1.
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.

1

.
x

.

y

26.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y
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In Exercises 27 – 30, find the area triangle formed by the given
three points.

27. (1, 1), (2, 3), and (3, 3)

28. (−1, 1), (1, 3), and (2,−1)

29. (1, 1), (3, 3), and (3, 3)

30. (0, 0), (2, 5), and (5, 2)

31. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

..

4.
9

.

5.
2. 7.

3. 4.
5

32. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.

..

4.
25

.

6.
6

. 7.
7

.

6.
45

.

4.
9
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Figure 7.2.1: The volume of a general
right cylinder

Figure 7.2.2: Orien ng a pyramid along
the x-axis in Example 7.2.1.

Chapter 7 Applica ons of Integra on

7.2 VolumebyCross-Sec onal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is
Area of the base× height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cu ng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sec onal area× thickness. (These slices are the differen al elements.)

By orien ng a solid along the x-axis, we can let A(xi) represent the cross-
sec onal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.1 Volume By Cross-Sec onal Area

The volume V of a solid, oriented along the x-axis with cross-sec onal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

Example 7.2.1 Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

S There are many ways to “orient” the pyramid along the x-
axis; Figure 7.2.2 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross sec on of the pyramid is a square; this is a sample differen al
element. To determine its area A(x), we need to determine the side lengths of

Notes:
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();






Figure 7.2.3: Cu ng a slice in the pyramid
in Example 7.2.1 at x = 3.

7.2 Volume by Cross-Sec onal Area; Disk and Washer Methods

the square.
When x = 5, the square has side length 10; when x = 0, the square has side

length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-sec onal square has side length 2x, giving A(x) = (2x)2 = 4x2.

If one were to cut a slice out of the pyramid at x = 3, as shown in Figure
7.2.3, one would have a shape with square bo om and top with sloped sides. If
the slice were thin, both the bo om and top squares would have sides lengths
of about 6, and thus the cross–sec onal area of the bo om and top would be
about 36in2. Le ng∆xi represent the thickness of the slice, the volume of this
slice would then be about 36∆xiin3.

Cu ng the pyramid into n slices divides the total volume into n equally–
spaced smaller pieces, each with volume (2xi)2∆x, where xi is the approximate
loca on of the slice along the x-axis and ∆x represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

Approximate volume =

n∑
i=1

(2xi)2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 7.2.1.

We have

V = lim
n→∞

n∑
i=1

(2xi)2∆x

=

∫ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3 ≈ 166.67 in3.

We can check our work by consul ng the general equa on for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus–based method can be applied to much more than just cones.

An important special case of Theorem 7.2.1 is when the solid is a solid of
revolu on, that is, when the solid is formed by rota ng a shape around an axis.

Start with a func on y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sec ons

Notes:
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(a)

(b)

Figure 7.2.4: Sketching a solid in Example
7.2.2.

Chapter 7 Applica ons of Integra on

are disks (thin circles). Let R(x) represent the radius of the cross-sec onal disk at
x; the area of this disk is πR(x)2. Applying Theorem 7.2.1 gives the DiskMethod.

Key Idea 7.2.1 The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-sec onal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)2 dx.

Example 7.2.2 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, around the x-axis.

S A sketch can help us understand this problem. In Figure
7.2.4(a) the curve y = 1/x is sketched along with the differen al element – a
disk – at xwith radius R(x) = 1/x. In Figure 7.2.4 (b) the whole solid is pictured,
along with the differen al element.

The volume of the differen al element shown in part (a) of the figure is ap-
proximately πR(xi)2∆x, where R(xi) is the radius of the disk shown and ∆x is
the thickness of that slice. The radius R(xi) is the distance from the x-axis to the
curve, hence R(xi) = 1/xi.

Slicing the solid into n equally–spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

Approximate volume =

n∑
i=1

π

(
1
xi

)2

∆x.

Taking the limit of the above sum as n → ∞ gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 7.2.1:

V = lim
n→∞

n∑
i=1

π

(
1
xi

)2

∆x

= π

∫ 2

1

(
1
x

)2

dx

= π

∫ 2

1

1
x2

dx
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(a)

(b)

Figure 7.2.5: Sketching a solid in Example
7.2.3.

(a)

(b)

Figure 7.2.6: Establishing the Washer
Method; see also Figure 7.2.7.

7.2 Volume by Cross-Sec onal Area; Disk and Washer Methods

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

While Key Idea 7.2.1 is given in terms of func ons of x, the principle involved
can be applied to func ons of y when the axis of rota on is ver cal, not hori-
zontal. We demonstrate this in the next example.

Example 7.2.3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, about the y-axis.

S Since the axis of rota on is ver cal, we need to convert the
func on into a func on of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rota ng the curve x = 1/y, from y = 1/2 to y = 1 about the
y-axis to form a solid. The curve and sample differen al element are sketched in
Figure 7.2.5 (a), with a full sketch of the solid in Figure 7.2.5 (b). We integrate
to find the volume:

V = π

∫ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

We can also compute the volume of solids of revolu on that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespec ve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)2 dx− π

∫ b

a
r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

One can generate a solid of revolu on with a hole in the middle by revolving
a region about an axis. Consider Figure 7.2.6(a), where a region is sketched along

Notes:
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Figure 7.2.7: Establishing the Washer
Method; see also Figure 7.2.6.

(a)

(b)

(c)

Figure 7.2.8: Sketching the differen al el-
ement and solid in Example 7.2.4.

Chapter 7 Applica ons of Integra on

with a dashed, horizontal axis of rota on. By rota ng the region about the axis, a
solid is formed as sketched in Figure 7.2.6(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross sec on of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 7.2.7. This leads
us to the Washer Method.

Key Idea 7.2.2 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross sec on at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.4 Finding volume with the Washer Method
Find the volume of the solid formed by rota ng the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x-axis.

S A sketch of the region will help, as given in Figure 7.2.8(a).
Rota ng about the x-axis will produce cross sec ons in the shape of washers, as
shown in Figure 7.2.8(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute
the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π ≈ 21.78 units3.

When rota ng about a ver cal axis, the outside and inside radius func ons
must be func ons of y.
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(a)

(b)

(c)

Figure 7.2.9: Sketching the solid in Exam-
ple 7.2.5.

7.2 Volume by Cross-Sec onal Area; Disk and Washer Methods

Example 7.2.5 Finding volume with the Washer Method
Find the volume of the solid formed by rota ng the triangular region with ver-
ces at (1, 1), (2, 1) and (2, 3) about the y-axis.

S The triangular region is sketched in Figure 7.2.9(a); the dif-
feren al element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rota on is ver cal, each
radius is a func on of y.

The outside radius R(y) is formed by the line connec ng (2, 1) and (2, 3); it
is a constant func on, as regardless of the y-value the distance from the line to
the axis of rota on is 2. Thus R(y) = 2.

The inside radius is formedby the line connec ng (1, 1) and (2, 3). The equa-
on of this line is y = 2x−1, but we need to refer to it as a func on of y. Solving

for x gives r(y) = 1
2 (y+ 1).

We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π ≈ 10.47 units3.

This sec on introduced a new applica on of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quan es; in this
sec on, we computed volume.

The ul mate goal of this sec on is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some
quan ty,

• we start with an approxima on (in this sec on, slice the solid and approx-
imate the volume of each slice),

• then make the approxima on be er by refining our original approxima-
on (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.
We prac ce this principle in the next sec on where we find volumes by slic-

ing solids in a different way.
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Exercises 7.2
Terms and Concepts

1. T/F: A solid of revolu on is formed by revolving a shape
around an axis.

2. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

3. Explain the how the units of volume are found in the inte-
gral of Theorem 7.2.1: if A(x) has units of in2, how does∫
A(x) dx have units of in3?

4. A fundamental principle of this sec on is “ can be
found by integra ng an area func on.”

Problems
In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revolu on formed by revolving the region about the x-
axis.

5.

.....

y = 3 − x2

.
−2
.

−1
.

1
.

2
.

1

.

2

.

3

. x.

y

6.

.....

y = 5x

.
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.
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.
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. x.

y

7.
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y = cos x
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y
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y =
√

x

.

y = x

. 0.5. 1.
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.
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.
x
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revolu on formed by revolving the region about the y-
axis.

9.

.....

y = 3 − x2

.
−2
.

−1
.

1
.

2
.

1

.

2

.

3

. x.

y

10.
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y = 5x

.
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.
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.
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.
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5

.
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. x.

y

11.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

(Hint: Integra on By Parts will be necessary, twice. First let
u = arccos2 x, then let u = arccos x.)
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12.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revolu on formed by rota ng the region about
each of the given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the x-axis
(b) y = 1

(c) the y-axis
(d) x = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x-axis
(b) y = 4

(c) y = −1
(d) x = 2

15. The triangle with ver ces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the x-axis
(b) y = 2

(c) the y-axis
(d) x = 1

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the x-axis
(b) y = 1

(c) y = 5

17. Region bounded by y = 1/
√
x2 + 1, x = −1, x = 1 and

the x-axis.
Rotate about:

(a) the x-axis
(b) y = 1

(c) y = −1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis
(b) y = 4

(c) the y-axis
(d) x = 2

In Exercises 19 – 22, a solid is described. Orient the solid along
the x-axis such that a cross-sec onal area func on A(x) can
be obtained, then apply Theorem 7.2.1 to find the volume of
the solid.

19. A right circular cone with height of 10 and base radius of 5.

5

10

20. A skew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-sec ons are circles.)

5

10

21. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

4 4

10

22. A solid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

10

5
5

5
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(a)

(b)

(c)

Figure 7.3.1: Introducing the Shell
Method.
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7.3 The Shell Method
O en a given problem can be solved in more than one way. A par cular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ul mately, it is good to have op ons.

The previous sec on introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolu on by integra ng the cross–sec onal area
of the solid. This sec on develops another method of compu ng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rota on
crea ng cross-sec ons, we now slice it parallel to the axis of rota on, crea ng
“shells.”

Consider Figure 7.3.1, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rota on. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous sec on
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cu ng the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.3.2(b). (We say “approximately” since our radius was an approxima-
on.)
By breaking the solid into n cylindrical shells, we can approximate the volume

of the solid as

V ≈
n∑

i=1
2πrihi∆xi,

where ri, hi and∆xi are the radius, height and thickness of the i th shell, respec-
vely.
This is a Riemann Sum. Taking a limit as the thickness of the shells ap-

proaches 0 leads to a definite integral.

Notes:
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Figure 7.3.2: Determining the volume of a thin cylindrical shell.

Key Idea 7.3.1 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a ver cal axis. Let r(x) represent the distance from the axis
of rota on to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π
∫ b

a
r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rota on is the y-axis (i.e., x = 0) then r(x) = x.

Let’s prac ce using the Shell Method.

Example 7.3.1 Finding volume using the Shell Method
Find the volume of the solid formed by rota ng the region bounded by y = 0,
y = 1/(1+ x2), x = 0 and x = 1 about the y-axis.

S This is the region used to introduce the Shell Method in Fig-
ure 7.3.1, but is sketched again in Figure 7.3.3 for closer reference. A line is
drawn in the region parallel to the axis of rota on represen ng a shell that will

Notes:
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Chapter 7 Applica ons of Integra on

be carved out as the region is rotated about the y-axis. (This is the differen al
element.)

The distance this line is from the axis of rota on determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the bo om
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1+ x2

dx.

This requires subs tu on. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 ≈ 2.178 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.2 Finding volume using the Shell Method
Find the volumeof the solid formed by rota ng the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

S The region is sketched in Figure 7.3.4(a) along with the dif-
feren al element, a line within the region parallel to the axis of rota on. In part
(b) of the figure, we see the shell traced out by the differen al element, and in
part (c) the whole solid is shown.

The height of the differen al element is the distance from y = 1 to y = 2x+
1, the line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1−1 = 2x.
The radius of the shell formed by the differen al element is the distance from
x to x = 3; that is, it is r(x) = 3 − x. The x-bounds of the region are x = 0 to

Notes:

372





.....

x =
1

2
y−

1
2

.

︸ ︷︷ ︸
h(y)

.


r(y)

. 1.

1

.

2

.

3

.

y

. x.

y

(a)

(b)

(c)

Figure 7.3.5: Graphing a region in Exam-
ple 7.3.3.

7.3 The Shell Method

x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2) dx

= 2π
(
3x2 − 2

3
x3
) ∣∣∣1

0

=
14
3
π ≈ 14.66 units3.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height func ons in terms of y, not x.

Example 7.3.3 Finding volume using the Shell Method
Find the volume of the solid formed by rota ng the region given in Example 7.3.2
about the x-axis.

S The region is sketched in Figure 7.3.5(a) with a sample dif-
feren al element. In part (b) of the figure the shell formed by the differen al
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differen al element is an x-distance, between x = 1
2y−

1
2

and x = 1. Thus h(y) = 1−( 12y−
1
2 ) = − 1

2y+
3
2 . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
∫ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
∫ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
] ∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π ≈ 10.472 units3.

Notes:
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Chapter 7 Applica ons of Integra on

At the beginning of this sec on it was stated that “it is good to have op ons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

Example 7.3.4 Finding volume using the Shell Method
Find the volumeof the solid formedby revolving the region bounded by y = sin x
and the x-axis from x = 0 to x = π about the y-axis.

S The region and a differen al element, the shell formed by
this differen al element, and the resul ng solid are given in Figure 7.3.6. The
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sin x,
each from x = 0 to x = π. Thus the volume of the solid is

V = 2π
∫ π

0
x sin x dx.

This requires Integra on By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= 2π
[
− x cos x

∣∣∣π
0
+

∫ π

0
cos x dx

]
= 2π

[
π + sin x

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine func on. We leave it to the reader
to verify that the outside radius func on is R(y) = π − arcsin y and the inside
radius func on is r(y) = arcsin y. Thus the volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this sec on with a table summarizing the usage of the Washer and
Shell Methods.

Notes:
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Key Idea 7.3.2 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c
r(y)h(y) dy

Ver cal
Axis

π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a
r(x)h(x) dx

As in the previous sec on, the real goal of this sec on is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approxima ng, then using limits to refine the approxima on to give the
exact value. In this sec on, we approximate the volume of a solid by cu ng it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approxima on of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summa on can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next sec on, where we find the
length of curves in the plane.

Notes:
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Exercises 7.3
Terms and Concepts

1. T/F: A solid of revolu on is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integra ng cross–sec onal
areas of a solid.

4. T/F: When finding the volume of a solid of revolu on that
was revolved around a ver cal axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lu on formed by revolving the region about the y-axis.
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lu on formed by revolving the region about the x-axis.
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11.
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y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

12.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revolu on formed by rota ng the region about each of the
given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the y-axis
(b) x = 1

(c) the x-axis
(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2
(b) x = −2

(c) the x-axis
(d) y = 4

15. The triangle with ver ces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y-axis
(b) x = 1

(c) the x-axis
(d) y = 2

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the y-axis
(b) x = 1

(c) x = −1

17. Region bounded by y = 1/
√
x2 + 1, x = 1 and the x and

y-axes.
Rotate about:

(a) the y-axis (b) x = 1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y-axis
(b) x = 2

(c) the x-axis
(d) y = 4
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Figure 7.4.1: Graphing y = sin x on [0, π]
and approxima ng the curve with line
segments.
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Chapter 7 Applica ons of Integra on

7.4 Arc Length and Surface Area
In previous sec onswe have used integra on to answer the following ques ons:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

In this sec on, we address a related ques on: Given a curve, what is its
length? This is o en referred to as arc length.

Consider the graph of y = sin x on [0, π] given in Figure 7.4.1(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approxima ng; later, we will refine
our answer using limits to get an exact solu on.

The length of straight–line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approxima ng
the curve with straight lines and measuring their lengths.

In Figure 7.4.1(b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, π] has been divided into 4 equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sin x on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x1 < x2 < . . . < xn < xn+1 = b be a par on
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi, xi+1].

Figure 7.4.2 zooms in on the i th subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line seg-
ment as the hypotenuse of a right triangle whose sides have length∆xi and∆yi.
Using the Pythagorean Theorem, the length of this line segment is

√
∆x2i +∆y2i .

Summing over all subintervals gives an arc length approxima on

L ≈
n∑

i=1

√
∆x2i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a li le algebra.

Notes:
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Note: This is our first use of differen a-
bility on a closed interval since Sec on
2.1.

The theorem also requires that f ′ be con-
nuous on [a, b]; while examples are ar-

cane, it is possible for f to be differen-
able yet f ′ is not con nuous.

7.4 Arc Length and Surface Area

In the above expression factor out a∆x2i term:

n∑
i=1

√
∆x2i +∆y2i =

n∑
i=1

√
∆x2i

(
1+

∆y2i
∆x2i

)
.

Now pull the∆x2i term out of the square root:

=

n∑
i=1

√
1+

∆y2i
∆x2i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2i term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of Differen a on (Theorem
3.2.1) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑
i=1

√
1+ f ′(ci)2 ∆xi.

This is a Riemann Sum. As long as f ′ is con nuous, we can invoke Theorem 5.3.2
and conclude

=

∫ b

a

√
1+ f ′(x)2 dx.

Theorem 7.4.1 Arc Length

Let f be differen able on [a, b], where f ′ is also con nuous on [a, b]. Then
the arc length of f from x = a to x = b is

L =
∫ b

a

√
1+ f ′(x)2 dx.

As the integrand contains a square root, it is o en difficult to use the formula
in Theorem 7.4.1 to find the length exactly. When exact answers are difficult to
come by, we resort to using numerical methods of approxima ng definite inte-
grals. The following examples will demonstrate this.

Notes:
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Chapter 7 Applica ons of Integra on

Example 7.4.1 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

S We find f ′(x) = 3
2x

1/2; note that on [0, 4], f is differen able
and f ′ is also con nuous. Using the formula, we find the arc length L as

L =
∫ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

∫ 4

0

√
1+

9
4
x dx

=

∫ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
· 4
9
·
(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
≈ 9.07units.

A graph of f is given in Figure 7.4.3.

Example 7.4.2 Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

S This func on was chosen specifically because the resul ng
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 − 1/x. The
arc length is

L =
∫ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

∫ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

=

∫ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

∫ 2

1

√(
x
4
+

1
x

)2

dx

Notes:
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Figure 7.4.5: A table of values of y =√
1+ cos2 x to evaluate a definite inte-

gral in Example 7.4.3.

7.4 Arc Length and Surface Area

=

∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 ≈ 1.07 units.

A graph of f is given in Figure 7.4.4; the por on of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the func ons. In general, exact answers are much more difficult to come by
and numerical approxima ons are necessary.

Example 7.4.3 Approxima ng arc length numerically
Find the length of the sine curve from x = 0 to x = π.

S This is somewhat of a mathema cal curiosity; in Example
5.4.3 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straigh orward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary func ons sowewill ap-
proximate it with Simpson’s Method with n = 4. Figure 7.4.5 gives

√
1+ cos2 x

evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states that∫ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

= 3.82918.

Using a computer with n = 100 the approxima on is L ≈ 3.8202; our approxi-
ma on with n = 4 is quite good.

Notes:
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Surface Area of Solids of Revolu on

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compu ng its volume, we now consider its
surface area.

We begin as we have in the previous sec ons: we par on the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(xi)
and f(xi+1) as shown in Figure 7.4.6(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustumof a cone) as shown in Figure 7.4.6(b).
The surface area of a frustum of a cone is

2π · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to
state that

L ≈
√

1+ f ′(ci)2∆xi

for some ci in the i th subinterval. The radii are just the func on evaluated at the
endpoints of the interval. That is,

R = f(xi+1) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi) + f(xi+1)

2
√

1+ f ′(ci)2∆xi.

Since f is a con nuous func on, the IntermediateValue Theoremstates there

is some di in [xi, xi+1] such that f(di) =
f(xi) + f(xi+1)

2
; we can use this to rewrite

the above equa on as
2πf(di)

√
1+ f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=1
2πf(di)

√
1+ f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.

Notes:
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Figure 7.4.7: Revolving y = sin x on [0, π]
about the x-axis.

7.4 Arc Length and Surface Area

Theorem 7.4.2 Surface Area of a Solid of Revolu on

Let f be differen able on [a, b], where f ′ is also con nuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1+ f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resul ng frustum
are xi and xi+1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.2.)

Example 7.4.4 Finding surface area of a solid of revolu on
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x-axis, as shown in Figure 7.4.7.

S The setup is rela vely straigh orward. Using Theorem7.4.2,
we have the surface area SA is:

SA = 2π
∫ π

0
sin x

√
1+ cos2 x dx

= −2π
1
2

(
sinh−1(cos x) + cos x

√
1+ cos2 x

)∣∣∣π
0

= 2π
(√

2+ sinh−1 1
)
≈ 14.42 units2.

The integra on step above is nontrivial, u lizing an integra on method called
Trigonometric Subs tu on.

It is interes ng to see that the surface area of a solid, whose shape is defined
by a trigonometric func on, involves both a square root and an inverse hyper-
bolic trigonometric func on.

Example 7.4.5 Finding surface area of a solid of revolu on
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about the x-axis and the y-axis.

Notes:
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(a)

(b)

Figure 7.4.8: The solids used in Example
7.4.5.

Figure 7.4.9: A graph of Gabriel’s Horn.

Chapter 7 Applica ons of Integra on

S About the x-axis: the integral is straigh orward to setup:

SA = 2π
∫ 1

0
x2
√

1+ (2x)2 dx.

Like the integral in Example 7.4.4, this requires Trigonometric Subs tu on.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18

√
5− sinh−1 2

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed in Figure 7.4.8
(a).

About the y-axis: since we are revolving around the y-axis, the “radius” of
the solid is not f(x) but rather x. Thus the integral to compute the surface area
is:

SA = 2π
∫ 1

0
x
√

1+ (2x)2 dx.

This integral can be solved using subs tu on. Set u = 1+ 4x2; the new bounds
are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed in Figure 7.4.8
(b).

Our final example is a famous mathema cal “paradox.”

Example 7.4.6 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x-axis on [1,∞). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.4.9,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

Notes:
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7.4 Arc Length and Surface Area

S To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1
x2

dx

= lim
b→∞

π

∫ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straigh orward to setup:

SA = 2π
∫ ∞

1

1
x
√

1+ 1/x4 dx.

Integra ng this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
∫ ∞

1

1
x
dx < 2π

∫ ∞

1

1
x
√

1+ 1/x4 dx.

By Key Idea 6.8.1, the improper integral on the le diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equa on from physics is “Work = force × distance”, when the
force applied is constant. In the next sec on we learn how to compute work
when the force applied is variable.

Notes:
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Exercises 7.4
Terms and Concepts

1. T/F: The integral formula for compu ng Arc Length was
found by first approxima ng arc length with straight line
segments.

2. T/F: The integral formula for compu ng Arc Length includes
a square–root, meaning the integra on is probably easy.

Problems
In Exercises 3 – 12, find the arc length of the func on on the
given interval.

3. f(x) = x on [0, 1].

4. f(x) =
√
8x on [−1, 1].

5. f(x) = 1
3
x3/2 − x1/2 on [0, 1].

6. f(x) = 1
12

x3 + 1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) = 1
2
(
ex + e−x) on [0, ln 5].

10. f(x) = 1
12

x5 + 1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13 – 20, set up the integral to compute the arc
length of the func on on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].

14. f(x) = x10 on [0, 1].

15. f(x) =
√
x on [0, 1].

16. f(x) = ln x on [1, e].

17. f(x) =
√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) = 1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21 – 28, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the func on on the given interval.
Note: these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) = 1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29 – 33, find the surface area of the described
solid of revolu on.

29. The solid formed by revolving y = 2x on [0, 1] about the
x-axis.

30. The solid formed by revolving y = x2 on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x3 on [0, 1] about the
x-axis.

32. The solid formed by revolving y =
√
x on [0, 1] about the

x-axis.

33. The sphere formed by revolving y =
√
1− x2 on [−1, 1]

about the x-axis.

386



Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quan ta ve measure
of that object’s resistance to accelera on.
The weight w of an object is a measure-
ment of the force applied to the object by
the accelera on of gravity g.
Since the two measurements are pro-

por onal, w = m · g, they are o en
used interchangeably in everyday conver-
sa on. When compu ng work, one must
be careful to note which is being referred
to. When mass is given, it must be mul -
plied by the accelera on of gravity to ref-
erence the related force.

7.5 Work

7.5 Work
Work is the scien fic term used to describe the ac on of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet ( ), hence work is measured in
–lb.
When force is constant, the measurement of work is straigh orward. For

instance, li ing a 200 lb object 5 performs 200 · 5 = 1000 –lb of work.
What if the force applied is variable? For instance, imagine a climber pulling

a 200 rope up a ver cal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force func on on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by par oning [a, b] into subinter-
vals a = x1 < x2 < · · · < xn+1 = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1
F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work

Let F(x) be a con nuous func on on [a, b] describing the amount of force
being applied to an object in the direc on of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:
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Chapter 7 Applica ons of Integra on

Example 7.5.1 Compu ng work performed: applying variable force
A 60m climbing rope is hanging over the side of a tall cliff. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
66g/m?

S Weneed to create a force func on F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
s ll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the conven on that x is the
amount of rope pulled in. This seems to match intui on be er; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope s ll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The mass of the rope
s ll hanging is 0.066(60 − x) kg; mul plying this mass by the accelera on of
gravity, 9.8 m/s2, gives our variable force func on

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in li ing the en re rope 60 meters.
The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying this force for
60 meters is 60×38.808 = 2, 328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 7.5.2 Compu ng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

S From Example 7.5.1 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus
we want to solve the equa on∫ h

0
0.6468(60− x) dx = 582.12

for h.

Notes:
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Note: In Example 7.5.2, we find that half
of the work performed in pulling up a 60
m rope is done in the last 42.43m. Why is
it not coincidental that 60/

√
2 = 42.43?

7.5 Work

∫ h

0
0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12
−0.3234h2 + 38.808h− 582.12 = 0.

Apply the Quadra c Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5m the other half of the work is done
pulling up the remaining 42.43m.

Example 7.5.3 Compu ng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/ .

1. How much work is done li ing just the rope?

2. How much work is done li ing just the box and sand?

3. What is the total amount of work performed?

S

1. We start by forming the force func on Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the accelera on of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
li ing the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 –lb.

Notes:
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2. The sand is leaving the box at a rate of 1 lb/s. As the ver cal trip is to take
oneminute, we know that 60 lbwill have le when the box reaches its final
height of 50 . Again le ng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equa on of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force func on is Fb(x) = −1.2x+105. Integra ng from x = 0
to x = 50 gives the work performed in li ing box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 –lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 –lb. We
can also arrive at this via integra on:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 –lb.

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is propor onal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. Conver ng the dis-
tances to meters, we have that stretching this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

Example 7.5.4 Compu ng work performed: stretching a spring
A force of 20 lb stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

S In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care

Notes:
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Fluid lb/ 3 kg/m3

Concrete 150 2400
Fuel Oil 55.46 890.13
Gasoline 45.93 737.22
Iodine 307 4927

Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6–65.4 1020 – 1050
Water 62.4 1000

Figure 7.5.2: Weight and Mass densi es

7.5 Work

that 20 lb of force stretches the spring to a length of 12 inches, but rather that
a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 7.5.1;
we only measure the change in the spring’s length, not the overall length of the
spring.
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Figure 7.5.1: Illustra ng the important aspects of stretching a spring in compu ng work
in Example 7.5.4.

Conver ng the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/ and F(x) = 48x.
We compute the total work performed by integra ng F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667 –lb.

Pumping Fluids

Another useful example of the applica on of integra on to compute work
comes in the pumping of fluids, o en illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situa on is different than
our previous examples for the forces involved are constant. A er all, the force
required to move one cubic foot of water (about 62.4 lb) is the same regardless
of its loca on in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the bo om, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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Example 7.5.5 Compu ng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 and a height of 30 is filled with
water, which weighs approximately 62.4 lb/ 3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

S Wewill refer o en to Figure 7.5.3which illustrates the salient
aspects of this problem.

We start aswe o en do: we par on an interval into subintervals. We orient
our tank ver cally since this makes intui ve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 7.5.3. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/ 3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not ma er later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 . Thus the distance the water at
height yi travels is 35− yi .

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [0, 30]:

W ≈
n∑

i=1
Wi =

n∑
i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= 6240π
(
35y− 1/2y2

) ∣∣∣30
0

= 11, 762, 123 –lb
≈ 1.176× 107 –lb.

Notes:
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Figure 7.5.5: A graph of the conical water
tank in Example 7.5.6.

7.5 Work

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.4 shows the tank from
Example 7.5.5 without the i th subinterval iden fied. Instead, we just draw one
differen al element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

Example 7.5.6 Compu ng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 . It is filled with water weighing 62.4
lb/ 3 and is to be emp ed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

S The conical tank is sketched in Figure 7.5.5. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the conven on
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the bo om of the tank. The actual “height” of the
water does not ma er; rather, we are concerned with the distance the water
travels.

The figure also sketches a differen al element, a cross–sec onal circle. The
radius of this circle is variable, depending on y. When y = −10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (−10, 0) and
(0, 2), allow us to find the equa on of the line that gives the radius of the cross–
sec onal circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = π(1/5y + 2)2dy, where dy represents a very small height of
the differen al element. The force required to move the water at height y is
F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(1/5y+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

≈ 14, 376 –lb.

Notes:
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Example 7.5.7 Compu ng work performed: pumping fluids
A rectangular swimming pool is 20 wide and has a 3 “shallow end” and a 6
“deep end.” It is to have its water pumped out to a point 2 above the current
top of the water. The cross–sec onal dimensions of the water in the pool are
given in Figure 7.5.6; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

S For the purposes of this problem we choose to set y = 0
to represent the bo om of the pool, meaning the top of the water is at y = 6.
Figure 7.5.7 shows the pool oriented with this y-axis, along with 2 differen al
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
al element is 25 as shown. As the pool is 20 wide, this differen al element

represents a thin slice of water with volume V(y) = 20 · 25 · dy. The water is
to be pumped to a height of y = 8, so the height func on is h(y) = 8 − y. The
work done in pumping this top region of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 –lb.

The bo om region lies in the y-interval of [0, 3]; we need to compute the
length of the differen al element in this interval.

One end of the differen al element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equa on of this line is y =
3/5(x−10); as we will be integra ng with respect to y, we rewrite this equa on
as x = 5/3y + 10. So the length of the differen al element is a difference of
x-values: x = 0 and x = 5/3y+ 10, giving a length of x = 5/3y+ 10.

Again, as the pool is 20 wide, this differen al element represents a thin
slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height func on is
the same as before at h(y) = 8− y. The work performed in emptying this part
of the pool is

Wb = 62.4
∫ 3

0
20(5/3y+ 10)(8− y) dy = 299, 520 –lb.

The total work in empy ng the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 –lb.

No ce how the emptying of the bo om of the pool performs almost as much
work as emptying the top. The top por on travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next sec on introduces one final applica on of the definite integral, the
calcula on of fluid force on a plate.

Notes:
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Exercises 7.5
Terms and Concepts

1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

4. Fill in the blanks:
Some integrals in this sec on are set up by mul plying a
variable by a constant distance; others are set
up by mul plying a constant force by a variable .

Problems

5. A 100 rope, weighing 0.1 lb/ , hangs over the edge of a
tall building.

(a) Howmuchwork is done pulling the en re rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

6. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the en re rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

7. A rope of length ℓ hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/ .

(a) Howmuchwork is done pulling the en re rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

8. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

9. A crane li s a 2,000 lb load ver cally 30 with a 1” cable
weighing 1.68 lb/ .

(a) How much work is done li ing the cable alone?

(b) How much work is done li ing the load alone?

(c) Could one conclude that the work done li ing the ca-
ble is negligible compared to thework done li ing the
load?

10. A 100 lb bag of sand is li ed uniformly 120 in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in li ing the bag?

11. A boxweighing 2 lb li s 10 lb of sand ver cally 50 . A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in li ing
the box and sand?

12. A force of 1000 lb compresses a spring 3 in. Howmuchwork
is performed in compressing the spring?

13. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

14. A force of 50 lb compresses a spring froma natural length of
18 in to 12 in. Howmuchwork is performed in compressing
the spring?

15. A force of 20 lb stretches a spring from a natural length of
6 in to 8 in. How much work is performed in stretching the
spring?

16. A force of 7 N stretches a spring from a natural length of 11
cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

18. A 20 lb weight is a ached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 to 6 in.
How much work is done in li ing the box 1.5 (i.e, the
spring will be stretched 1 beyond its natural length)?

19. A 20 lb weight is a ached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 to 6 in.
How much work is done in li ing the box 6 in (i.e, bringing
the spring back to its natural length)?

20. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m3. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

21. A 6 cylindrical tank with a radius of 3 is filled with wa-
ter, which has a weight density of 62.4 lb/ 3. The water is
to be pumped to a point 2 above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?
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22. A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 lb/ 3. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 above the top of the tank.
Assume the tank is a perfect cylinder, 20 long with a di-
ameter of 7.5 . How much work is performed in pumping
all the gasoline from the tank?

23. A fuel oil storage tank is 10 deep with trapezoidal sides,
5 at the top and 2 at the bo om, and is 15 wide (see
diagram below). Given that fuel oil weighs 55.46 lb/ 3, find
the work performed in pumping all the oil from the tank to
a point 3 above the top of the tank.

10

2

15

5

24. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 7.5.6.) The tank is filledwith pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

25. A water tank has the shape of a truncated cone, with di-
mensions given below, and is filledwithwaterwith aweight
density of 62.4 lb/ 3. Find the work performed in pumping
all water to a point 1 above the top of the tank.

2

5
10

26. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m3. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

2 m

2 m

7 m

27. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

5 m

5 m

2 m

2 m

9 m
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Figure 7.6.1: The cylindrical and rectan-
gular tank in Example 7.6.1.

7.6 Fluid Forces

7.6 Fluid Forces
In the unfortunate situa on of a car driving into a body of water, the conven-
onal wisdom is that the water pressure on the doors will quickly be so great

that they will be effec vely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or wai ng un l
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
op ons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this sec on we will find the answer to this ques on by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equa ons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following defini on.

Defini on 7.6.1 Fluid Pressure

Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this defini on to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.1 Compu ng fluid force

1. A cylindrical storage tank has a radius of 2 and holds 10 of a fluid
with a weight–density of 50 lb/ 3. (See Figure 7.6.1(a).) What is the force
exerted on the base of the cylinder by the fluid?

2. A rectangular tank whose base is a 5 square has a circular hatch at the
bo om with a radius of 2 . The tank holds 10 of a fluid with a weight–
density of 50 lb/ 3. (See Figure 7.6.1(b).) What is the force exerted on
the hatch by the fluid?

S

1. Using Defini on 7.6.1, we calculate that the pressure exerted on the cylin-
der’s base isw · d = 50 lb/ 3 × 10 = 500 lb/ 2. The area of the base is

Notes:
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Figure 7.6.2: A thin, ver cally oriented
plate submerged in a fluid with weight–
density w.

Chapter 7 Applica ons of Integra on

π · 22 = 4π 2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effec vely just computed theweight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 lb.
A key concept to understand here is that we are effec vely measuring the
weight of a 10 column of water above the hatch. The size of the tank
holding the fluid does not ma er.

The previous example demonstrates that compu ng the force exerted on a
horizontally oriented plate is rela vely easy to compute. What about a ver cally
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all direc ons. Thus the pressure on any por on of a plate that is 1
below the surface of water is the same no ma er how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

So consider a ver cally oriented plate as shown in Figure 7.6.2 submerged in
a fluid with weight–densityw. What is the total fluid force exerted on this plate?
We find this force by first approxima ng the force on small horizontal strips.

Let the top of the plate be at depth b and let the bo om be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bo om of the
plate is 3 under the surface, we have a = −3. Wewill come back to this later.)
We par on the interval [a, b] into n subintervals

a = y1 < y2 < · · · < yn+1 = b,

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+1]; the depth is approximately−di. (Our conven-
on has di being a nega ve number, so−di is posi ve.) For convenience, we let

di be an endpoint of the subinterval; we let di = yi.
The area of the thin strip is approximately length×width. The width is∆yi.

The length is a func on of some y-value ci in the i th subinterval. We state the

Notes:
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Figure 7.6.3: A thin plate in the shape of
an isosceles triangle in Example 7.6.2.

7.6 Fluid Forces

length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

F =
n∑

i=1
Fi ≈

n∑
i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

Key Idea 7.6.1 Fluid Force on a Ver cally Oriented Plate

Let a ver cally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the bo om is at
y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

Example 7.6.2 Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure
7.6.3 submerged in water with a weight–density of 62.4 lb/ 3. If the bo om
of the plate is 10 below the surface of the water, what is the total fluid force
exerted on this plate?

S We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.1 can be implemented. First we will let y = 0
represent the surface of the water, then we will consider an alternate conven-
on.

Notes:
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Chapter 7 Applica ons of Integra on

1. We let y = 0 represent the surface of the water; therefore the bo om of
the plate is at y = −10. We center the triangle on the y-axis as shown
in Figure 7.6.4. The depth of the plate at y is −y as indicated by the Key
Idea. We now consider the length of the plate at y.
We need to find equa ons of the le and right edges of the plate. The
right hand side is a line that connects the points (0,−10) and (2,−6):
that line has equa on x = 1/2(y+ 10). (Find the equa on in the familiar
y = mx+b format and solve for x.) Likewise, the le hand side is described
by the line x = −1/2(y + 10). The total length is the distance between
these two lines: ℓ(y) = 1/2(y+ 10)− (−1/2(y+ 10)) = y+ 10.
The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. Some mes it seems easier to orient the thin plate nearer the origin. For
instance, consider the conven on that the bo om of the triangular plate
is at (0, 0), as shown in Figure 7.6.5. The equa ons of the le and right
hand sides are easy to find. They are y = 2x and y = −2x, respec vely,
which we rewrite as x = 1/2y and x = −1/2y. Thus the length func on
is ℓ(y) = 1/2y− (−1/2y) = y.
As the surface of the water is 10 above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth func on is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Example 7.6.3 Finding fluid force
Find the total fluid force on a car door submerged up to the bo omof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

S The car door, as a rectangle, is drawn in Figure 7.6.6. Its
length is 10/3 and its height is 2.25 . We adopt the conven on that the top

Notes:
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7.6 Fluid Forces

of the door is at the surface of the water, both of which are at y = 0. Using the
weight–density of water of 62.4 lb/ 3, we have the total force as

F =
∫ 0

−2.25
62.4(−y)10/3 dy

=

∫ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effec vely impossible to open. This
is counter–intui ve as most assume that the door would be rela vely easy to
open. The truth is that it is not, hence the survival ps men oned at the begin-
ning of this sec on.

Example 7.6.4 Finding fluid force
An underwater observa on tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each ver cally oriented porthole is to
have a 3 diameter whose center is to be located 50 underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 of water.

S We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth func onwill be d(y) = 50−y;
see Figure 7.6.7

The equa on of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the posi ve square root corresponds to

the right side of the circle and the nega ve square root corresponds to the le
side of the circle. Thus the length func on at depth y is ℓ(y) = 2

√
2.25− y2.

Integra ng on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√

2.25− y2 − 2y
√

2.25− y2
)
dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√

2.25− y2
)
dy.

Notes:
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Chapter 7 Applica ons of Integra on

The second integral above can be evaluated using subs tu on. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a ver cally oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straigh orward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a ver cally oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolu on. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approxima ng the solu on, then refining the approxima on, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathema cal
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summa on of approxima ons; each summa on was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

The next chapter addresses an en rely different topic: sequences and series.
In short, a sequence is a list of numbers, where a series is the summa on of a list
of numbers. These seemingly–simple ideas lead to very powerful mathema cs.

Notes:
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Exercises 7.6
Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3 – 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
lb/ 3.

3.

2

2

1

4.

1

2

1

5.

4

5

6

6.
4

5

6

7.

2

5

8. 4

5

9.

4

2

5

10.

4

2

5

11.

2

2

1
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12.

2

2

1

In Exercises 13 – 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 lb/ 3, and

2. concrete, with a weight density of 150 lb/ 3.

13.

3

5

14.

4

y = x2

4

15.

4

y = 4 − x2

4

16.

2

y = −
√
1 − x2

17.

2

y =
√
1 − x2

18.

6

y = −
√
9 − x2

19. How deep must the center of a ver cally oriented circular
plate with a radius of 1 be submerged in water, with a
weight density of 62.4 lb/ 3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a ver cally oriented square
plate with a side length of 2 be submerged in water, with
a weight density of 62.4 lb/ 3, for the fluid force on the
plate to reach 1,000 lb?
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Nota on: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 4! refers to the
number 4 · 3 · 2 · 1 = 24.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathema cal formulas work properly.

8: S S
This chapter introduces sequences and series, important mathema cal con-
struc ons that are useful when solving a large variety of mathema cal prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very li le use of deriva ves or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
informa on about a func on and its deriva ves at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approxima on of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approxima ons
of func ons when limited knowledge of the func on is available.

8.1 Sequences
We commonly refer to a set of events that occur one a er the other as a se-
quence of events. In mathema cs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one a er the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and o en this can be done. For instance, the
sequence above could be described by the func on a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal defini on of a sequence.

Defini on 8.1.1 Sequence

A sequence is a func on a(n) whose domain is N. The range of a
sequence is the set of all dis nct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is o en denoted as {an}.
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Figure 8.1.1: Plo ng sequences in Exam-
ple 8.1.1.
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Example 8.1.1 Lis ng terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
S

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a sca er plot. The “x”-axis is
used for the values of n, and the values of the terms are plo ed on the
y-axis. To visualize this sequence, see Figure 8.1.1(a).

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;

a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consis ng of only the values 3 and 5. This sequence is
plo ed in Figure 8.1.1(b).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pa ern of signs is “−,−,+,
+,−,−, . . .” due to the fact that the exponent of−1 is a special quadra c.
This sequence is plo ed in Figure 8.1.1(c).

Example 8.1.2 Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a func on that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

Notes:
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S Weshould first note that there is never exactly one func on that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3 more than the previous one. This implies a linear
func on would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First no ce how the sign changes from term to term. This is most com-
monly accomplished bymul plying the terms by either (−1)n or (−1)n+1.
Using (−1)n mul plies the odd terms by (−1); using (−1)n+1 mul plies
the even terms by (−1). As this sequence has nega ve even terms, we
will mul ply by (−1)n+1.

A er this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a pa ern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 12 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial func on will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shi by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a li le “sleuthing” will help. No ce how the terms in the nu-
merator are always mul ples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

A common mathema cal endeavor is to create a new mathema cal object
(for instance, a sequence) and then apply previously knownmathema cs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will inves gate what it means to find the limit of a sequence.

Notes:
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Defini on 8.1.2 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This defini on states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjec ve
terms, but hopefully the intent is clear.

This defini on is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal defini on; we
do so here as well.

Theorem 8.1.1 Limit of a Sequence

Let {an} be a sequence and let f(x) be a func onwhose domain contains
the posi ve real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

Theorem 8.1.1 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(2πn)}. Let f(x) = cos(2πx). Since the cosine func on oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every posi ve integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a func on f(x) whose domain contains the posi ve real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Notes:
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Figure 8.1.2: Sca er plots of the se-
quences in Example 8.1.3.

8.1 Sequences

Example 8.1.3 Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}

S

1. Using Theorem1.6.1, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could
have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A sca er plot of every 5 values of an is given in
Figure 8.1.2 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist as cos x oscillates (and takes on every
value in [−1, 1] infinitely many mes). Thus we cannot apply Theorem
8.1.1.

The fact that the cosine func on oscillates strongly hints that cos n, when
n is restricted toN, will also oscillate. Figure 8.1.2 (b), where the sequence
is plo ed, implies that this is true. Because only discrete values of cosine
are plo ed, it does not bear strong resemblance to the familiar cosine
wave. The proof of the following statement is beyond the scope of this
text, but it is true: there are infinitely many integers n that are arbitrarily
(i.e., very) close to an even mul ple of π, so that cos n ≈ 1. Similarly,
there are infinitely many integers m that are arbitrarily close to an odd
mul ple of π, so that cosm ≈ −1. As the sequence takes on values near
1 and−1 infinitely many mes, we conclude that lim

n→∞
an does not exist.

3. We cannot actually apply Theorem 8.1.1 here, as the func on f(x) =

(−1)x/x is not well defined. (What does (−1)
√
2 mean? In actuality, there

is an answer, but it involves complex analysis, beyond the scope of this
text.)

Instead, we invoke the defini on of the limit of a sequence. By looking at
the plot in Figure 8.1.2 (c), we would like to conclude that the sequence
converges to L = 0. Let ε > 0 be given. We can find a natural numberm

Notes:
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Chapter 8 Sequences and Series

such that 1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0
∣∣∣∣

=
1
n

<
1
m

(since n > m)

< ε.

We have shown that by pickingm large enough, we can ensure that an is
arbitrarily close to our limit, L = 0, hence by the defini on of the limit of
a sequence, we can say lim

n→∞
an = 0.

In the previous example we used the defini on of the limit of a sequence to
determine the convergence of a sequence as we could not apply Theorem 8.1.1.
In general, we like to avoid invoking the defini on of a limit, and the following
theorem gives us tool that we could use in that example instead.

Theorem 8.1.2 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Example 8.1.4 Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
S

1. This appeared in Example 8.1.3. We want to apply Theorem 8.1.2, so con-
sider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 8.1.2 and state that lim
n→∞

an =
0.

Notes:
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Figure 8.1.3: A plot of a sequence in Ex-
ample 8.1.4, part 2.

8.1 Sequences

2. Because of the alterna ng nature of this sequence (i.e., every other term

ismul plied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 8.1.2:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

Wehave concluded thatwhenwe ignore the alterna ng sign, the sequence
approaches 1. This means we cannot apply Theorem 8.1.2; it states the
the limit must be 0 in order to conclude anything.
Since we know that the signs of the terms alternate and we know that
the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.1.3.

We con nue our study of the limits of sequences by considering some of the
proper es of these limits.

Theorem 8.1.3 Proper es of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

Example 8.1.5 Applying proper es of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Notes:
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Chapter 8 Sequences and Series

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

S We will use Theorem 8.1.3 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
ma er that wemul ply each term by 1000; the sequence s ll approaches
0. (It just takes longer to get close to 0.)

There is more to learn about sequences than just their limits. We will also
study their range and the rela onships terms have with the terms that follow.
We start with some defini ons describing proper es of the range.

Defini on 8.1.3 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this defini on that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 8.1.6 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

Notes:
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Figure 8.1.4: A plot of {an} = {1/n} and
{an} = {2n} from Example 8.1.6.

Note: Keep in mind what Theorem 8.1.4
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

8.1 Sequences

S

1. The terms of this sequence are always posi ve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 8.1.4(a)
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all posi ve, meaning 0 < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure 8.1.4(b)
illustrates this.

The previous example produces some interes ng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Defini on 8.1.2, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 8.1.4 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 8.1.5 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply resta ng part of Theorem
1.3.5.) Even though it may be difficult to intui vely grasp the behavior of this
sequence, we know immediately that it is bounded.

Another interes ng concept to come out of Example 8.1.6 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Notes:
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Note: It is some mes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.
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Figure 8.1.5: A plot of {an} = {(n +
1)/n} in Example 8.1.7.

Chapter 8 Sequences and Series

Defini on 8.1.4 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Example 8.1.7 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

S In each of the following, wewill examine an+1−an. If an+1−
an ≥ 0, we conclude that an ≤ an+1 and hence the sequence is increasing. If
an+1 − an ≤ 0, we conclude that an ≥ an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a sca er plot of each sequence. These are useful as they sug-
gest a pa ern of monotonicity, but analy c work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

Notes:
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Figure 8.1.6: Plots of sequences in Exam-
ple 8.1.7.

8.1 Sequences

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1− an > 0 for all n, we conclude the sequence is increasing; see
Figure 8.1.6(a).

3. We can clearly see in Figure 8.1.6(b), where the sequence is plo ed, that
it is not monotonic. However, it does seem that a er the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The denomi-
nator is always posi ve, therefore we are only concerned with the numer-
ator. For small values of n, the numerator is posi ve. As n grows large,
the numerator is dominated by −10n2, meaning the en re frac on will
be nega ve; i.e., for large enough n, an+1 − an < 0. Using the quadra c
formula we can determine that the numerator is nega ve for n ≥ 5.
In short, the sequence is simply not monotonic, though it is useful to note
that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.1.6(c) shows that the sequence is not mono-
tonic, but it suggests that it is monotonically decreasing a er the first
term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

Notes:
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Chapter 8 Sequences and Series

When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing a er the first term.

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always ge ng smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.

Theorem 8.1.5 Bounded Monotonic Sequences are Convergent

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posi ve (i.e., bounded below by
0). Therefore we can conclude by Theorem 8.1.5 that the sequence converges.
We already knew this by other means, but in the following sec on this theorem
will become very useful.

We can replace Theorem 8.1.5 with the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

Sequences are a great source of mathema cal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wri ng, there are 297,573 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

Interes ng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many mes, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to inves gate in the next sec on.

Notes:
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Exercises 8.1
Terms and Concepts
1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.

4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}

6. {bn} =

{(
−3
2

)n}

7. {cn} =

{
− nn+1

n+ 2

}

8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.

9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1, 1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following informa on to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+ 2

n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+ 2

n

)n}

16. {an} =

{(
1+ 2

n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n n

n+ 1

}

18. {an} =

{
4n2 − n+ 5
3n2 + 1

}

19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}

23. {an} =

{(
1+ 1

n

)n}

24. {an} =

{
5− 1

n

}

25. {an} =

{
(−1)n+1

n

}

26. {an} =

{
1.1n

n

}

27. {an} =

{
2n

n+ 1

}

28. {an} =

{
(−1)n n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}

30. {an} = {tan n}

31. {an} =

{
(−1)n 3n− 1

n

}

32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
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34. {an} = {2n − n!}

In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}

36. {an} =

{
n2 − 6n+ 9

n

}

37. {an} =

{
(−1)n 1

n3

}

38. {an} =

{
n2

2n

}
Exercises 39 – 42 explore further the theory of sequences.

39. Prove Theorem 8.1.2; that is, use the defini on of the limit
of a sequence to show that if lim

n→∞
|an| = 0, then lim

n→∞
an =

0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.

(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded, monotonic
sequence. Then {an} converges; i.e., lim

n→∞
an exists.” is

equivalent to Theorem 8.1.5. That is,

(a) Show that if Theorem 8.1.5 is true, then above state-
ment is true, and

(b) Show that if the above statement is true, then Theo-
rem 8.1.5 is true.
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8.2 Infinite Series

8.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interes ng concepts that we explore in this
sec on. We begin this explora on with some defini ons.

Defini on 8.2.1 Infinite Series, nth Par al Sums, Convergence,
Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =

n∑
i=1

ai ; the sequence {Sn} is the sequence of nth par al

sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an con-

verges to L, and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:

419



Chapter 8 Sequences and Series

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this sec on. We start with two series
that diverge, showing how we might discern divergence.

Example 8.2.1 Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

S

1. Consider Sn, the nth par al sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.1, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instruc ve to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.

A sca er plot of the sequences {an} and {Sn} is given in Figure 8.2.1(a).
The terms of {an} are growing, so the terms of the par al sums {Sn} are
growing even faster, illustra ng that the series diverges.

Notes:

420



.....
5

.
10

.

100

.

200

.

300

. n.

y

.

..an. Sn

(a)

.....

5

.

10

.−1.

−0.5

.

0.5

.

1

.

n

.

y

.
..bn. Sn

(b)

Figure 8.2.1: Sca er plots rela ng to Ex-
ample 8.2.1.

8.2 Infinite Series

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some of the
par al sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This pa ern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repea ng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A sca er plot of the sequence {bn} and the par al sums {Sn} is given in
Figure 8.2.1(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this sec on we will demonstrate
a few general techniques for determining convergence; later sec ons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

Defini on 8.2.2 Geometric Series

A geometric series is a series of the form
∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this sec on with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence proper es.

Notes:
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Chapter 8 Sequences and Series

Theorem 8.2.1 Geometric Series Test

Consider the geometric series
∞∑
n=0

rn.

1. The nth par al sum is: Sn =
1− r n+1

1− r
, r ̸= 1.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 8.2.1, the series

∞∑
n=0

1
2n

=

∞∑
n=0

(
1
2

)2

= 1+
1
2
+

1
4
+ · · ·

converges as r = 1/2, and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our intro-

ductory example; while there we got a sum of 1, we skipped the first term of 1.

Example 8.2.2 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

S

1. Since r = 3/4 < 1, this series converges. By Theorem 8.2.1, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summa on in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 8.2.2.

Notes:
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Note: Theorem 8.2.2 assumes that an +
b ̸= 0 for all n. If an + b = 0 for
somen, then of course the series does not
converge regardless of p as not all of the
terms of the sequence are defined.

8.2 Infinite Series

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 8.2.1,

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The par al sums of this series are plo ed in Figure 8.2.3(a). Note how
the par al sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are nega ve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·

to diverge.) This is illustrated in Figure 8.2.3(b).

p–Series

Another important type of series is the p-series.

Defini on 8.2.3 p–Series, General p–Series

1. A p–series is a series of the form
∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form
∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence proper es.

Theorem 8.2.2 p–Series Test

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Notes:
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Chapter 8 Sequences and Series

Example 8.2.3 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=11

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

S

1. This is a p–series with p = 1. By Theorem 8.2.2, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its rela onship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 8.2.2, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to π2/6.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the defini on does not allow for alterna ng signs.
Therefore we cannot apply Theorem 8.2.2. (Another famous result states
that this series, the Alterna ng Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 1/2. It converges.

Later sec ons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 8.2.4 Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

S It will help to write down some of the first few par al sums

Notes:
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8.2 Infinite Series

of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each par al sum are canceled out! In general,
we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges, as lim

n→∞
Sn =

lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

al sums of the series are plo ed in Figure 8.2.4.

The series in Example 8.2.4 is an example of a telescoping series. Informally,
a telescoping series is one in which most terms cancel with preceding or follow-
ing terms, reducing the number of terms in each par al sum. The par al sum Sn
did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth par al sum
Sn. This makes evalua ng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Example 8.2.5 Evalua ng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)

S

1. We can decompose the frac on 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See Sec on 6.5, Par al Frac onDecomposi on, to recall how this is done,
if necessary.)

Notes:
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Chapter 8 Sequences and Series

Expressing the terms of {Sn} is now more instruc ve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each par al sum, most of the terms
cancel and we obtain the formula Sn = 1 +

1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 8.2.5(a).

2. We begin by wri ng the first few par al sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
At first, this does not seem helpful, but recall the logarithmic iden ty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 8.2.5(b) how the sequence of par al sums grows

Notes:
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8.2 Infinite Series

slowly; a er 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathema cal object, the series. As done be-
fore, we apply “old” mathema cs to this new topic.

Theorem 8.2.3 Proper es of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant Mul ple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series.

Key Idea 8.2.1 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the Alterna ng Harmonic Series.)

Notes:
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Example 8.2.6 Evalua ng series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1(n2 − n
)

n3
2.

∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

S

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1(n2 − n
)

n3
=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 8.2.6(a).

2. This looks very similar to the series that involves e in Key Idea 8.2.1. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 8.2.6(b). The graph shows how this par cular
series converges very rapidly.

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the

Notes:
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formula from Key Idea 8.2.1, we have the following:
∞∑
n=1

1
n2

=

3∑
n=1

1
n2

+

∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=

∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
sec on, yet it s ll may “take some ge ng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will s ll diverge if the first term is removed.
(b) The series will s ll diverge if the first 10 terms are removed.
(c) The series will s ll diverge if the first 1, 000, 000 terms are removed.
(d) The series will s ll diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Theorem 8.2.4 nth–Term Test for Divergence

Consider the series
∞∑
n=1

an. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.
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Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 8.2.1. TheHarmonic Sequence, {1/n}, converges to 0; theHarmonic Series,
∞∑
n=1

1
n
, diverges.

Looking back, we can apply this theorem to the series in Example 8.2.1. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 8.2.4 to state “If a series converges, then the un-
derlying sequence converges to 0.” While it is important to understand the truth
of this statement, in prac ce it is rarely used. It is generally far easier to prove
the convergence of a sequence than the convergence of a series.

Theorem 8.2.5 Infinite Nature of Series

The convergence or divergence of an infinite series remains unchanged
by the addi on or subtrac on of any finite number of terms. That is:

1. A divergent series will remain divergent with the addi on or sub-
trac on of any finite number of terms.

2. A convergent series will remain convergent with the addi on or
subtrac on of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the

sequence of par al sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth par al sums, effec vely
subtrac ng 16.7 from the sum. However, a sequence that is growing without
bound will s ll grow without bound when 16.7 is subtracted from it.

The equa ons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equa on shows us subtrac ng these first 10 mil-
lion terms from both sides. The final equa on employs a bit of “psuedo–math”:

Notes:
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8.2 Infinite Series

subtrac ng 16.7 from “infinity” s ll leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞.

This sec on introduced us to series and defined a few special types of series
whose convergence proper es are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are s ll interested in knowing whether or not
they converge. The next three sec ons introduce tests that help us determine
whether or not a given series converges.
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Exercises 8.2
Terms and Concepts

1. Use your own words to describe how sequences and series
are related.

2. Use your own words to define a par al sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

Problems

In Exercises 7 – 14, a series
∞∑
n=1

an is given.

(a) Give the first 5 par al sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

7.
∞∑
n=1

(−1)n

n

8.
∞∑
n=1

1
n2

9.
∞∑
n=1

cos(πn)

10.
∞∑
n=1

n

11.
∞∑
n=1

1
n!

12.
∞∑
n=1

1
3n

13.
∞∑
n=1

(
− 9
10

)n

14.
∞∑
n=1

(
1
10

)n

In Exercises 15 – 20, use Theorem 8.2.4 to show the given se-
ries diverges.

15.
∞∑
n=1

3n2

n(n+ 2)

16.
∞∑
n=1

2n

n2

17.
∞∑
n=1

n!
10n

18.
∞∑
n=1

5n − n5

5n + n5

19.
∞∑
n=1

2n + 1
2n+1

20.
∞∑
n=1

(
1+ 1

n

)n

In Exercises 21 – 30, state whether the given series converges
or diverges.

21.
∞∑
n=1

1
n5

22.
∞∑
n=0

1
5n

23.
∞∑
n=0

6n

5n

24.
∞∑
n=1

n−4

25.
∞∑
n=1

√
n

26.
∞∑
n=1

10
n!

27. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

28.
∞∑
n=1

2
(2n+ 8)2

29.
∞∑
n=1

1
2n
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30.
∞∑
n=1

1
2n− 1

In Exercises 31 – 46, a series is given.
(a) Find a formula for Sn, the nth par al sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

31.
∞∑
n=0

1
4n

32.
∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·

34.
∞∑
n=1

(−1)nn

35.
∞∑
n=0

5
2n

36.
∞∑
n=1

e−n

37. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

38.
∞∑
n=1

1
n(n+ 1)

39.
∞∑
n=1

3
n(n+ 2)

40.
∞∑
n=1

1
(2n− 1)(2n+ 1)

41.
∞∑
n=1

ln
(

n
n+ 1

)

42.
∞∑
n=1

2n+ 1
n2(n+ 1)2

43. 1
1 · 4 +

1
2 · 5 +

1
3 · 6 +

1
4 · 7 + · · ·

44. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

45.
∞∑
n=2

1
n2 − 1

46.
∞∑
n=0

(
sin 1

)n
47. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth par al sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

48. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.
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Note: Theorem 8.3.1 does not state that
the integral and the summa on have the
same value.
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Figure 8.3.1: Illustra ng the truth of the
Integral Test.

Chapter 8 Sequences and Series

8.3 Integral and Comparison Tests
Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Sec on 8.6. Theorems 8.2.1 and 8.2.2 give criteria
for when Geometric and p-series converge, and Theorem 8.2.4 gives a quick test
to determine if a series diverges. There are many important series whose con-
vergence cannot be determined by these theorems, though, so we introduce a
set of tests that allow us to handle a broad range of series. We start with the
Integral Test.

Integral Test

We stated in Sec on 8.1 that a sequence {an} is a func on a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posi ve and decreasing on [1,∞), then the convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

Theorem 8.3.1 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is con nuous,

posi ve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.3.1(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (8.1)

In Figure 8.3.1(b), we draw rectangles under y = a(x)with the Right-Hand rule,
star ng with n = 2. This me, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

∫ ∞

1
a(x) dx. Note how this summa on starts

with n = 2; adding a1 to both sides lets us rewrite the summa on star ng with

Notes:
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Figure 8.3.2: Plo ng the sequence and
series in Example 8.3.1.

8.3 Integral and Comparison Tests

n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (8.2)

Combining Equa ons (8.1) and (8.2), we have

∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (8.3)

From Equa on (8.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theo-
rem 8.2.5 allows us to extend this theorem to series where a(n) is posi ve and
decreasing on [b,∞) for some b > 1.

Example 8.3.1 Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth par al sums are given in Figure 8.3.2.)

S Figure 8.3.2 implies that a(n) = (ln n)/n2 is posi ve and
decreasing on [2,∞). We can determine this analy cally, too. We know a(n)
is posi ve as both ln n and n2 are posi ve on [2,∞). To determine that a(n) is
decreasing, consider a ′(n) = (1− 2 ln n)/n3, which is nega ve for n ≥ 2. Since
a ′(n) is nega ve, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln x
x2

dx. Integrat-

ing this improper integral requires the use of Integra on by Parts, with u = ln x
and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

Notes:
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Chapter 8 Sequences and Series

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hôpital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Theorem 8.2.2 was given without jus fica on, sta ng that the general p-

series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 8.3.2 Using the Integral Test to establish Theorem 8.2.2.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

S Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 6.8.1.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

We consider two more convergence tests in this sec on, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:
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Note: A sequence {an} is a posi ve
sequence if an > 0 for all n.

Because of Theorem 8.2.5, any theorem
that relies on a posi ve sequence s ll
holds true when an > 0 for all but a fi-
nite number of values of n.

8.3 Integral and Comparison Tests

Direct Comparison Test

Theorem 8.3.2 Direct Comparison Test

Let {an} and {bn} be posi ve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

Example 8.3.3 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

S This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 8.3.2,
∞∑
n=1

1
3n + n2

converges.

Example 8.3.4 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.

S We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.
Since n ≥ n− ln n for all n ≥ 1,

1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well.

Notes:
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The concept of direct comparison is powerful and o en rela vely easy to
apply. Prac ce helps one develop the necessary intui on to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 8.3.4. We suspect that it also diverges, as
1
n
≈ 1

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since
n ≤ n+ ln n for all n ≥ 1,

1
n
≥ 1

n+ ln n
for all n ≥ 1. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem 8.3.3 Limit Comparison Test

Let {an} and {bn} be posi ve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posi ve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

Theorem 8.3.3 is most useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which mo vated this new test.

Notes:
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8.3 Integral and Comparison Tests

Example 8.3.5 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

S We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (a er applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well.

Example 8.3.6 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

S This series is similar to the one in Example 8.3.3, but nowwe
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (a er applying L’Hôpital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well.

As men oned before, prac ce helps one develop the intui on to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponen als, which dominate algebraic func-
ons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

Example 8.3.7 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
n+ 3

n2 − n+ 1
.

S We naïvely a empt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2. Knowing

that
∞∑
n=1

1
n2

converges, we a empt to apply the Limit Comparison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 8.3.3 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. Ul mately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
func ons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is n1/2 and the dominant term of the
denominator is n2. Thus we should compare the terms of the given series to
n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
= 1 (Apply L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
n3/2

converges, we conclude that
∞∑
n=1

√
n+ 3

n2 − n+ 1
con-

verges as well.

We men oned earlier that the Integral Test did not work well with series
containing factorial terms. The next sec on introduces the Ra o Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.
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Exercises 8.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

func on a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this sec on do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that 0 ≤ bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)
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30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100

In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an
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Note: Theorem 8.2.5 allows us to apply
the Ra o Test to series where {an} is pos-
i ve for all but a finite number of terms.

8.4 Ra o and Root Tests

8.4 Ra o and Root Tests

The nth–Term Test of Theorem 8.2.4 states that in order for a series
∞∑
n=1

an to

converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not

approach 0 “fast enough.”
The comparison tests of the previous sec ondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This sec on introduces the Ra o and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

Ra o Test

Theorem 8.4.1 Ra o Test

Let {an} be a posi ve sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Ra o Test is inconclusive.

The principle of the Ra o Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

Example 8.4.1 Applying the Ra o Test
Use the Ra o Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

Notes:
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Chapter 8 Sequences and Series

S

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the Ra o Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ra o Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ra o Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.
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8.4 Ra o and Root Tests

The Ra o Test is not effec ve when the terms of a series only contain al-
gebraic func ons (e.g., polynomials). It is most effec ve when the terms con-
tain some factorials or exponen als. The previous example also reinforces our
developing intui on: factorials dominate exponen als, which dominate alge-
braic func ons, which dominate logarithmic func ons. In Part 1 of the example,
the factorial in the denominator dominated the exponen al in the numerator,
causing the series to converge. In Part 2, the exponen al in the numerator dom-
inated the algebraic func on in the denominator, causing the series to diverge.

While we have used factorials in previous sec ons, we have not explored
them closely and one is likely to not yet have a strong intui ve sense for how
they behave. The following example gives more prac ce with factorials.

Example 8.4.2 Applying the Ra o Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

S Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the la er is 2(4 · 3 · 2 · 1) = 48.

Applying the Ra o Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

No ng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ra o Test we conclude
∞∑
n=1

n!n!
(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works par cularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:
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Note: Theorem 8.2.5 allows us to apply
the Root Test to series where {an} is pos-
i ve for all but a finite number of terms.

Chapter 8 Sequences and Series

Theorem 8.4.2 Root Test

Let {an} be a posi ve sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

Example 8.4.3 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

S

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ra o Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 1, we conclude the series diverges.

Each of the tests we have encountered so far has required that we analyze
series from posi ve sequences. The next sec on relaxes this restric on by con-
sidering alterna ng series, where the underlying sequence has terms that alter-
nate between being posi ve and nega ve.
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Exercises 8.4
Terms and Concepts

1. The Ra o Test is not effec vewhen the terms of a sequence
only contain func ons.

2. The Ra o Test is most effec ve when the terms of a se-
quence contains and/or func ons.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works par cularly well on series where each
term is to a .

Problems

In Exercises 5 – 14, determine the convergence of the given
series using the Ra o Test. If the Ra o Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1
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30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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8.5 Alterna ng Series and Absolute Convergence

8.5 Alterna ng Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a posi ve sequence. (We can relax this with Theorem 8.2.5
and state that there must be an N > 0 such that an > 0 for all n > N; that is,
{an} is posi ve for all but a finite number of values of n.)

In this sec on we explore series whose summa on includes nega ve terms.
We start with a very specific form of series, where the terms of the summa on
alternate between being posi ve and nega ve.

Defini on 8.5.1 Alterna ng Series

Let {an} be a posi ve sequence. An alterna ng series is a series of either
the form

∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alterna ng series is the Alterna ng Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alterna ng series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem 8.2.1 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alterna ng series thatmeet
a few condi ons.

Notes:
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Figure 8.5.1: Illustra ng convergence
with the Alterna ng Series Test.

Chapter 8 Sequences and Series

Theorem 8.5.1 Alterna ng Series Test

Let {an} be a posi ve, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge.

The basic idea behind Theorem 8.5.1 is illustrated in Figure 8.5.1. A posi ve,
decreasing sequence {an} is shown along with the par al sums

Sn =
n∑

i=1
(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 8.1.5) and the terms of {an} approach
0, one can show the odd and even terms of Sn converge to the same common
limit L, the sum of the series.

Example 8.5.1 Applying the Alterna ng Series Test
Determine if the Alterna ng Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=1

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 | sin n|
n2

S

1. This is the Alterna ng Harmonic Series as seen previously. The underlying
sequence is {an} = {1/n}, which is posi ve, decreasing, and approaches
0 as n → ∞. Therefore we can apply the Alterna ng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {an} = {ln n/n}. This is posi ve and ap-
proaches 0 as n → ∞ (use L’Hôpital’s Rule). However, the sequence is not
decreasing for all n. It is straigh orward to compute a1 = 0, a2 ≈ 0.347,

Notes:
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8.5 Alterna ng Series and Absolute Convergence

a3 ≈ 0.366, and a4 ≈ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the Alterna ng
Series Test. Rather, consider the long–term behavior of {an}. Trea ng
an = a(n) as a con nuous func on of n defined on [1,∞), we can take
its deriva ve:

a ′(n) =
1− ln n

n2
.

The deriva ve is nega ve for all n ≥ 3 (actually, for all n > e), mean-
ing a(n) = an is decreasing on [3,∞). We can apply the Alterna ng
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 1 and n = 2 do not

change the convergence (i.e., we apply Theorem 8.2.5).

The important lesson here is that as before, if a series fails to meet the
criteria of the Alterna ng Series Test on only a finite number of terms, we
can s ll apply the test.

3. The underlying sequence is {an} = | sin n|/n2. This sequence is posi ve
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of | sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the Alterna ng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 8.5.1.

Key Idea 8.2.1 gives the sum of some important series. Two of these are

∞∑
n=1

1
n2

=
π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places a er the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alterna ng structure of an alterna ng series gives us a powerful tool when
approxima ng the sum of a convergent series.

Notes:
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Theorem 8.5.2 The Alterna ng Series Approxima on Theorem

Let {an} be a sequence that sa sfies the hypotheses of the Alterna ng
Series Test, and let Sn and L be the nth par al sums and sum, respec vely,

of either
∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an. Then

1. |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 8.5.2 states that the nth par al sum of a convergent al-
terna ng series will be within an+1 of its total sum. Consider the alterna ng

series we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since

a14 = 1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places a er the decimal.

Some alterna ng series converge slowly. In Example 8.5.1 we determined

the series
∞∑
n=1

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places a er the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

Example 8.5.2 Approxima ng the sum of convergent alterna ng series
Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

S

1. Using Theorem 8.5.2, we want to find n where 1/n3 ≤ 0.001:

1
n3

≤ 0.001 =
1

1000
n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.
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8.5 Alterna ng Series and Absolute Convergence

Let L be the sum of this series. By Part 1 of the theorem, |S9 − L| < a10 =
1/1000. We can compute S9 = 0.902116, which our theorem states is
within 0.001 of the total sum.
We can use Part 2 of the theorem to obtain an even more accurate result.
Aswe know the 10th termof the series is−1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between S9 and S10,
so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving ln(n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a solu on.
Let f(x) = ln(x)/x− 0.001; we want to know where f(x) = 0. We make a
guess that xmust be “large,” so our ini al guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solu on xn, our next
approxima on xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to converge to a
solu on x = 9118.01 a er 8 itera ons. Taking the next integer higher, we
have n = 9119, where ln(9119)/9119 = 0.000999903 < 0.001.
Again using a computer, we find S9118 = −0.160369. Part 1 of the theo-
rem states that this is within 0.001 of the actual sum L. Already knowing
the 9,119th term,we can compute S9119 = −0.159369,meaning−0.159369 <
L < −0.160369.

No ce how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

One of the famous results of mathema cs is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the Alterna ng Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The
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Note: In Defini on 8.5.2,
∞∑
n=1

an is not

necessarily an alterna ng series; it just
may have some nega ve terms.

Chapter 8 Sequences and Series

no on that alterna ng the signs of the terms in a series can make a series con-
verge leads us to the following defini ons.

Defini on 8.5.2 Absolute and Condi onal Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges condi onally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Thus we say the Alterna ng Harmonic Series converges condi onally.

Example 8.5.3 Determining absolute and condi onal convergence.
Determine if the following series converge absolutely, condi onally, or diverge.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
3.

∞∑
n=3

(−1)n
3n− 3
5n− 10

S

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alterna ng Series

Test; we conclude it converges condi onally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the Ra o Test.
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8.5 Alterna ng Series and Absolute Convergence

Therefore we conclude
∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the condi ons of the Alterna ng Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
further that this series diverges; as n → ∞, the series effec vely adds and
subtracts 3/5 over and over. This causes the sequence of par al sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an| will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posi ve. By taking the absolute value of the
terms of a series where not all terms are posi ve, we are o en able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affec ng
the sum.

Notes:
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Theorem 8.5.3 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

In Example 8.5.3, we determined the series in part 2 converges absolutely.
Theorem 8.5.3 tells us the series converges (which we could also determine us-
ing the Alterna ng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condi on-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named a er Bernhard Riemann)
states that any condi onally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the Alterna ng Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Key Idea 8.2.1 or Example 8.5.1).

Consider the rearrangement where every posi ve term is followed by two
nega ve terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alterna ng Harmonic Series, just in a different order.) Now group some terms
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and simplify:(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alterna ng Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the Alterna ng Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alterna ng Series Approxima on Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ul mate goal
within calculus is the study of Power Series, which we will consider in the next
sec on. We will use power series to create func ons where the output is the
result of an infinite summa on.
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Exercises 8.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alterna ng series?

2. A series
∞∑
n=1

(−1)nan converges when {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but

∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5 – 20, an alterna ng series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

condi onal or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n n+ 5
3n− 5

8.
∞∑
n=1

(−1)n 2
n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=2

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth par al sum of a series. In Exercises 21 – 24, a
convergent alterna ng series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25 – 28, a convergent alterna ng series is given
alongwith its sum and a value of ε. Use Theorem 8.5.2 to find
n such that the nth par al sum of the series is within ε of the
sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001
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26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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8.6 Power Series
So far, our study of series has examined the ques on of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspec ve: as a func on. Given a value of x, we evaluate f(x)
by finding the sum of a par cular series that depends on x (assuming the series
converges). We start this new approach to series with a defini on.

Defini on 8.6.1 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centered at c is the series
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

Example 8.6.1 Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

S

1. One of the conven ons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series star ng at n = 0 with the understanding that
a0 = 0, and hence the first term is 0.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

Notes:
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8.6 Power Series

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

We introduced power series as a type of func on, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 8.6.1, we recognized the series
∞∑
n=0

xn as a geo-

metric series in x. Theorem 8.2.1 states that this series converges only when
|x| < 1.

This raises the ques on: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and defini on.

Theorem 8.6.1 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following defini on. Also, note that part 2 of Theorem 8.6.1
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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Defini on 8.6.2 Radius and Interval of Convergence

1. The number R given in Theorem 8.6.1 is the radius of convergence
of a given series. When a series converges for only x = c, we say
the radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence, i.e.,
R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the Ra o Test). However, the
tests all required that the terms of a series be posi ve. The following theorem
gives us a work–around to this problem.

Theorem 8.6.2 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 8.6.2 allows us to find the radius of convergence R of a series by
applying the Ra o Test (or any applicable test) to the absolute value of the terms
of the series. We prac ce this in the following example.

Example 8.6.2 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

S
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1. We apply the Ra o Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The Ra o Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the Ra o Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The Ra o Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1.

To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the Alterna ng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

Notes:
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3. We apply the Ra o Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.

According to the Ra o Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x− 3
∣∣ < 1/2. The series is centered at 3, and xmust be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the Ra o Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The Ra o Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

We can use a power series to define a func on:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such func ons; in par cular, we
can find deriva ves and an deriva ves.
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Theorem 8.6.3 Deriva ves and Indefinite Integrals of Power Series
Func ons

Let f(x) =
∞∑
n=0

an(x − c)n be a func on defined by a power series, with

radius of convergence R.

1. f(x) is con nuous and differen able on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 8.6.3:

1. The theorem states that differen a on and integra on do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. No ce how the summa on for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. Differen a on and integra on are simply calculated term–by–term using
the Power Rules.

Example 8.6.3 Deriva ves and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respec ve

intervals of convergence.

S We find the deriva ve and indefinite integral of f(x), follow-
ing Theorem 8.6.3.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 8.6.1, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).

Notes:
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To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; no ce that the rest of the series is an Alter-
na ng Series that whose terms converge to 0. By the Alterna ng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series a er C are the opposite of the Alterna ng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

No ce that this summa on is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1).

The previous example showed how to take the deriva ve and indefinite in-
tegral of a power series without mo va on for why we care about such opera-
ons. Wemay care for the sheer mathema cal enjoyment “that we can”, which

is mo va on enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking deriva ves and indefinite integrals.

Recall that f(x) =

∞∑
n=0

xn in Example 8.6.3 is a geometric series. According

to Theorem 8.2.1, this series converges to 1/(1− x) when |x| < 1. Thus we can
say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integra ng the power series, (as done in Example 8.6.3,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (8.4)

Notes:
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while integra ng the func on f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (8.5)

Equa ng Equa ons (8.4) and (8.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Le ng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|.

We established in Example 8.6.3 that the series on the le converges at x = −1;
subs tu ng x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the le we have the opposite of the Alterna ng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 8.2.1 (in Sec on 8.2) that the Alterna ng Har-
monic Series converges to ln 2, and referred to this fact again in Example 8.5.1
of Sec on 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the Alterna ng Harmonic
Series converges to ln 2.

We use this type of analysis in the next example.

Example 8.6.4 Analyzing power series func ons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav-

ior of f(x).

S We start by making two notes: first, in Example 8.6.2, we
found the interval of convergence of this power series is (−∞,∞). Second, we
will find it useful later to have a few terms of the series wri en out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (8.6)

Notes:
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We now find the deriva ve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series star ng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the deriva ve of f(x) is f(x). The only func ons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see Equa on (8.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indica ng that
f(x) = ex.

Example 8.6.4 and the work following Example 8.6.3 established rela on-
ships between a power series func on and “regular” func ons that we have
dealt with in the past. In general, given a power series func on, it is difficult (if

Notes:
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not impossible) to express the func on in terms of elementary func ons. We
chose examples where things worked out nicely.

In this sec on’s last example, we show how to solve a simple differen al
equa on with a power series.

Example 8.6.5 Solving a differen al equa on with a power series.
Give the first 4 terms of the power series solu on to y ′ = 2y, where y(0) = 1.

S The differen al equa on y ′ = 2y describes a func on y =
f(x) where the deriva ve of y is twice y and y(0) = 1. This is a rather simple
differen al equa on; with a bit of thought one should realize that if y = Ce2x,
then y ′ = 2Ce2x, and hence y ′ = 2y. By le ng C = 1 we sa sfy the ini al
condi on of y(0) = 1.

Let’s ignore the fact that we already know the solu on and find a power
series func on that sa sfies the equa on. The solu on we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 8.6.3:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The ini al condi on y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solu on to the differen al equa on
y ′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

Notes:
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In Sec on 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
func on by its power series expansion. It is far easier to start with a known func-
on, expressed in terms of elementary func ons, and represent it as a power

series func on. One may wonder why we would bother doing so, as the la er
func on probably seems more complicated. In the next two sec ons, we show
both how to do this and why such a process can be beneficial.

Notes:
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Exercises 8.6
Terms and Concepts
1. We adopt the conven on that x0 = , regardless of the

value of x.

2. What is the difference between the radius of convergence
and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a func on f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n
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28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a solu on to the given differen al equa on.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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y = f(x)

.

y = p1(x)

.

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 8.7.1: Plo ng y = f(x) and a table
of deriva ves of f evaluated at 0.

...

..

y = p2(x)

.

y = p4(x)

.
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Figure 8.7.2: Plo ng f, p2 and p4.
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..

y = p13(x)

.

−4

.
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2

.

4

.
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.
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.

x

.

y

Figure 8.7.3: Plo ng f and p13.

8.7 Taylor Polynomials

8.7 Taylor Polynomials
Consider a func on y = f(x) and a point

(
c, f(c)

)
. The deriva ve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 8.7.1, we see a func on y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approxima on is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 8.7.1 gives the following informa on:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same proper es. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an ini al–value problem. We can solve this using the tech-
niques first described in Sec on 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
ve of p2 is constant.
If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have

determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our ini al values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This func on is plo ed with f in
Figure 8.7.2.

We can repeat this approxima on process by crea ng polynomials of higher
degree that matchmore of the deriva ves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n deriva ves of f. Figure 8.7.2 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four deriva ves at 0match
those of f. (Using the table in Figure 8.7.1, start with p(4)4 (x) = −12 and solve
the related ini al–value problem.)

As we use more and more deriva ves, our polynomial approxima on to f
gets be er and be er. In this example, the interval on which the approxima on
is “good” gets bigger and bigger. Figure 8.7.3 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not par cularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Notes:
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 8.7.4: The deriva ves of f(x) = ex

evaluated at x = 0.

Chapter 8 Sequences and Series

Thepolynomialswehave created are examples of Taylor polynomials, named
a er the Bri sh mathema cian Brook Taylor who made important discoveries
about such func ons. While we created the above Taylor polynomials by solving
ini al–value problems, it can be shown that Taylor polynomials follow a general
pa ern that make their forma on much more direct. This is described in the
following defini on.

Defini on 8.7.1 Taylor Polynomial, Maclaurin Polynomial

Let f be a func on whose first n deriva ves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will prac ce crea ng Taylor and Maclaurin polynomials in the following
examples.

Example 8.7.1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

S

1. We start with crea ng a table of the deriva ves of ex evaluated at x = 0.
In this par cular case, this is rela vely simple, as shown in Figure 8.7.4.
By the defini on of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

Notes:

474



.....y = p5(x).
−2

.
2

.

5

.

10

.

x

.

y

Figure 8.7.5: A plot of f(x) = ex and its
5th degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.7.6: Deriva ves of ln x evaluated
at x = 1.

8.7 Taylor Polynomials

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straigh orward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 8.7.5.

Example 8.7.2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

S

1. We begin by crea ng a table of deriva ves of ln x evaluated at x = 1.
While this is not as straigh orward as it was in the previous example, a
pa ern does emerge, as shown in Figure 8.7.6.
Using Defini on 8.7.1, we have

pn(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2!

(x− c)2 + f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

Notes:
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y = ln x

.

y = p6(x)

.

1

.

2

.

3

.
−4
.
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x

.

y

Figure 8.7.7: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.

...

..

y = ln x

.

y = p20(x)

.
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.
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.
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.
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.

x

.

y

Figure 8.7.8: A plot of y = ln x and its 20th
degree Taylor polynomial at x = 1.
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p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approxima on as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 8.7.7 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approxima on is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 8.7.7 shows that p6(x) provides
less accurate approxima ons of ln x as x gets close to 0 or 2.
Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 8.7.8. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate func ons f(x) in mainly two sit-
ua ons:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the ra o of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compu ng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compu ng
such values using only opera ons usually hard–wired into a computer (+,
−,× and÷).

Notes:
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Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric func ons, in prac ce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

8.7 Taylor Polynomials

2. When f(x) is not known, but informa on about its deriva ves is known.
This occurs more o en than one might think, especially in the study of
differen al equa ons.

In both situa ons, a cri cal piece of informa on to have is “How good is my
approxima on?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approxima on is?

We had the same problem when studying Numerical Integra on. Theorem
5.5.1 provided bounds on the error when using, say, Simpson’s Rule to approx-
imate a definite integral. These bounds allowed us to determine that, for in-
stance, using 10 subintervals provided an approxima on within ±.01 of the ex-
act value. The following theorem gives similar bounds for Taylor (and hence
Maclaurin) polynomials.

Theorem 8.7.1 Taylor’s Theorem

1. Let f be a func on whose n+ 1th deriva ve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2.
∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− c)(n+1)∣∣, where z is in I.

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approxima on. The second part gives bounds on how big that error
can be. If the (n + 1)th deriva ve is large on I, the error may be large; if x is far
from c, the error may also be large. However, the (n+ 1)! term in the denomi-
nator tends to ensure that the error gets smaller as n increases.

The following example computes error es mates for the approxima ons of
ln 1.5 and ln 2 made in Example 8.7.2.

Example 8.7.3 Finding error bounds of a Taylor polynomial
Use Theorem 8.7.1 to find error bounds when approxima ng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 8.7.2.

Notes:
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S

1. We start with the approxima on of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the be er; it will give us a more accurate (and smaller!)
approxima on of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situa on, this is asking

“How big can the 7th deriva ve of y = ln x be on the interval (0.9, 1.6)?”
The seventh deriva ve is y = −6!/x7. The largest value it a ains on I is
about 1506. Thus we can bound the error as:∣∣R6(1.5)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approxima on would be within about 2 thousandths of the actual
value, whereas the approxima on was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh deriva ve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error es mate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
par cularly useful.
In reality, our approxima on was only off by about 0.07. However, we
are approxima ng ostensibly because we do not know the real answer. In
order to be assured that we have a good approxima on, we would have
to resort to using a polynomial of higher degree.

Notes:
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.7.9: A table of the deriva ves of
f(x) = cos x evaluated at x = 0.
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y = p8(x)
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.
.. f(x) = cos x

Figure 8.7.10: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

8.7 Taylor Polynomials

We prac ce again. This me, we use Taylor’s theorem to find n that guaran-
tees our approxima on is within a certain amount.

Example 8.7.4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

S Following Taylor’s theorem, we need bounds on the size of
the deriva ves of f(x) = cos x. In the case of this trigonometric func on, this is
easy. All deriva ves of cosine are± sin x or± cos x. In all cases, these func ons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequali es:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that sa sfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the deriva ves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.7.9.
No ce how the deriva ves, evaluated at x = 0, follow a certain pa ern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are crea ng a Maclaurin
polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)(0)
8!

x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approxima on is within 0.001 of the correct
answer. Technology shows us that our approxima on is actually within about
0.0003 of the correct answer.

Figure 8.7.10 shows a graph of y = p8(x) and y = cos x. Note how well the
two func ons agree on about (−π, π).

Notes:
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f(x) =
√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 8.7.11: A table of the deriva ves of
f(x) =

√
x evaluated at x = 4.

.....

.. y =
√
x.

y = p4(x)

.
5

.
10

.

1

.

2

.

3

. x.

y

Figure 8.7.12: A graph of f(x) =
√
x and

its degree 4 Taylor polynomial at x = 4.
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Example 8.7.5 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approxima ng
√
3 with p4(3).

S

1. We begin by evalua ng the deriva ves of f at x = 4. This is done in Figure
8.7.11. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fi h deriva ve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus∣∣R4(3)∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approxima on is accurate to at least the first 2 places a er
the decimal. (It turns out that our approxima on is actually accurate to
4 places a er the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 8.7.12. Note how the two func ons are nearly indis nguishable on
(2, 7).

Our final example gives a brief introduc on to using Taylor polynomials to
solve differen al equa ons.

Example 8.7.6 Approxima ng an unknown func on
A func on y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y ′ = y2

(This second fact says that amazingly, the deriva ve of the func on is actually
the func on squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

Notes:
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.....

.. y =
1

1 − x
.

y = p3(x)

.
−1
.

−0.5
.

0.5
.

1
.

1

.

2

.

3

. x.

y

Figure 8.7.13: A graph of y = −1/(x− 1)
and y = p3(x) from Example 8.7.6.

8.7 Taylor Polynomials

S Onemight ini ally think that not enough informa on is given
to find p3(x). However, note how the second fact above actually lets us know
what y ′(0) is:

y ′ = y2 ⇒ y ′(0) = y2(0).
Since y(0) = 1, we conclude that y ′(0) = 1.

Nowwe find informa on about y ′′. Star ng with y ′ = y2, take deriva ves of
both sides, with respect to x. That means we must use implicit differen a on.

y ′ = y2

d
dx
(
y ′
)
=

d
dx
(
y2
)

y ′′ = 2y · y ′.

Now evaluate both sides at x = 0:

y ′′(0) = 2y(0) · y ′(0)
y ′′(0) = 2

We repeat this once more to find y ′′′(0). We again use implicit differen a on;
this me the Product Rule is also required.

d
dx
(
y ′′
)
=

d
dx
(
2yy ′

)
y ′′′ = 2y ′ · y ′ + 2y · y ′′.

Now evaluate both sides at x = 0:

y ′′′(0) = 2y ′(0)2 + 2y(0)y ′′(0)
y ′′′(0) = 2+ 4 = 6

In summary, we have:

y(0) = 1 y ′(0) = 1 y ′′(0) = 2 y ′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differen al equa on we started with, y ′ = y2, where
y(0) = 1, can be solved without too much difficulty: y =

1
1− x

. Figure 8.7.13
shows this func on plo ed with p3(x). Note how similar they are near x = 0.

Notes:
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It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solu ons to differen al equa ons. This topic is
o en broached in introductory Differen al Equa ons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approxima on is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
sec on has taken a step back from this study, focusing instead on finite summa-
on of terms. In the next sec on, we explore Taylor Series, where we represent

a func on with an infinite series.

Notes:
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Exercises 8.7
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) be er and be er
as n gets larger.

3. For some func on f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some func on f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given func on.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given func on.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the func on value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 34, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = sin x.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1− x
.

33. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1+ x
.

34. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x centered at x = 1.
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In Exercises 35 – 37, approximate the solu on to the given
differen al equa on with a degree 4 Maclaurin polynomial.

35. y′ = y, y(0) = 1

36. y′ = 5y, y(0) = 3

37. y′ = 2
y
, y(0) = 1
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.8.1: A table of the deriva ves of
f(x) = cos x evaluated at x = 0.

8.8 Taylor Series

8.8 Taylor Series

In Sec on 8.6, we showed how certain func ons can be represented by a power
series func on. In Sec on 8.7, we showed how we can approximate func ons
with polynomials, given that enough deriva ve informa on is available. In this
sec on we combine these concepts: if a func on f(x) is infinitely differen able,
we show how to represent it with a power series func on.

Defini on 8.8.1 Taylor and Maclaurin Series

Let f(x) have deriva ves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Se ng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centered at x = c, we saw
how f(x) is approximately equal to pn(x) near x = c. We also saw how increasing
the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ul mate hope is to see the error vanish and claim a func on is equal to its Taylor
series.

When crea ng the Taylor polynomial of degree n for a func on f(x) at x = c,
we needed to evaluate f, and the first n deriva ves of f, at x = c. When crea ng
the Taylor series of f, it helps to find a pa ern that describes the nth deriva ve
of f at x = c. We demonstrate this in the next two examples.

Example 8.8.1 The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

S In Example 8.7.4 we found the 8th degree Maclaurin poly-
nomial of cos x. In doing so, we created the table shown in Figure 8.8.1. No-
ce how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible by 4, and

f (n)(0) = −1 when n is even but not divisible by 4. Thus the Maclaurin series

Notes:
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.8.2: Deriva ves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

of cos x is
1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summa on. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

This Maclaurin series is a special type of power series. As such, we should de-
termine its interval of convergence. Applying the Ra o Test, we have

lim
n→∞

∣∣∣∣∣(−1)n+1 x2(n+1)(
2(n+ 1)

)
!

∣∣∣∣∣
/∣∣∣∣(−1)n

x2n

(2n)!

∣∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ (2n)!
(2n+ 2)!

= lim
n→∞

x2

(2n+ 2)(2n+ 1)
.

For any fixed x, this limit is 0. Therefore this power series has an infinite radius
of convergence, converging for all x. It is important to note what we have, and
have not, determined: we have determined the Maclaurin series for cos x along
with its interval of convergence. We have not shown that cos x is equal to this
power series.

Example 8.8.2 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

S Figure 8.8.2 shows the nth deriva ve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what dis nguishes Taylor series from Taylor polynomials;
we are very interested in finding a pa ern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summa on with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

We now determine the interval of convergence, using the Ra o Test.

lim
n→∞

∣∣∣∣(−1)n+2 (x− 1)n+1

n+ 1

∣∣∣∣
/∣∣∣∣(−1)n+1 (x− 1)n

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ n
n+ 1

=
∣∣(x− 1)

∣∣.

Notes:
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Note: It can be shown that ln x is equal to
this Taylor series on (0, 2]. From the work
in Example 8.8.2, this jus fies our previ-
ous declara on that the Alterna ng Har-
monic Series converges to ln 2.

8.8 Taylor Series

By the Ra o Test, we have convergence when
∣∣(x − 1)

∣∣ < 1: the radius of con-
vergence is 1, and we have convergence on (0, 2). We now check the endpoints.

At x = 0, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
= −

∞∑
n=1

1
n
,

which diverges (it is the Harmonic Series mes (−1).)
At x = 2, the series is

∞∑
n=1

(−1)n+1 (1)n

n
=

∞∑
n=1

(−1)n+1 1
n
,

the Alterna ng Harmonic Series, which converges.
We have found the Taylor series of ln x centered at x = 1, and have deter-

mined the series converges on (0, 2]. We cannot (yet) say that ln x is equal to
this Taylor series on (0, 2].

It is important to note that Defini on 8.8.1 defines a Taylor series given a
func on f(x), but makes no claim about their equality. We will find that “most
of the me” they are equal, but we need to consider the condi ons that allow
us to conclude this.

Theorem 8.7.1 states that the error between a func on f(x) and its nth–
degree Taylor polynomial pn(x) is Rn(x), where

∣∣Rn(x)∣∣ ≤ max
∣∣ f (n+1)(z)

∣∣
(n+ 1)!

∣∣(x− c)(n+1)∣∣.
If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-

clude that the func on is equal to its Taylor series expansion.

Theorem 8.8.1 Func on and Taylor Series Equality

Let f(x) have deriva ves of all orders at x = c, let Rn(x) be as stated in
Theorem 8.7.1, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

Notes:
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We demonstrate the use of this theorem in an example.

Example 8.8.3 Establishing equality of a func on and its Taylor series
Show that f(x) = cos x is equal to itsMaclaurin series, as found in Example 8.8.1,
for all x.

S Given a value x, the magnitude of the error term Rn(x) is
bounded by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣xn+1∣∣.

Since all deriva ves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state ∣∣Rn(x)∣∣ ≤ 1

(n+ 1)!
∣∣xn+1∣∣

which implies

− |xn+1|
(n+ 1)!

≤ Rn(x) ≤
|xn+1|
(n+ 1)!

. (8.7)

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to Equa on (8.7),

we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x.

It is natural to assume that a func on is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 8.8.1. This is a bit disappoin ng, as
we developed beau ful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 8.8.2; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A func on f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analy c func on, and most, if
not all, func ons that we encounter within this course are analy c func ons.
Generally speaking, any func on that one creates with elementary func ons
(polynomials, exponen als, trigonometric func ons, etc.) that is not piecewise
defined is probably analy c. Formost func ons, we assume the func on is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
8.8.1 when we suspect something may not work as expected.

Notes:
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8.8 Taylor Series

We develop the Taylor series for one more important func on, then give a
table of the Taylor series for a number of common func ons.

Example 8.8.4 The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

S When k is a posi ve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posi ve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representa on of

this func on would give a useful way of approxima ng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the deriva ves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+kx+
k(k− 1)

2!
x2+

k(k− 1)(k− 2)
3!

x3+. . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn+. . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,

we apply the Ra o Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣ k− n
n+ 1

x
∣∣∣∣

= |x|.

Notes:
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The series converges absolutely when the limit of the Ra o Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approxima ng a “difficult
to compute” func on with a polynomial. Taylor series offer a way of exactly
represen ng a func on with a series. One probably can see the use of a good
approxima on; is there any use of represen ng a func on exactly as a series?

Whilewe should not overlook themathema cal beauty of Taylor series (which
is reason enough to study them), there are prac cal uses as well. They provide
a valuable tool for solving a variety of problems, including problems rela ng to
integra on and differen al equa ons.

In Key Idea 8.8.1 (on the following page) we give a table of the Taylor series
of a number of common func ons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new func ons. This allows us to find the Taylor series of func ons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we inves gate combining func ons, consider the Taylor series for the
arctangent func on (see Key Idea 8.8.1). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this par cular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not par cularly good.

Notes:
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8.8 Taylor Series

Key Idea 8.8.1 Important Taylor Series Expansions

Func on and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=

∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

Theorem 8.8.2 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be con nuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0
bnxn

)
=

∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.
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Example 8.8.5 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
8.8.1 and Theorem 8.8.2.

S Key Idea 8.8.1 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 8.8.2, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the le :

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evalua ng all the nec-
essary deriva ves of ex cos x and compu ng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example 8.8.6 Crea ng new Taylor series
Use Theorem 8.8.2 to create series for y = sin(x2) and y = ln(

√
x).

S Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subs tute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .
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Note: In Example 8.8.6, one could cre-
ate a series for ln(

√
x) by simply recogniz-

ing that ln(
√
x) = ln(x1/2) = 1/2 ln x,

and hence mul plying the Taylor series
for ln x by 1/2. This example was cho-
sen to demonstrate other aspects of se-
ries, such as the fact that the interval of
convergence changes.

8.8 Taylor Series

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 8.8.1 is centered at x = 1, so
we will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subs tute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
func on ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4].

Example 8.8.7 Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

S We learned, when studying Numerical Integra on, that e−x2

does not have an an deriva ve expressible in terms of elementary func ons.
This means any definite integral of this func on must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .
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We use Theorem 8.6.3 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the an deriva ve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary func ons. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this an deriva ve; subs tu ng 1 and 0 for x and sub-

trac ng gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approxima on of 0.74749. Since
this is an alterna ng series, we can use the Alterna ng Series Approxima on
Theorem, (Theorem 8.5.2), to determine how accurate this approxima on is.
The next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our
approxima on is within 0.00075758 of the actual value of the integral. This is
arguably much less work than using Simpson’s Rule to approximate the value of
the integral.

Example 8.8.8 Using Taylor series to solve differen al equa ons
Solve the differen al equa on y ′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the solu on in terms of an elementary func-
on.

S We found the first 5 terms of the power series solu on to
this differen al equa on in Example 8.6.5 in Sec on 8.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
8.6.5 as we are looking for a pa ern. It can be shown that an = 2n/n!. Thus the
solu on, wri en as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 8.8.1 and Theorem 8.8.2, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.
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8.8 Taylor Series

Finding a pa ern in the coefficients that match the series expansion of a
known func on, such as those shown in Key Idea 8.8.1, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we s ll recover the func on y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

Defini on 8.8.1 states that each term of the Taylor expansion of a func on in-
cludes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pa ern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponen al
func on.

There are simpler, more direct ways of solving the differen al equa on y ′ =
2y. We applied power series techniques to this equa on to demonstrate its u l-
ity, and went on to show how some mes we are able to recover the solu on in
terms of elementary func ons using the theory of Taylor series. Most differen-
al equa ons faced in real scien fic and engineering situa ons are much more

complicated than this one, but power series can offer a valuable tool in finding,
or at least approxima ng, the solu on.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
func ons based on series. Such “series–defined func ons” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using func ons of the form y = f(x). Curves created by these new
methods can be beau ful, useful, and important.

Notes:
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Exercises 8.8
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Taylor series?

2. What theoremmustwe use to show that a func on is equal
to its Taylor series?

Problems
Key Idea 8.8.1 gives the nth term of the Taylor series of com-
mon func ons. In Exercises 3 – 6, verify the formula given in
the Key Idea by finding the first few terms of the Taylor series
of the given func on and iden fying a pa ern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth term of the Tay-
lor series of f(x), centered at c, by finding the coefficients of
the first few powers of x and looking for a pa ern. (The for-
mulas for several of these are found in Key Idea 8.8.1; show
work verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 8.8.1, is equal to f(x) by applying Theorem
8.8.1; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x (show equality only on (1, 2))

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea
8.8.1 to verify the given iden ty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea
8.8.1 to create the Taylor series of the given func ons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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9: C P
We have explored func ons of the form y = f(x) closely throughout this text.
We have explored their limits, their deriva ves and their an deriva ves; we
have learned to iden fy key features of their graphs, such as rela ve maxima
andminima, inflec on points and asymptotes; we have found equa ons of their
tangent lines, the areas between por ons of their graphs and the x-axis, and the
volumes of solids generated by revolving por ons of their graphs about a hori-
zontal or ver cal axis.

Despite all this, the graphs created by func ons of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a func on in this form. Fi ngly, the
“ver cal line test” excludes ver cal lines from being func ons of x, even though
these lines are important in mathema cs.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
s ll workwithin the framework of func ons, as an inputwill s ll only correspond
to one output. However, our new techniques of drawing curves will render the
ver cal line test pointless, and allow us to create important – and beau ful –
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, con nuing to find equa ons of tangent lines and the areas of enclosed
regions.

9.1 Conic Sec ons
The ancient Greeks recognized that interes ng shapes can be formed by inter-
sec ng a plane with a double napped cone (i.e., two iden cal cones placed p–
to– p as shown in the following figures). As these shapes are formed as sec ons
of conics, they have earned the official name “conic sec ons.”

The three “most interes ng” conic sec ons are given in the top rowof Figure
9.1.1. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the ps of the cones
(usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure 9.1.1: Conic Sec ons
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Chapter 9 Curves in the Plane

When the plane does contain the origin, three degenerate cones can be
formed as shown the bo om row of Figure 9.1.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intui ve, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a func on. It can be shown that
all conics can be defined by the general second–degree equa on

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0.

While this algebraic defini on has its uses, most find another geometric per-
spec ve of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
sa sfy a certain distance property. These distance proper es can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
func on.

Parabolas

Defini on 9.1.1 Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure 9.1.2 illustrates this defini on. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the por on of the parabola on one side of
this line is the mirror–image of the por on on the opposite side.

The defini on leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P:

d1 =
√
(x− 0)2 + (y− p)2.

The distance d2 from P to the directrix is more straigh orward:

d2 = y− (−p) = y+ p.

Notes:
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These two distances are equal. Se ng d1 = d2, we can solve for y in terms of x:

d1 = d2√
x2 + (y− p)2 = y+ p

Now square both sides.

x2 + (y− p)2 = (y+ p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1
4p

x2.

The geometric defini on of the parabola has led us to the familiar quadra c
func on whose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 9.1.1 General Equa on of a Parabola

1. Ver cal Axis of Symmetry: The equa on of the parabola with ver-
tex at (h, k) and directrix y = k− p in standard form is

y =
1
4p

(x− h)2 + k.

The focus is at (h, k+ p).

2. Horizontal Axis of Symmetry: The equa on of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1
4p

(y− k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a posi ve number.

Example 9.1.1 Finding the equa on of a parabola
Give the equa on of the parabola with focus at (1, 2) and directrix at y = 3.

S The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 9.1.1 we have the

Notes:
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equa on of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

The parabola is sketched in Figure 9.1.3.

Example 9.1.2 Finding the focus and directrix of a parabola
Find the focus and directrix of the parabola x = 1

8y
2 − y + 1. The point (7, 12)

lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

S We need to put the equa on of the parabola in its general
form. This requires us to complete the square:

x =
1
8
y2 − y+ 1

=
1
8
(
y2 − 8y+ 8

)
=

1
8
(
y2 − 8y+ 16− 16+ 8

)
=

1
8
(
(y− 4)2 − 8

)
=

1
8
(y− 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2. We conclude
that the focus is located at (1, 4) and the directrix is x = −3. The parabola is
graphed in Figure 9.1.4, along with its focus and directrix.

The point (7, 12) lies on the graph and is 7 − (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:√

(7− 1)2 + (12− 4)2 =
√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and directrix.

Reflec ve Property

One of the fascina ng things about the nondegenerate conic sec ons is their
reflec ve proper es. Parabolas have the following reflec ve property:

Any ray emana ng from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.1.5. The following theorem states this more
rigorously.

Notes:
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9.1 Conic Sec ons

Theorem 9.1.1 Reflec ve Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F, and

2. The line perpendicular to the directrix through P.

Because of this reflec ve property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effec vely approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

Ellipses

Defini on 9.1.2 Ellipse

An ellipse is the locus of all points whose sumof distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construc on of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil ght against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.1.6.

We can again find an algebraic equa on for an ellipse using this geometric
defini on. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled as F1 = (−c, 0) and F2 = (c, 0). Let P = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is a
constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equa on of an ellipse
(note that the equa on is an implicitly defined func on; it has to be, as an ellipse
fails the Ver cal Line Test):

x2( d
2
)2 +

y2( d
2
)2 − c2

= 1.

Notes:
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Figure 9.1.7: Labeling the significant fea-
tures of an ellipse.
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This is not par cularly illumina ng, but by making the subs tu on a = d/2 and
b =

√
a2 − c2, we can rewrite the above equa on as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 9.1.7, the values
of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on themajor axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shi ing of the ellipse gives the following standard equa ons.

Key Idea 9.1.2 Standard Equa on of the Ellipse

The equa on of an ellipse centered at (h, k)with major axis of length 2a
and minor axis of length 2b in standard form is:

1. Horizontal major axis: (x− h)2

a2
+

(y− k)2

b2
= 1.

2. Ver cal major axis: (x− h)2

b2
+

(y− k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

Example 9.1.3 Finding the equa on of an ellipse
Find the general equa on of the ellipse graphed in Figure 9.1.8.

S The center is located at (−3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equa on of the ellipse is

(x+ 3)2

4
+

(y− 1)2

25
= 1.

Example 9.1.4 Graphing an ellipse
Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.

Notes:
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Figure 9.1.9: Graphing the ellipse in Ex-
ample 9.1.4.
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Figure 9.1.10: Understanding the eccen-
tricity of an ellipse.

9.1 Conic Sec ons

S It is simple to graph an ellipse once it is in standard form. In
order to put the given equa on in standard form, we must complete the square
with both the x and y terms. We first rewrite the equa on by regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4
4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y+ 4− 4) = −4
4
(
(x− 1)2 − 1

)
+ 9
(
(y− 2)2 − 4

)
= −4

4(x− 1)2 − 4+ 9(y− 2)2 − 36 = −4
4(x− 1)2 + 9(y− 2)2 = 36
(x− 1)2

9
+

(y− 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2; the ma-
jor axis is horizontal, so the ver ces are located at (−2, 2) and (4, 2). We find
c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along the major axis, approxi-

mately 2.24 units from the center, at (1± 2.24, 2). This is all graphed in Figure
9.1.9 .

Eccentricity

When a = b, we have a circle. The general equa on becomes

(x− h)2

a2
+

(y− k)2

a2
= 1 ⇒ (x− h)2 + (y− k)2 = a2,

the familiar equa on of the circle centered at (h, k) with radius a. Since a = b,
c =

√
a2 − b2 = 0. The circle has “two” foci, but they lie on the same point, the

center of the circle.
Consider Figure 9.1.10, where several ellipses are graphed with a = 1. In

(a), we have c = 0 and the ellipse is a circle. As c grows, the resul ng ellipses
look less and less circular. A measure of this “noncircularness” is eccentricity.

Defini on 9.1.3 Eccentricity of an Ellipse

The eccentricity e of an ellipse is e =
c
a
.

Notes:
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Figure 9.1.11: Illustra ng the reflec ve
property of an ellipse.

Chapter 9 Curves in the Plane

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.1.10 (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are ellip cal. Earth has an eccentricity of 0.0167 – it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very cir-
cular.

Reflec ve Property

The ellipse also possesses an interes ng reflec ve property. Any ray ema-
na ng from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure 9.1.11. This property is given formally in
the following theorem.

Theorem 9.1.2 Reflec ve Property of an Ellipse

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

This reflec ve property is useful in op cs and is the basis of the phenomena
experienced in whispering halls.

Hyperbolas

The defini on of a hyperbola is very similar to the defini on of an ellipse; we
essen ally just change the word “sum” to “difference.”

Defini on 9.1.4 Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

Notes:
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Figure 9.1.13: Graphing the hyperbola
x2
9 − y2

1 = 1 along with its asymptotes,
y = ±x/3.
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Figure 9.1.14: Using the asymptotes of a
hyperbola as a graphing aid.

9.1 Conic Sec ons

We do not have a convenient way of visualizing the construc on of a hyper-
bola as we did for the ellipse. The geometric defini on does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate
axis. This is illustrated in Figure 9.1.12. It is easy to show that the constant
difference of distances used in the defini on of the hyperbola is the distance
between the ver ces, i.e., 2a.

Key Idea 9.1.3 Standard Equa on of a Hyperbola

The equa on of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y− k)2

b2
= 1.

2. Ver cal Transverse Axis:
(y− k)2

a2
− (x− h)2

b2
= 1.

The ver ces are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas

Consider the hyperbola x2
9 −

y2
1 = 1. Solving for y, we find y = ±

√
x2/9− 1.

As x grows large, the “−1” part of the equa on for y becomes less significant and
y ≈ ±

√
x2/9 = ±x/3. That is, as x gets large, the graph of the hyperbola looks

verymuch like the lines y = ±x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 9.1.13.

This is a valuable tool in sketching. Given the equa on of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.1.14 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is ver cal, their slopes are±a/b. This
gives equa ons:

Notes:
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Figure 9.1.16: Graphing the hyperbola in
Example 9.1.6.

Chapter 9 Curves in the Plane

Horizontal
Transverse Axis

Ver cal
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

Example 9.1.5 Graphing a hyperbola

Sketch the hyperbola given by
(y− 2)2

25
− (x− 1)2

4
= 1.

S The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 9.1.15 we draw the prescribed rectangle centered at (1, 2) along with
the asymptotes defined by its diagonals. The hyperbola has a ver cal transverse
axis, so the ver ces are located at (1, 7) and (1,−3). This is enough to make a
good sketch.

We also find the loca on of the foci: as c2 = a2 + b2, we have c =
√
29 ≈

5.4. Thus the foci are located at (1, 2± 5.4) as shown in the figure.

Example 9.1.6 Graphing a hyperbola
Sketch the hyperbola given by 9x2 − y2 + 2y = 10.

S Wemust complete the square to put the equa on in general
form. (We recognize this as a hyperbola since it is a general quadra c equa on
and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10
9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y+ 1− 1) = 10
9x2 −

(
(y− 1)2 − 1

)
= 10

9x2 − (y− 1)2 = 9

x2 − (y− 1)2

9
= 1

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 9.1.16
along with the asymptotes of the hyperbola. The ver ces are located at (±1, 1).
We have c =

√
10 ≈ 3.2, so the foci are located at (±3.2, 1) as shown in the

figure.

Notes:
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Figure 9.1.17: Understanding the eccen-
tricity of a hyperbola.

9.1 Conic Sec ons

Eccentricity

Defini on 9.1.5 Eccentricity of a Hyperbola

The eccentricity of a hyperbola is e =
c
a
.

Note that this is the defini on of eccentricity as used for the ellipse. When
c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking almost
like crossed lines). Figure 9.1.17 shows hyperbolas centered at the origin with
a = 1. The graph in (a) has c = 1.05, giving an eccentricity of e = 1.05, which
is close to 1. As c grows larger, the hyperbola widens and begins to look like
parallel lines, as shown in part (d) of the figure.

Reflec ve Property

Hyperbolas share a similar reflec ve property with ellipses. However, in the
case of a hyperbola, a ray emana ng from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure 9.1.19 (on the next page). Hyperbolic mirrors
are commonly used in telescopes because of this reflec ve property. It is stated
formally in the following theorem.

Theorem 9.1.3 Reflec ve Property of Hyperbolas

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

Loca on Determina on

Determining the loca on of a known event has many prac cal uses (loca ng
the epicenter of an earthquake, an airplane crash site, the posi on of the person
speaking in a large room, etc.).

To determine the loca on of an earthquake’s epicenter, seismologists use
trilatera on (not to be confused with triangula on). A seismograph allows one

Notes:
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Figure 9.1.19: Illustra ng the reflec ve
property of a hyperbola.

Chapter 9 Curves in the Plane

to determine how far away the epicenter was; using three separate readings,
the loca on of the epicenter can be approximated.

A key to this method is knowing distances. What if this informa on is not
available? Consider three microphones at posi ons A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown loca on D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the loca on be determined in such a situa on?

If each loca on has a clock set to the same me, hyperbolas can be used
to determine the loca on. Suppose the microphone at posi on A records the
sound at exactly 12:00, loca on B records the me exactly 1 second later, and
loca on C records the noise exactly 2 seconds a er that. We are interested in
the difference of mes. Since the speed of sound is approximately 340 m/s, we
can conclude quickly that the sound was created 340meters closer to posi on A
than posi on B. If A and B are a known distance apart (as shown in Figure 9.1.18
(a)), then we can determine a hyperbola on which Dmust lie.

The “difference of distances” is 340; this is also the distance between ver ces
of the hyperbola. So we know 2a = 340. Posi ons A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by posi ons B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We s ll have
2c = 1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This
hyperbola is sketched in part (c) of the figure. The intersec on point of the two
graphs is the loca on of the sound, at approximately (188,−222.5).
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Figure 9.1.18: Using hyperbolas in loca on detec on.

This chapter explores curves in the plane, in par cular curves that cannot
be described by func ons of the form y = f(x). In this sec on, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sec ons, we will learn completely new ways of describing curves in the plane,
using parametric equa ons and polar coordinates, then study these curves using
calculus techniques.

Notes:
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Exercises 9.1
Terms and Concepts

1. What is the difference between degenerate and nondegen-
erate conics?

2. Use your own words to explain what the eccentricity of an
ellipse measures.

3. What has the largest eccentricity: an ellipse or a hyper-
bola?

4. Explainwhy the following is true: “If the coefficient of the x2
term in the equa onof an ellipse in standard form is smaller
than the coefficient of the y2 term, then the ellipse has a
horizontal major axis.”

5. Explain how one can quickly look at the equa on of a hy-
perbola in standard form and determinewhether the trans-
verse axis is horizontal or ver cal.

6. Fill in the blank: It can be said that ellipses and hyperbolas
share the same reflec ve property: “A ray emana ng from
one focus will reflect off the conic along a that
contains the other focus.”

Problems
In Exercises 7 – 14, find the equa on of the parabola defined
by the given informa on. Sketch the parabola.

7. Focus: (3, 2); directrix: y = 1

8. Focus: (−1,−4); directrix: y = 2

9. Focus: (1, 5); directrix: x = 3

10. Focus: (1/4, 0); directrix: x = −1/4

11. Focus: (1, 1); vertex: (1, 2)

12. Focus: (−3, 0); vertex: (0, 0)

13. Vertex: (0, 0); directrix: y = −1/16

14. Vertex: (2, 3); directrix: x = 4

In Exercises 15 – 16, the equa on of a parabola and a point
on its graph are given. Find the focus and directrix of the
parabola, and verify that the given point is equidistant from
the focus and directrix.

15. y = 1
4 x

2, P = (2, 1)

16. x = 1
8 (y− 2)2 + 3, P = (11, 10)

In Exercises 17 – 18, sketch the ellipse defined by the given
equa on. Label the center, foci and ver ces.

17. (x− 1)2

3
+

(y− 2)2

5
= 1

18. 1
25

x2 + 1
9
(y+ 3)2 = 1

In Exercises 19 – 20, find the equa on of the ellipse shown in
the graph. Give the loca on of the foci and the eccentricity
of the ellipse.

19.

−4 −2 2

2

4

x

y

20.
−1 1 2

−2

2

x

y

In Exercises 21 – 24, find the equa on of the ellipse defined
by the given informa on. Sketch the elllipse.

21. Foci: (±2, 0); ver ces: (±3, 0)

22. Foci: (−1, 3) and (5, 3); ver ces: (−3, 3) and (7, 3)

23. Foci: (2,±2); ver ces: (2,±7)

24. Focus: (−1, 5); vertex: (−1,−4); center: (−1, 1)

In Exercises 25 – 28, write the equa on of the given ellipse in
standard form.

25. x2 − 2x+ 2y2 − 8y = −7

26. 5x2 + 3y2 = 15

27. 3x2 + 2y2 − 12y+ 6 = 0

28. x2 + y2 − 4x− 4y+ 4 = 0
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In Exercises 29 – 32, find the equa onof the hyperbola shown
in the graph.

29.
−1 1 2−2

−2

2

x

y

30.
−5 5

−5

5

x

y

31.

5

2

4

6

x

y

32.

5

2

4

6

x

y

In Exercises 33 – 34, sketch the hyperbola defined by the
given equa on. Label the center and foci.

33. (x− 1)2

16
− (y+ 2)2

9
= 1

34. (y− 4)2 − (x+ 1)2

25
= 1

In Exercises 35 – 38, find the equa on of the hyperbola de-
fined by the given informa on. Sketch the hyperbola.

35. Foci: (±3, 0); ver ces: (±2, 0)

36. Foci: (0,±3); ver ces: (0,±2)

37. Foci: (−2, 3) and (8, 3); ver ces: (−1, 3) and (7, 3)

38. Foci: (3,−2) and (3, 8); ver ces: (3, 0) and (3, 6)

In Exercises 39 – 42, write the equa on of the hyperbola in
standard form.

39. 3x2 − 4y2 = 12

40. 3x2 − y2 + 2y = 10

41. x2 − 10y2 + 40y = 30

42. (4y− x)(4y+ x) = 4

43. Consider the ellipse given by (x− 1)2

4
+

(y− 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1+
√
2, 3+

√
6) ≈

(2.414, 5.449) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

44. Johannes Kepler discovered that the planets of our solar
system have ellip cal orbits with the Sun at one focus. The
Earth’s ellip cal orbit is used as a standard unit of distance;
the distance from the center of Earth’s ellip cal orbit to one
vertex is 1 Astronomical Unit, or A.U.
The following table gives informa on about the orbits of
three planets.

Distance from
center to vertex

eccentricity

Mercury 0.387 A.U. 0.2056
Earth 1 A.U. 0.0167
Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2 − b2 and e = c/a
allows us to find b in terms of a and e. Show b =
a
√
1− e2.

(b) For each planet, find equa ons of their ellip cal orbit

of the form x2

a2
+

y2

b2
= 1. (This places the center at

(0, 0), but the Sun is in a different loca on for each
planet.)

(c) Shi the equa ons so that the Sun lies at the origin.
Plot the three ellip cal orbits.

45. A loud sound is recorded at three sta ons that lie on a line
as shown in the figure below. Sta on A recorded the sound
1 second a er Sta on B, and Sta on C recorded the sound
3 seconds a er B. Using the speed of sound as 340m/s,
determine the loca on of the sound’s origina on.

A 1000m B 2000m C
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9.2 Parametric Equa ons

9.2 Parametric Equa ons
We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Choose
x

Use a func on
f to find y(
y = f(x)

) Plot point
(x, y)

The rectangular equa on y = f(x)workswell for some shapes like a parabola
with a ver cal axis of symmetry, but in the previous sec onwe encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bo om” separately.)

In this sec on we introduce a new sketching procedure:

Choose
t

Use a func on
f to find x(
x = f(t)

)
Use a func on
g to find y(
y = g(t)

)
Plot point
(x, y)

Here, x and y are found separately but then plo ed together. This leads us
to a defini on.

Defini on 9.2.1 Parametric Equa ons and Curves

Let f and g be con nuous func ons on an interval I. The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I, is the graph

of the parametric equa ons x = f(t) and y = g(t), where t is the param-
eter. A curve is a graph along with the parametric equa ons that define
it.

This is a formal defini on of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is o en referred to as a plane curve. Examples
will help us understand the concepts introduced in the defini on.

Example 9.2.1 Plo ng parametric func ons

Plot the graph of the parametric equa ons x = t2, y = t+ 1 for t in [−2, 2].

Notes:
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t x y
−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3
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(b)

Figure 9.2.1: A table of values of the para-
metric equa ons in Example 9.2.1 along
with a sketch of their graph.

t x y
0 1 2

π/4 1/2 1+
√
2/2

π/2 0 1
3π/4 1/2 1−

√
2/2

π 1 0

(a)

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

2

.

t = 0

.

t = π/4
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.
t = π

. x.

y

(b)

Figure 9.2.2: A table of values of the para-
metric equa ons in Example 9.2.2 along
with a sketch of their graph.

Chapter 9 Curves in the Plane

S We plot the graphs of parametric equa ons in much the
samemanner as we plo ed graphs of func ons like y = f(x): wemake a table of
values, plot points, then connect these pointswith a “reasonable” looking curve.
Figure 9.2.1(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are plo ed in Figure 9.2.1(b). The points
have been connected with a smooth curve. Each point has been labeled with
its corresponding t-value. These values, along with the two arrows along the
curve, are used to indicate the orienta on of the graph. This informa on helps
us determine the direc on in which the graph is “moving.”

We o en use the le er t as the parameter as we o en regard t as represent-
ing me. Certainly there are many contexts in which the parameter is not me,
but it can be helpful to think in terms of me as one makes sense of parametric
plots and their orienta on (for instance, “At me t = 0 the posi on is (1, 2) and
at me t = 3 the posi on is (5, 1).”).

Example 9.2.2 Plo ng parametric func ons

Sketch the graph of the parametric equa ons x = cos2 t, y = cos t + 1 for t
in [0, π].

S We again start by making a table of values in Figure 9.2.2(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.2.2(b).

It is not difficult to show that the curves in Examples 9.2.1 and 9.2.2 are
por ons of the same parabola. While the parabola is the same, the curves are
different. In Example 9.2.1, if we let t vary over all real numbers, we’d obtain
the en re parabola. In this example, le ng t vary over all real numbers would
s ll produce the same graph; this por on of the parabola would be traced, and
re–traced, infinitely many mes. The orienta on shown in Figure 9.2.2 shows
the orienta on on [0, π], but this orienta on is reversed on [π, 2π].

These examples begin to illustrate the powerful nature of parametric equa-
ons. Their graphs are far more diverse than the graphs of func ons produced

by “y = f(x)” func ons.

Technology Note: Most graphing u li es can graph func ons given in paramet-
ric form. O en the word “parametric” is abbreviated as “PAR” or “PARAM” in
the op ons. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be plo ed. The user is o en prompted to give a tminimum, a tmaximum, and
a “t-step” or “∆t.” Graphing u li es effec vely plot parametric func ons just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure 9.2.1, the t-step is

Notes:
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9.2 Parametric Equa ons

1; in Figure 9.2.2, the t-step is π/4.

One nice feature of parametric equa ons is that their graphs are easy to
shi . While this is not too difficult in the “y = f(x)” context, the resul ng func-
on can look rather messy. (Plus, to shi to the right by two, we replace x with

x− 2, which is counter–intui ve.) The following example demonstrates this.

Example 9.2.3 Shi ing the graph of parametric func ons
Sketch the graph of the parametric equa ons x = t2 + t, y = t2 − t. Find new
parametric equa ons that shi this graph to the right 3 places and down 2.

S The graphof the parametric equa ons is given in Figure 9.2.3
(a). It is a parabola with a axis of symmetry along the line y = x; the vertex is at
(0, 0).

In order to shi the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straigh orward way to accomplish this is simply
to add 3 to the func on defining x: x = t2 + t+ 3. To shi the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the func on
defining y: y = t2 − t− 2. Thus our parametric equa ons for the shi ed graph
are x = t2+ t+ 3, y = t2− t− 2. This is graphed in Figure 9.2.3 (b). No ce how
the vertex is now at (3,−2).

Because the x- and y-values of a graph are determined independently, the
graphs of parametric func ons o en possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 9.2.4 Graphs that cross themselves
Plot the parametric func ons x = t3 − 5t2 + 3t + 11 and y = t2 − 2t + 3 and
determine the t-values where the graph crosses itself.

S Using the methods developed in this sec on, we again plot
points and graph the parametric equa ons as shown in Figure 9.2.4. It appears
that the graph crosses itself at the point (2, 6), but we’ll need to analy cally
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equa ons with 2 unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11
s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the quadra c

Notes:
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formula, one can solve for t in the second equa on and find that t = 1 ±√
s2 − 2s+ 1. This can be subs tuted into the first equa on, revealing that the

graph crosses itself at t = −1 and t = 3. We confirm our result by compu ng
x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

Conver ng between rectangular and parametric equa ons

It is some mes useful to rewrite equa ons in rectangular form (i.e., y = f(x))
into parametric form, and vice–versa. Conver ng from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equa ons x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equa ons
x = t, y = t2 produce the familiar parabola. However, other parametriza ons
can be used. The following example demonstrates one possible alterna ve.

Example 9.2.5 Conver ng from rectangular to parametric
Consider y = x2. Find parametric equa ons x = f(t), y = g(t) for the parabola
where t = dy

dx . That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

S We start by compu ng dy
dx : y

′ = 2x. Thus we set t = 2x. We
can solve for x and find x = t/2. Knowing that y = x2, we have y = t2/4. Thus
parametric equa ons for the parabola y = x2 are

x = t/2 y = t2/4.

To find the point where the tangent line has a slope of −2, we set t = −2. This
gives the point (−1, 1). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of−2.

We some mes choose the parameter to accurately model physical behavior.

Example 9.2.6 Conver ng from rectangular to parametric
An object is fired from a height of 0 and lands 6 seconds later, 192 away. As-
suming ideal projec lemo on, the height, in feet, of the object can be described
by h(x) = −x2/64+ 3x, where x is the distance in feet from the ini al loca on.
(Thus h(0) = h(192) = 0 .) Find parametric equa ons x = f(t), y = g(t)
for the path of the projec le where x is the horizontal distance the object has
traveled at me t (in seconds) and y is the height at me t.

S Physics tells us that the horizontal mo on of the projec le
is linear; that is, the horizontal speed of the projec le is constant. Since the
object travels 192 in 6s, we deduce that the object is moving horizontally at
a rate of 32 /s, giving the equa on x = 32t. As y = −x2/64 + 3x, we find

Notes:
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9.2 Parametric Equa ons

y = −16t2 + 96t. We can quickly verify that y ′′ = −32 /s2, the accelera on
due to gravity, and that the projec le reaches its maximum at t = 3, halfway
along its path.

These parametric equa onsmake certain determina ons about the object’s
loca on easy: 2 seconds into the flight the object is at the point

(
x(2), y(2)

)
=(

64, 128
)
. That is, it has traveled horizontally 64 and is at a height of 128 , as

shown in Figure 9.2.5.

It is some mes necessary to convert given parametric equa ons into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equa ons can have very “complicated” rectangular equa ons. This
conversion is o en referred to as “elimina ng the parameter,” as we are looking
for a rela onship between x and y that does not involve the parameter t.

Example 9.2.7 Elimina ng the parameter
Find a rectangular equa on for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

S There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equa on and then subs tute that value in the second. We
use that technique here, then show a second, simpler method.

Star ng with x = 1/(t2 + 1), solve for t: t = ±
√

1/x− 1. Subs tute this
value for t in the equa on for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1+ 1

=
1/x− 1
1/x

=

(
1
x
− 1
)
· x

= 1− x.

Thus y = 1 − x. One may have recognized this earlier by manipula ng the
equa on for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

Notes:
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This is a shortcut that is very specific to this problem; some mes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the func on y = 1 − x. The
parametric equa ons limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1− x to the same.

The graphs of these func ons is given in Figure 9.2.6. The por on of the
graph defined by the parametric equa ons is given in a thick line; the graph de-
fined by y = 1− x with unrestricted domain is given in a thin line.

Example 9.2.8 Elimina ng the parameter
Eliminate the parameter in x = 4 cos t+ 3, y = 2 sin t+ 1

S We should not try to solve for t in this situa on as the re-
sul ng algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equa on, respec vely. This gives

cos t =
x− 3
4

and sin t =
y− 1
2

.

The Pythagorean Theorem gives cos2 t+ sin2 t = 1, so:

cos2 t+ sin2 t = 1(
x− 3
4

)2

+

(
y− 1
2

)2

= 1

(x− 3)2

16
+

(y− 1)2

4
= 1

This final equa on should look familiar – it is the equa on of an ellipse! Figure
9.2.7 plots the parametric equa ons, demonstra ng that the graph is indeed of
an ellipse with a horizontal major axis and center at (3, 1).

The Pythagorean Theorem can also be used to iden fy parametric equa ons
for hyperbolas. We give the parametric equa ons for ellipses and hyperbolas in
the following Key Idea.

Notes:
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9.2 Parametric Equa ons

Key Idea 9.2.1 Parametric Equa ons of Ellipses and Hyperbolas

• The parametric equa ons

x = a cos t+ h, y = b sin t+ k

define an ellipse with horizontal axis of length 2a and ver cal axis
of length 2b, centered at (h, k).

• The parametric equa ons

x = a tan t+ h, y = ±b sec t+ k

define a hyperbola with ver cal transverse axis centered at (h, k),
and

x = ±a sec t+ h, y = b tan t+ k

defines a hyperbola with horizontal transverse axis. Each has
asymptotes at y = ±b/a(x− h) + k.

Special Curves

Figure 9.2.8 gives a small gallery of “interes ng” and “famous” curves along
with parametric equa ons that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
func ons are not differen able at these points. This leads us to a defini on.

Defini on 9.2.2 Smooth

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if f ′ and
g ′ are con nuous on I and not simultaneously 0 (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be par oned
into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3 t, y = sin3 t. Taking deriva ves, we
have:

x ′ = −3 cos2 t sin t and y ′ = 3 sin2 t cos t.

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not smooth

Notes:
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at these points, corresponding to the cusps seen in the figure.
We demonstrate this once more.

Example 9.2.9 Determine where a curve is not smooth
Let a curve C be defined by the parametric equa ons x = t3 − 12t + 17 and
y = t2 − 4t+ 8. Determine the points, if any, where it is not smooth.

S We begin by taking deriva ves.

x ′ = 3t2 − 12, y ′ = 2t− 4.

We set each equal to 0:

x ′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2
y ′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x ′ and y ′ are 0; thus C is not smooth at t = 2, correspond-
ing to the point (1, 4). The curve is graphed in Figure 9.2.9, illustra ng the cusp
at (1, 4).

If a curve is not smooth at t = t0, it means that x ′(t0) = y ′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equa ons describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direc on, whereas moving objects tend to change
direc on in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6 pro-
duce the familiar y = x2 parabola. However, in this parametriza on, the curve
is not smooth. A par cle traveling along the parabola according to the given
parametric equa ons comes to rest at t = 0, though no sharp point is created.

Our previous experience with cusps taught us that a func on was not differ-
en able at a cusp. This can lead us to wonder about deriva ves in the context
of parametric equa ons and the applica on of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
on.

Notes:
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Exercises 9.2
Terms and Concepts

1. T/F:When sketching the graph of parametric equa ons, the
x and y values are found separately, then plo ed together.

2. The direc on in which a graph is “moving” is called the
of the graph.

3. An equa on wri en as y = f(x) is wri en in form.

4. Create parametric equa ons x = f(t), y = g(t) and sketch
their graph. Explain any interes ng features of your graph
based on the func ons f and g.

Problems

In Exercises 5 – 8, sketch the graph of the given parametric
equa ons by hand, making a table of points to plot. Be sure
to indicate the orienta on of the graph.

5. x = t2 + t, y = 1− t2, −3 ≤ t ≤ 3

6. x = 1, y = 5 sin t, −π/2 ≤ t ≤ π/2

7. x = t2, y = 2, −2 ≤ t ≤ 2

8. x = t3 − t+ 3, y = t2 + 1, −2 ≤ t ≤ 2

In Exercises 9 – 18, sketch the graph of the given paramet-
ric equa ons; using a graphing u lity is advisable. Be sure to
indicate the orienta on of the graph.

9. x = t3 − 2t2, y = t2, −2 ≤ t ≤ 3

10. x = 1/t, y = sin t, 0 < t ≤ 10

11. x = 3 cos t, y = 5 sin t, 0 ≤ t ≤ 2π

12. x = 3 cos t+ 2, y = 5 sin t+ 3, 0 ≤ t ≤ 2π

13. x = cos t, y = cos(2t), 0 ≤ t ≤ π

14. x = cos t, y = sin(2t), 0 ≤ t ≤ 2π

15. x = 2 sec t, y = 3 tan t, −π/2 < t < π/2

16. x = cosh t, y = sinh t, −2 ≤ t ≤ 2

17. x = cos t+ 1
4 cos(8t), y = sin t+ 1

4 sin(8t), 0 ≤ t ≤ 2π

18. x = cos t+ 1
4 sin(8t), y = sin t+ 1

4 cos(8t), 0 ≤ t ≤ 2π

In Exercises 19 – 20, four sets of parametric equa ons are
given. Describe how their graphs are similar and different.
Be sure to discuss orienta on and ranges.

19. (a) x = t y = t2, −∞ < t < ∞

(b) x = sin t y = sin2 t, −∞ < t < ∞

(c) x = et y = e2t, −∞ < t < ∞

(d) x = −t y = t2, −∞ < t < ∞

20. (a) x = cos t y = sin t, 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos t) y = sin(cos t), 0 ≤ t ≤ 2π

In Exercises 21 – 30, eliminate the parameter in the given
parametric equa ons.

21. x = 2t+ 5, y = −3t+ 1

22. x = sec t, y = tan t

23. x = 4 sin t+ 1, y = 3 cos t− 2

24. x = t2, y = t3

25. x = 1
t+ 1

, y = 3t+ 5
t+ 1

26. x = et, y = e3t − 3

27. x = ln t, y = t2 − 1

28. x = cot t, y = csc t

29. x = cosh t, y = sinh t

30. x = cos(2t), y = sin t

In Exercises 31 – 34, eliminate the parameter in the given
parametric equa ons. Describe the curve defined by the
parametric equa ons based on its rectangular form.

31. x = at+ x0, y = bt+ y0

32. x = r cos t, y = r sin t

33. x = a cos t+ h, y = b sin t+ k

34. x = a sec t+ h, y = b tan t+ k
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In Exercises 35 – 38, find parametric equa ons for the given
rectangular equa on using the parameter t = dy

dx
. Verify that

at t = 1, the point on the graph has a tangent line with slope
of 1.

35. y = 3x2 − 11x+ 2

36. y = ex

37. y = sin x on [0, π]

38. y =
√
x on [0,∞)

In Exercises 39 – 42, find the values of t where the graph of
the parametric equa ons crosses itself.

39. x = t3 − t+ 3, y = t2 − 3

40. x = t3 − 4t2 + t+ 7, y = t2 − t

41. x = cos t, y = sin(2t) on [0, 2π]

42. x = cos t cos(3t), y = sin t cos(3t) on [0, π]

In Exercises 43 – 46, find the value(s) of t where the curve
defined by the parametric equa ons is not smooth.

43. x = t3 + t2 − t, y = t2 + 2t+ 3

44. x = t2 − 4t, y = t3 − 2t2 − 4t

45. x = cos t, y = 2 cos t

46. x = 2 cos t− cos(2t), y = 2 sin t− sin(2t)

In Exercises 47 – 55, find parametric equa ons that describe
the given situa on.

47. A projec le is fired from a height of 0 , landing 16 away
in 4s.

48. A projec le is fired from a height of 0 , landing 200 away
in 4s.

49. A projec le is fired from a height of 0 , landing 200 away
in 20s.

50. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 2π].

51. A circle of radius 3, centered at (1, 1), that is traced once
counter–clockwise on [0, 1].

52. An ellipse centered at (1, 3) with ver cal major axis of
length 6 and minor axis of length 2.

53. An ellipse with foci at (±1, 0) and ver ces at (±5, 0).

54. A hyperbola with foci at (5,−3) and (−1,−3), and with
ver ces at (1,−3) and (3,−3).

55. A hyperbola with ver ces at (0,±6) and asymptotes y =
±3x.
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9.3 Calculus and Parametric Equa ons

9.3 Calculus and Parametric Equa ons
The previous sec on defined curves based on parametric equa ons. In this sec-
on we’ll employ the techniques of calculus to study these curves.
We are s ll interested in lines tangent to points on a curve. They describe

how the y-values are changing with respect to the x-values, they are useful in
making approxima ons, and they indicate instantaneous direc on of travel.

The slope of the tangent line is s ll dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equa ons. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx

· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy
dt

/
dx
dt

=
g ′(t)
f ′(t)

,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 9.3.1 Finding dy
dx with Parametric Equa ons.

Let x = f(t) and y = g(t), where f and g are differen able on some open
interval I and f ′(t) ̸= 0 on I. Then

dy
dx

=
g ′(t)
f ′(t)

.

We use this to define the tangent line.

Defini on 9.3.1 Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g(t), where f and g
are differen able func ons on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g ′(t0)/f ′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with slope

m = −f ′(t0)/g ′(t0), provided g ′(t0) ̸= 0.

The defini on leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above defini on as g ′(t0) = 0.

Notes:
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Chapter 9 Curves in the Plane

Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
defini on.

1. If the tangent line at t = t0 has a slope of 0, the normal line to C at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line to C at t = t0
is the line x = f(t0).

Example 9.3.1 Tangent and Normal Lines to Curves
Let x = 5t2−6t+4 and y = t2+6t−1, and let C be the curve defined by these
equa ons.

1. Find the equa ons of the tangent and normal lines to C at t = 3.

2. Find where C has ver cal and horizontal tangent lines.

S

1. We start by compu ng f ′(t) = 10t− 6 and g ′(t) = 2t+ 6. Thus

dy
dx

=
2t+ 6
10t− 6

.

Make note of something that might seem unusual: dy
dx is a func on of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point onC at t = 3 is (31, 26). The slope of the tangent line ism = 1/2
and the slope of the normal line ism = −2. Thus,

• the equa on of the tangent line is y =
1
2
(x− 31) + 26, and

• the equa on of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 9.3.1.

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and solve for

t. In this case, this amounts to se ng g ′(t) = 0 and solving for t (and
making sure that f ′(t) ̸= 0).

g ′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point on C corresponding to t = −3 is (67,−10); the tangent line at
that point is horizontal (hence with equa on y = −10).

Notes:
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normal lines pass through its center.

9.3 Calculus and Parametric Equa ons

TofindwhereChas a ver cal tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g ′(t) = 0. This amounts to se ng f ′(t) = 0 and
solving for t (and making sure that g ′(t) ̸= 0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tangent line at
that point is x = 2.2.
The points where the tangent lines are ver cal and horizontal are indi-
cated on the graph in Figure 9.3.1.

Example 9.3.2 Tangent and Normal Lines to a Circle

1. Find where the unit circle, defined by x = cos t and y = sin t on [0, 2π],
has ver cal and horizontal tangent lines.

2. Find the equa on of the normal line at t = t0.

S

1. We compute the deriva ve following Key Idea 9.3.1:

dy
dx

=
g ′(t)
f ′(t)

= −cos t
sin t

.

The deriva ve is 0 when cos t = 0; that is, when t = π/2, 3π/2. These
are the points (0, 1) and (0,−1) on the circle.
The normal line is horizontal (and hence, the tangent line is ver cal) when
sin t = 0; that is, when t = 0, π, 2π, corresponding to the points (−1, 0)
and (0, 1) on the circle. These results should make intui ve sense.

2. The slope of the normal line at t = t0 ism =
sin t0
cos t0

= tan t0. This normal

line goes through the point (cos t0, sin t0), giving the line

y =
sin t0
cos t0

(x− cos t0) + sin t0

= (tan t0)x,

as long as cos t0 ̸= 0. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure 9.3.2.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Notes:
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Chapter 9 Curves in the Plane

Example 9.3.3 Tangent lines when dy
dx is not defined

Find the equa on of the tangent line to the astroid x = cos3 t, y = sin3 t at
t = 0, shown in Figure 9.3.3.

S We start by finding x ′(t) and y ′(t):

x ′(t) = −3 sin t cos2 t, y ′(t) = 3 cos t sin2 t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. Evalua ng dy

dx at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limit as t → 0.

lim
t→0

y ′(t)
x ′(t)

= lim
t→0

3 cos t sin2 t
−3 sin t cos2 t

(We can cancel as t ̸= 0.)

= lim
t→0

− sin t
cos t

= 0.

Wehave accomplished something significant. When the deriva ve dy
dx returns an

indeterminate form at t = t0, we can define its value by se ng it to be lim
t→t0

dy
dx ,

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tan-
gent line is y = 0, the x-axis.

Concavity

We con nue to analyze curves in the plane by considering their concavity;
that is, we are interested in d2y

dx2 , “the second deriva ve of y with respect to x.”
To find this, we need to find the deriva ve of dy

dx with respect to x; that is,

d2y
dx2

=
d
dx

[
dy
dx

]
,

but recall that dy
dx is a func on of t, not x, making this computa on not straight-

forward.
To make the upcoming nota on a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx

· dx
dt

⇒ dh
dx

=
dh
dt

/
dx
dt

.

Notes:
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Figure 9.3.4: Graphing the parametric
equa ons in Example 9.3.4 to demon-
strate concavity.

9.3 Calculus and Parametric Equa ons

In words, to find d2y
dx2 , we first take the deriva ve of dy

dx with respect to t, then
divide by x ′(t). We restate this as a Key Idea.

Key Idea 9.3.2 Finding d2y
dx2 with Parametric Equa ons

Let x = f(t) and y = g(t) be twice differen able func ons on an open
interval I, where f ′(t) ̸= 0 on I. Then

d2y
dx2

=
d
dt

[
dy
dx

]/
dx
dt

=
d
dt

[
dy
dx

]/
f ′(t).

Examples will help us understand this Key Idea.

Example 9.3.4 Concavity of Plane Curves
Let x = 5t2 − 6t + 4 and y = t2 + 6t − 1 as in Example 9.3.1. Determine the
t-intervals on which the graph is concave up/down.

S Concavity is determined by the second deriva ve of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 9.3.2.

In Example 9.3.1, we found
dy
dx

=
2t+ 6
10t− 6

and f ′(t) = 10t− 6. So:

d2y
dx2

=
d
dt

[
2t+ 6
10t− 6

]/
(10t− 6)

= − 72
(10t− 6)2

/
(10t− 6)

= − 72
(10t− 6)3

= − 9
(5t− 3)3

The graph of the parametric func ons is concave up when d2y
dx2 > 0 and con-

cave down when d2y
dx2 < 0. We determine the intervals when the second deriva-

ve is greater/less than 0 by first finding when it is 0 or undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is undefined

when 5t − 3 = 0; that is, when t = 3/5. Following the work established in
Sec on 3.4, we look at values of t greater/less than 3/5 on a number line:

Notes:
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3/5

d2y
dx2

> 0

c. up

d2y
dx2

< 0

c. down

Reviewing Example 9.3.1, we see that when t = 3/5 = 0.6, the graph of
the parametric equa ons has a ver cal tangent line. This point is also a point of
inflec on for the graph, illustrated in Figure 9.3.4.

Example 9.3.5 Concavity of Plane Curves
Find the points of inflec on of the graph of the parametric equa ons x =

√
t,

y = sin t, for 0 ≤ t ≤ 16.

S We need to compute dy
dx and

d2y
dx2 .

dy
dx

=
y ′(t)
x ′(t)

=
cos t

1/(2
√
t)

= 2
√
t cos t.

d2y
dx2

=
d
dt

[ dy
dx

]
x ′(t)

=
cos t/

√
t− 2

√
t sin t

1/(2
√
t)

= 2 cos t− 4t sin t.

The points of inflec on are found by se ng d2y
dx2 = 0. This is not trivial, as equa-

ons that mix polynomials and trigonometric func ons generally do not have
“nice” solu ons.

In Figure 9.3.5(a) we see a plot of the second deriva ve. It shows that it has
zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approxima-
ons are not very good, made only by looking at the graph. Newton’s Method

provides more accurate approxima ons. Accurate to 2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plo ed on the graph of the parametric
equa ons in Figure 9.3.5(b). Note how most occur near the x-axis, but not ex-
actly on the axis.

Arc Length

We con nue our study of the features of the graphs of parametric equa ons
by compu ng their arc length.

Recall in Sec on 7.4 we found the arc length of the graph of a func on, from
x = a to x = b, to be

L =
∫ b

a

√
1+

(
dy
dx

)2

dx.

Notes:
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Note: Theorem 9.3.1 makes use of differ-
en ability on closed intervals, just as was
done in Sec on 7.4.

9.3 Calculus and Parametric Equa ons

We can use this equa on and convert it to the parametric equa on context.
Le ng x = f(t) and y = g(t), we know that dy

dx = g ′(t)/f ′(t). It will also be
useful to calculate the differen al of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

Star ng with the arc length formula above, consider:

L =
∫ b

a

√
1+

(
dy
dx

)2

dx

=

∫ b

a

√
1+

g ′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g ′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g ′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is important,
so we restate it as a theorem.

Theorem 9.3.1 Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equa ons with f ′ and g ′ con-
nuous on [t1, t2], on which the graph traces itself only once. The arc

length of the graph, from t = t1 to t = t2, is

L =
∫ t2

t1

√
f ′(t)2 + g ′(t)2 dt.

As before, these integrals are o en not easy to compute. We start with a
simple example, then give another where we approximate the solu on.

Notes:
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Chapter 9 Curves in the Plane

Example 9.3.6 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3 cos t, y = 3 sin t on
[0, 3π/2].

S By direct applica on of Theorem 9.3.1, we have

L =
∫ 3π/2

0

√
(−3 sin t)2 + (3 cos t)2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0
3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6π; since we are finding the arc length of 3/4 of a circle,
the arc length is 3/4 · 6π = 9π/2.

Example 9.3.7 Arc Length of a Parametric Curve
The graph of the parametric equa ons x = t(t2 − 1), y = t2 − 1 crosses itself as
shown in Figure 9.3.6, forming a “teardrop.” Find the arc length of the teardrop.

S We can see by the parametriza ons of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to t = 1.
Applying Theorem 9.3.1, we have

L =
∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an an deriva ve expressible by el-
ementary func ons. We turn to numerical integra on to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approxima on of the actual value.

Notes:
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Figure 9.3.7: Rota ng a teardrop shape
about the x-axis in Example 9.3.8.

9.3 Calculus and Parametric Equa ons

Surface Area of a Solid of Revolu on

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Theorem 7.4.2 from Sec on 7.4 in a
similar way as done to produce the formula for arc length done before.

Theorem 9.3.2 Surface Area of a Solid of Revolu on

Consider the graph of the parametric equa ons x = f(t) and y = g(t),
where f ′ and g ′ are con nuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the x-axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
g(t)

√
f ′(t)2 + g ′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
f(t)
√

f ′(t)2 + g ′(t)2 dt.

Example 9.3.8 Surface Area of a Solid of Revolu on
Consider the teardrop shape formed by the parametric equa ons x = t(t2 − 1),
y = t2−1 as seen in Example 9.3.7. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure 9.3.7.

S The teardrop shape is formed between t = −1 and t = 1.
Using Theorem 9.3.2, we see we need for g(t) ≥ 0 on [−1, 1], and this is not
the case. To fix this, we simplify replace g(t) with −g(t), which flips the whole
graph about the x-axis (and does not change the surface area of the resul ng
solid). The surface area is:

Area S = 2π
∫ 1

−1
(1− t2)

√
(3t2 − 1)2 + (2t)2 dt

= 2π
∫ 1

−1
(1− t2)

√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of ele-

Notes:
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Chapter 9 Curves in the Plane

mentary func ons. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places a er the
decimal.

A er defining a new way of crea ng curves in the plane, in this sec on
we have applied calculus techniques to the parametric equa on defining these
curves to study their proper es. In the next sec on, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that iden fies points in the plane in a manner different than
from measuring distances from the y- and x- axes.

Notes:
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Exercises 9.3
Terms and Concepts

1. T/F: Given parametric equa ons x = f(t) and y = g(t),
dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

2. Given parametric equa ons x = f(t) and y = g(t), the
deriva ve dy

dx as given in Key Idea 9.3.1 is a func on of
?

3. T/F: Given parametric equa ons x = f(t) and y = g(t), to
find d2y

dx2 , one simply computes d
dt

(
dy
dx

)
.

4. T/F: If dy
dx = 0 at t = t0, then the normal line to the curve at

t = t0 is a ver cal line.

Problems
In Exercises 5 – 12, parametric equa ons for a curve are given.

(a) Find dy
dx

.

(b) Find the equa ons of the tangent and normal line(s)
at the point(s) given.

(c) Sketch the graph of the parametric func ons along
with the found tangent and normal lines.

5. x = t, y = t2; t = 1

6. x =
√
t, y = 5t+ 2; t = 4

7. x = t2 − t, y = t2 + t; t = 1

8. x = t2 − 1, y = t3 − t; t = 0 and t = 1

9. x = sec t, y = tan t on (−π/2, π/2); t = π/4

10. x = cos t, y = sin(2t) on [0, 2π]; t = π/4

11. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]; t = 3π/4

12. x = et/10 cos t, y = et/10 sin t; t = π/2

In Exercises 13 – 20, find t-values where the curve defined by
the given parametric equa ons has a horizontal tangent line.
Note: these are the same equa ons as in Exercises 5 – 12.

13. x = t, y = t2

14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t

16. x = t2 − 1, y = t3 − t

17. x = sec t, y = tan t on (−π/2, π/2)

18. x = cos t, y = sin(2t) on [0, 2π]

19. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]

20. x = et/10 cos t, y = et/10 sin t

In Exercises 21 – 24, find t = t0 where the graph of the given
parametric equa ons is not smooth, then find lim

t→t0

dy
dx

.

21. x = 1
t2 + 1

, y = t3

22. x = −t3 + 7t2 − 16t+ 13, y = t3 − 5t2 + 8t− 2

23. x = t3 − 3t2 + 3t− 1, y = t2 − 2t+ 1

24. x = cos2 t, y = 1− sin2 t

In Exercises 25 – 32, parametric equa ons for a curve are
given. Find d2y

dx2 , then determine the intervals on which the
graph of the curve is concave up/down. Note: these are the
same equa ons as in Exercises 5 – 12.

25. x = t, y = t2

26. x =
√
t, y = 5t+ 2

27. x = t2 − t, y = t2 + t

28. x = t2 − 1, y = t3 − t

29. x = sec t, y = tan t on (−π/2, π/2)

30. x = cos t, y = sin(2t) on [0, 2π]

31. x = cos t sin(2t), y = sin t sin(2t) on [−π/2, π/2]

32. x = et/10 cos t, y = et/10 sin t

In Exercises 33 – 36, find the arc length of the graph of the
parametric equa ons on the given interval(s).

33. x = −3 sin(2t), y = 3 cos(2t) on [0, π]

34. x = et/10 cos t, y = et/10 sin t on [0, 2π] and [2π, 4π]

35. x = 5t+ 2, y = 1− 3t on [−1, 1]

36. x = 2t3/2, y = 3t on [0, 1]

In Exercises 37 – 40, numerically approximate the given arc
length.

37. Approximate the arc length of one petal of the rose curve
x = cos t cos(2t), y = sin t cos(2t) using Simpson’s Rule
and n = 4.
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38. Approximate the arc length of the “bow e curve” x =
cos t, y = sin(2t) using Simpson’s Rule and n = 6.

39. Approximate the arc length of the parabola x = t2 − t,
y = t2 + t on [−1, 1] using Simpson’s Rule and n = 4.

40. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ 2π
√

a2 + b2
2

.
Use this formula to approximate the circumference of x =
5 cos t, y = 3 sin t and compare this to the approxima-
on given by Simpson’s Rule and n = 6.

In Exercises 41 – 44, a solid of revolu on is described. Find or
approximate its surface area as specified.

41. Find the surface area of the sphere formed by rota ng the
circle x = 2 cos t, y = 2 sin t about:

(a) the x-axis and

(b) the y-axis.

42. Find the surface area of the torus (or “donut”) formed by
rota ng the circle x = cos t + 2, y = sin t about the y-
axis.

43. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow e curve x = cos t,
y = sin(2t) on [0, π/2] about the x-axis, using Simpson’s
Rule and n = 4.

44. Approximate the surface area of the solid formed by ro-
ta ng the one petal of the rose curve x = cos t cos(2t),
y = sin t cos(2t) on [0, π/4] about the x-axis, using Simp-
son’s Rule and n = 4.

532



O ini al ray

r

P = P(r, θ)

θ

Figure 9.4.1: Illustra ng polar coordi-
nates.

O 1 2 3

..
O
.

1
.

2
.

3
.

A

.B .

C

.

D

Figure 9.4.2: Plo ng polar points in Ex-
ample 9.4.1.

9.4 Introduc on to Polar Coordinates

9.4 Introduc on to Polar Coordinates
We are generally introduced to the idea of graphing curves by rela ng x-values
to y-values through a func on f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good no on of how the curve looks. This method is useful
but has limita ons, not least of which is that curves that “fail the ver cal line
test” cannot be graphed without using mul ple func ons.

The previous two sec ons introduced and studied a new way of plo ng
points in the x, y-plane. Using parametric equa ons, x and y values are com-
puted independently and then plo ed together. This method allows us to graph
an extraordinary range of curves. This sec on introduces yet anotherway to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always iden fy this
point with the origin). From the pole, draw a ray, called the ini al ray (we will
always draw this ray horizontally, iden fying it with the posi ve x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle θ formed between the ini al ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, θ). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the le er P, as in P(r, θ). This is illustrated in Figure 9.4.1

Prac ce will make this process more clear.

Example 9.4.1 Plo ng Polar Coordinates
Plot the following polar coordinates:

A = P(1, π/4) B = P(1.5, π) C = P(2,−π/3) D = P(−1, π/4)

S To aid in the drawing, a polar grid is provided at the bo om
of this page. To place the point A, go out 1 unit along the ini al ray (pu ng
you on the inner circle shown on the grid), then rotate counter-clockwise π/4
radians (or 45◦). Alternately, one can consider the rota on first: think about the
ray from O that forms an angle of π/4 with the ini al ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

To plot B, go out 1.5 units along the ini al ray and rotate π radians (180◦).
To plot C, go out 2 units along the ini al ray then rotate clockwise π/3 radi-

ans, as the angle given is nega ve.
To plot D, move along the ini al ray “−1” units – in other words, “back up” 1

unit, then rotate counter-clockwise by π/4. The results are given in Figure 9.4.2.

Notes:
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Chapter 9 Curves in the Plane

Consider the following two points: A = P(1, π) and B = P(−1, 0). To locate
A, go out 1 unit on the ini al ray then rotate π radians; to locate B, go out −1
units on the ini al ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(1, 3π), or D =
P(1,−π); all four of these points share the same loca on.

This ability to iden fy a point in the plane with mul ple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beau ful func ons that intersect themselves (much like we sawwith parametric
func ons). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this sec on.

Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.4.3 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, θ). Using
trigonometry, we can make the iden es given in the following Key Idea.

Key Idea 9.4.1 Conver ng Between Rectangular and Polar
Coordinates

Given the polar point P(r, θ), the rectangular coordinates are determined
by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan θ =
y
x
.

Example 9.4.2 Conver ng Between Polar and Rectangular Coordinates

1. Convert the polar coordinates P(2, 2π/3) and P(−1, 5π/4) to rectangular
coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar coordi-
nates.

S

Notes:
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Figure 9.4.4: Plo ng rectangular and po-
lar points in Example 9.4.2.

9.4 Introduc on to Polar Coordinates

1. (a) We start with P(2, 2π/3). Using Key Idea 9.4.1, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P(−1, 5π/4) is converted to rectangular with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈ (0.707, 0.707).

These points are plo ed in Figure 9.4.4 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
la onship between the two can be seen.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equa ons:

12 + 22 = r2 tan θ =
2
1
.

The first equa on tells us that r =
√
5. Using the inverse tangent

func on, we find

tan θ = 2 ⇒ θ = tan−1 2 ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P(
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equa ons

(−1)2 + 12 = r2 tan θ =
1
−1

.

Thus r =
√
2. We need to be careful in compu ng θ: using the

inverse tangent func on, we have

tan θ = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1 x is (−π/2, π/2);
that is, it returns angles that lie in the 1st and 4th quadrants. To
find loca ons in the 2nd and 3rd quadrants, add π to the result of
tan−1 x. So π + (−π/4) puts the angle at 3π/4. Thus the polar
point is P(

√
2, 3π/4).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−1, 1) as
P(−

√
2,−π/4).

These points are plo ed in Figure 9.4.4 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Notes:
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Chapter 9 Curves in the Plane

Polar Func ons and Polar Graphs

Defining a new coordinate system allows us to create a new kind of func-
on, a polar func on. Rectangular coordinates lent themselves well to crea ng

func ons that related x and y, such as y = x2. Polar coordinates allow us to cre-
ate func ons that relate r and θ. Normally these func ons look like r = f(θ),
although we can create func ons of the form θ = f(r). The following examples
introduce us to this concept.

Example 9.4.3 Introduc on to Graphing Polar Func ons
Describe the graphs of the following polar func ons.

1. r = 1.5

2. θ = π/4

S

1. The equa on r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any θ is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.
We can consider the rectangular equivalent of this equa on; using r2 =
x2+y2, we see that 1.52 = x2+y2, which we recognize as the equa on of
a circle centered at (0, 0) with radius 1.5. This is sketched in Figure 9.4.5.

2. The equa on θ = π/4 describes all points such that the line through them
and the polemake an angle of π/4with the ini al ray. As the radius r is not
specified, it can be any value (even nega ve). Thus θ = π/4 describes the
line through the pole that makes an angle of π/4 = 45◦ with the ini al
ray.
We can again consider the rectangular equivalent of this equa on. Com-
bine tan θ = y/x and θ = π/4:

tan π/4 = y/x ⇒ x tan π/4 = y ⇒ y = x.

This graph is also plo ed in Figure 9.4.5.

The basic rectangular equa ons of the form x = h and y = k create ver cal
and horizontal lines, respec vely; the basic polar equa ons r = h and θ = α
create circles and lines through the pole, respec vely. With this as a founda on,
we can create more complicated polar func ons of the form r = f(θ). The input
is an angle; the output is a length, how far in the direc on of the angle to go out.

Notes:
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θ r = 1+ cos θ
0 2

π/6 1.86603
π/2 1
4π/3 0.5
7π/4 1.70711
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Figure 9.4.6: Graphing a polar func on in
Example 9.4.4 by plo ng points.

..
O
.

1
.

2

Figure 9.4.7: Using technology to graph a
polar func on.

9.4 Introduc on to Polar Coordinates

We sketch these func ons much like we sketch rectangular and parametric
func ons: we plot lots of points and “connect the dots”with curves. We demon-
strate this in the following example.

Example 9.4.4 Sketching Polar Func ons
Sketch the polar func on r = 1+ cos θ on [0, 2π] by plo ng points.

S Acommonques onwhen sketching curves by plo ngpoints
is “Which points should I plot?” With rectangular equa ons, we o en choose
“easy” values – integers, then add more if needed. When plo ng polar equa-
ons, start with the “common” angles – mul ples of π/6 and π/4. Figure 9.4.6

gives a table of just a few values of θ in [0, π].
Consider the point P(2, 0) determined by the first line of the table. The angle

is 0 radians – we do not rotate from the ini al ray – then we go out 2 units from
the pole. When θ = π/6, r = 1.866 (actually, it is 1+

√
3/2); so rotate by π/6

radians and go out 1.866 units.
The graph shownusesmorepoints, connectedwith straight lines. (The points

on the graph that correspond to points in the table are signifiedwith larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like.

Technology Note: Plo ng func ons in this way can be tedious, just as it was
with rectangular func ons. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar func ons; in the menu, set the
plo ng mode to something like polar or POL, depending on one’s calculator.
As with plo ng parametric func ons, the viewing “window” no longer deter-
mines the x-values that are plo ed, so addi onal informa on needs to be pro-
vided. O en with the “window” se ngs are the se ngs for the beginning and
ending θ values (o en called θmin and θmax) as well as the θstep – that is, how far
apart the θ values are spaced. The smaller the θstep value, the more accurate
the graph (which also increases plo ng me). Using technology, we graphed
the polar func on r = 1+ cos θ from Example 9.4.4 in Figure 9.4.7.

Example 9.4.5 Sketching Polar Func ons
Sketch the polar func on r = cos(2θ) on [0, 2π] by plo ng points.

S We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 9.4.8. These points are then plo ed in Figure 9.4.9
(a). This par cular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.

Notes:
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Figure 9.4.9: Polar plots from Example
9.4.5.

Chapter 9 Curves in the Plane

Pt. θ cos(2θ)
1 0 1.
2 π/6 0.5
3 π/4 0.
4 π/3 −0.5
5 π/2 −1.
6 2π/3 −0.5
7 3π/4 0.
8 5π/6 0.5
9 π 1.

Pt. θ cos(2θ)
10 7π/6 0.5
11 5π/4 0.
12 4π/3 −0.5
13 3π/2 −1.
14 5π/3 −0.5
15 7π/4 0.
16 11π/6 0.5
17 2π 1.

Figure 9.4.8: Tables of points for plo ng a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure 9.4.9 (b). This plot is an example of a rose curve.

It is some mes desirable to refer to a graph via a polar equa on, and other
mes by a rectangular equa on. Therefore it is necessary to be able to convert

between polar and rectangular func ons, which we prac ce in the following ex-
ample. We will make frequent use of the iden es found in Key Idea 9.4.1.

Example 9.4.6 Conver ng between rectangular and polar equa ons.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

3. r =
2

sin θ − cos θ

4. r = 2 cos θ

S

1. Replace y with r sin θ and replace x with r cos θ, giving:

y = x2

r sin θ = r2 cos2 θ
sin θ
cos2 θ

= r

We have found that r = sin θ/ cos2 θ = tan θ sec θ. The domain of this
polar func on is (−π/2, π/2); plot a few points to see how the familiar
parabola is traced out by the polar equa on.

Notes:
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Figure 9.4.10: Graphing xy = 1 from Ex-
ample 9.4.6.

9.4 Introduc on to Polar Coordinates

2. We again replace x and y using the standard iden es and work to solve
for r:

xy = 1
r cos θ · r sin θ = 1

r2 =
1

cos θ sin θ

r =
1√

cos θ sin θ

This func on is valid only when the product of cos θ sin θ is posi ve. This
occurs in the first and third quadrants, meaning the domain of this polar
func on is (0, π/2) ∪ (π, 3π/2).
We can rewrite the original rectangular equa on xy = 1 as y = 1/x. This
is graphed in Figure 9.4.10; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with
x and y, respec vely. We start in this problem by mul plying both sides
by sin θ − cos θ:

r =
2

sin θ − cos θ
r(sin θ − cos θ) = 2
r sin θ − r cos θ = 2. Now replace with y and x:

y− x = 2
y = x+ 2.

The original polar equa on, r = 2/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equa ons of lines
in polar form.

4. By mul plying both sides by r, we obtain both an r2 term and an r cos θ
term, which we replace with x2 + y2 and x, respec vely.

r = 2 cos θ
r2 = 2r cos θ

x2 + y2 = 2x.

Notes:
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Chapter 9 Curves in the Plane

We recognize this as a circle; by comple ng the square we can find its
radius and center.

x2 − 2x+ y2 = 0
(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming gallery
of polar curves gives the equa ons of some circles in polar form; circles
with arbitrary centers have a complicated polar equa on that we do not
consider here.

Some curves have very simple polar equa ons but rather complicated rect-
angular ones. For instance, the equa on r = 1 + cos θ describes a cardioid (a
shape important to the sensi vity of microphones, among other things; one is
graphed in the gallery in the Limaçon sec on). It’s rectangular form is not nearly
as simple; it is the implicit equa on x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0. The
conversion is not “hard,” but takes several steps, and is le as a problem in the
Exercise sec on.

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their

beauty and/or applicability to the sciences. This sec on endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to inves gate with technology other types of polar func-
ons.

Lines

Through the origin: Horizontal line: Ver cal line: Not through origin:

θ = α r = a csc θ r = a sec θ r =
b

sin θ −m cos θ

..
α

..
a
{

..︷ ︸︸ ︷.
a

..

slo
pe
=
m

.

}
b

Notes:
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Circles Spiral

Centered on x-axis: Centered on y-axis: Centered on origin: Archimedean spiral
r = a cos θ r = a sin θ r = a r = θ

..︷ ︸︸ ︷.
a

..

a


..︷ ︸︸ ︷.

a
.

Limaçons
Symmetric about x-axis: r = a± b cos θ; Symmetric about y-axis: r = a± b sin θ; a, b > 0

With inner loop: Cardioid: Dimpled: Convex:
a
b
< 1

a
b
= 1 1 <

a
b
< 2

a
b
> 2

. . . .

Rose Curves
Symmetric about x-axis: r = a cos(nθ); Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

r = a cos(2θ) r = a sin(2θ) r = a cos(3θ) r = a sin(3θ)

. . . .

Special Curves

Rose curves Lemniscate: Eight Curve:
r = a sin(θ/5) r = a sin(2θ/5) r2 = a2 cos(2θ) r2 = a2 sec4 θ cos(2θ)

. . . .
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Figure 9.4.11: Graphs to help determine
the points of intersec on of the polar
func ons given in Example 9.4.7.

Chapter 9 Curves in the Plane

Earlier we discussed how each point in the plane does not have a unique
representa on in polar form. This can be a “good” thing, as it allows for the
beau ful and interes ng curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 9.4.7 Finding points of intersec on with polar curves
Determinewhere the graphs of the polar equa ons r = 1+3 cos θ and r = cos θ
intersect.

S As technology is generally readily available, it is usually a
good idea to start with a graph. We have graphed the two func ons in Figure
9.4.11(a); to be er discern the intersec on points, part (b) of the figure zooms
in around the origin. We start by se ng the two func ons equal to each other
and solving for θ:

1+ 3 cos θ = cos θ
2 cos θ = −1

cos θ = −1
2

θ =
2π
3
,
4π
3
.

(There are, of course, infinite solu ons to the equa on cos θ = −1/2; as the
limaçon is traced out once on [0, 2π], we restrict our solu ons to this interval.)

We need to analyze this solu on. When θ = 2π/3 we obtain the point of
intersec on that lies in the 4th quadrant. When θ = 4π/3, we get the point of
intersec on that lies in the 2nd quadrant. There is more to say about this second
intersec on point, however. The circle defined by r = cos θ is traced out once on
[0, π], meaning that this point of intersec on occurs while tracing out the circle
a second me. It seems strange to pass by the point once and then recognize
it as a point of intersec on only when arriving there a “second me.” The first
me the circle arrives at this point is when θ = π/3. It is key to understand that

these two points are the same: (cos π/3, π/3) and (cos 4π/3, 4π/3).
To summarize what we have done so far, we have found two points of in-

tersec on: when θ = 2π/3 and when θ = 4π/3. When referencing the circle
r = cos θ, the la er point is be er referenced as when θ = π/3.

There is yet another point of intersec on: the pole (or, the origin). We did
not recognize this intersec on point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = 0. Considering the circle r = cos θ,
r = 0 when θ = π/2 (and odd mul ples thereof, as the circle is repeatedly

Notes:
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9.4 Introduc on to Polar Coordinates

traced). The limaçon intersects the pole when 1+3 cos θ = 0; this occurs when
cos θ = −1/3, or for θ = cos−1(−1/3). This is a nonstandard angle, approxi-
mately θ = 1.9106 = 109.47◦. The limaçon intersects the pole twice in [0, 2π];
the other angle at which the limaçon is at the pole is the reflec on of the first
angle across the x-axis. That is, θ = 4.3726 = 250.53◦.

If all one is concernedwith is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3
can give us the needed rectangular coordinates. However, in the next sec on
we apply calculus concepts to polar func ons. When compu ng the area of a
region bounded by polar curves, understanding the nuances of the points of
intersec on becomes important.

Notes:
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Exercises 9.4
Terms and Concepts
1. In your own words, describe how to plot the polar point

P(r, θ).

2. T/F: When plo ng a point with polar coordinate P(r, θ), r
must be posi ve.

3. T/F: Every point in the Cartesian plane can be represented
by a polar coordinate.

4. T/F: Every point in the Cartesian plane can be represented
uniquely by a polar coordinate.

Problems
5. Plot the points with the given polar coordinates.

(a) A = P(2, 0)
(b) B = P(1, π)

(c) C = P(−2, π/2)
(d) D = P(1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P(2, 3π)
(b) B = P(1,−π)

(c) C = P(1, 2)
(d) D = P(1/2, 5π/6)

7. For each of the given points give two sets of polar coordi-
nates that iden fy it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordi-
nates that iden fy it, where−π ≤ θ ≤ π.

O 1 2 3

A

B

C

D

9. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(2, π/4)
(b) B = P(2,−π/4)

(c) C = (2,−1)
(d) D = (−2, 1)

10. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(3, π)
(b) B = P(1, 2π/3)

(c) C = (0, 4)
(d) D = (1,−

√
3)

In Exercises 11 – 30, graph the polar func on on the given
interval.

11. r = 2, 0 ≤ θ ≤ π/2

12. θ = π/6, −1 ≤ r ≤ 2

13. r = 1− cos θ, [0, 2π]

14. r = 2+ sin θ, [0, 2π]

15. r = 2− sin θ, [0, 2π]

16. r = 1− 2 sin θ, [0, 2π]

17. r = 1+ 2 sin θ, [0, 2π]

18. r = cos(2θ), [0, 2π]

19. r = sin(3θ), [0, π]

20. r = cos(θ/3), [0, 3π]

21. r = cos(2θ/3), [0, 6π]

22. r = θ/2, [0, 4π]

23. r = 3 sin(θ), [0, π]

24. r = 2 cos(θ), [0, π/2]

25. r = cos θ sin θ, [0, 2π]

26. r = θ2 − (π/2)2, [−π, π]

27. r = 3
5 sin θ − cos θ

, [0, 2π]

28. r = −2
3 cos θ − 2 sin θ

, [0, 2π]

29. r = 3 sec θ, (−π/2, π/2)

30. r = 3 csc θ, (0, π)

In Exercises 31 – 40, convert the polar equa on to a rectan-
gular equa on.

31. r = 6 cos θ

32. r = −4 sin θ
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33. r = cos θ + sin θ

34. r = 7
5 sin θ − 2 cos θ

35. r = 3
cos θ

36. r = 4
sin θ

37. r = tan θ

38. r = cot θ

39. r = 2

40. θ = π/6

In Exercises 41 – 48, convert the rectangular equa on to a
polar equa on.

41. y = x

42. y = 4x+ 7

43. x = 5

44. y = 5

45. x = y2

46. x2y = 1

47. x2 + y2 = 7

48. (x+ 1)2 + y2 = 1

In Exercises 49 – 56, find the points of intersec on of the po-
lar graphs.

49. r = sin(2θ) and r = cos θ on [0, π]

50. r = cos(2θ) and r = cos θ on [0, π]

51. r = 2 cos θ and r = 2 sin θ on [0, π]

52. r = sin θ and r =
√
3+ 3 sin θ on [0, 2π]

53. r = sin(3θ) and r = cos(3θ) on [0, π]

54. r = 3 cos θ and r = 1+ cos θ on [−π, π]

55. r = 1 and r = 2 sin(2θ) on [0, 2π]

56. r = 1− cos θ and r = 1+ sin θ on [0, 2π]

57. Pick a integer value for n, where n ̸= 2, 3, and use technol-
ogy to plot r = sin

(m
n
θ
)
for three different integer values

of m. Sketch these and determine a minimal interval on
which the en re graph is shown.

58. Create your own polar func on, r = f(θ) and sketch it. De-
scribe why the graph looks as it does.
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Chapter 9 Curves in the Plane

9.5 Calculus and Polar Func ons
The previous sec on defined polar coordinates, leading to polar func ons. We
inves gated plo ng these func ons and solving a fundamental ques on about
their graphs, namely, where do two polar graphs intersect?

We now turn our a en on to answering other ques ons, whose solu ons
require the use of calculus. A basis for much of what is done in this sec on is
the ability to turn a polar func on r = f(θ) into a set of parametric equa ons.
Using the iden es x = r cos θ and y = r sin θ, we can create the parametric
equa ons x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of Sec on 9.3.

Polar Func ons and dy
dx

Weare interested in the lines tangent to a given graph, regardless ofwhether
that graph is produced by rectangular, parametric, or polar equa ons. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea 9.3.1 we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two deriva ves on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea 9.5.1 Finding dy
dx with Polar Func ons

Let r = f(θ) be a polar func on. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

Example 9.5.1 Finding dy
dx with polar func ons.

Consider the limaçon r = 1+ 2 sin θ on [0, 2π].

1. Find the equa ons of the tangent and normal lines to the graph at θ =
π/4.

2. Find where the graph has ver cal and horizontal tangent lines.

Notes:
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Figure 9.5.1: The limaçon in Example
9.5.1 with its tangent line at θ = π/4 and
points of ver cal and horizontal tangency.

9.5 Calculus and Polar Func ons

S

1. We start by compu ng dy
dx . With f ′(θ) = 2 cos θ, we have

dy
dx

=
2 cos θ sin θ + cos θ(1+ 2 sin θ)
2 cos2 θ − sin θ(1+ 2 sin θ)

=
cos θ(4 sin θ + 1)

2(cos2 θ − sin2 θ)− sin θ
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simplifica on).

In rectangular coordinates, the point on the graph at θ = π/4 is (1 +√
2/2, 1 +

√
2/2). Thus the rectangular equa on of the line tangent to

the limaçon at θ = π/4 is

y = (−2
√
2− 1)

(
x− (1+

√
2/2)

)
+ 1+

√
2/2 ≈ −3.83x+ 8.24.

The limaçon and the tangent line are graphed in Figure 9.5.1.
The normal line has the opposite–reciprocal slope as the tangent line, so
its equa on is

y ≈ 1
3.83

x+ 1.26.

2. To find the horizontal lines of tangency, we find where dy
dx = 0; thus we

find where the numerator of our equa on for dy
dx is 0.

cos θ(4 sin θ + 1) = 0 ⇒ cos θ = 0 or 4 sin θ + 1 = 0.

On [0, 2π], cos θ = 0 when θ = π/2, 3π/2.
Se ng 4 sin θ + 1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦.
We want the results in [0, 2π]; we also recognize there are two solu ons,
one in the 3rd quadrant and one in the 4th. Using reference angles, we
have our two solu ons as θ = 3.39 and 6.03 radians. The four points we
obtained where the limaçon has a horizontal tangent line are given in Fig-
ure 9.5.1 with black–filled dots.

To find the ver cal lines of tangency, we set the denominator of dy
dx = 0.

2(cos2 θ − sin2 θ)− sin θ = 0.

Convert the cos2 θ term to 1− sin2 θ:

2(1− sin2 θ − sin2 θ)− sin θ = 0
4 sin2 θ + sin θ − 2 = 0.

Notes:
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Recognize this as a quadra c in the variable sin θ. Using the quadra c
formula, we have

sin θ =
−1±

√
33

8
.

We solve sin θ = −1+
√
33

8 and sin θ = −1−
√
33

8 :

sin θ =
−1+

√
33

8
sin θ =

−1−
√
33

8

θ = sin−1
(
−1+

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6349 θ = −1.0030

In each of the solu ons above, we only get one of the possible two so-
lu ons as sin−1 x only returns solu ons in [−π/2, π/2], the 4th and 1st
quadrants. Again using reference angles, we have:

sin θ =
−1+

√
33

8
⇒ θ = 0.6349, 2.5067 radians

and

sin θ =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.5.1 with white–filled dots.

When the graph of the polar func on r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is very
simple, reducing simply to

dy
dx

= tanα.

This equa on makes an interes ng point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Example
9.4.3) shows us that the line through the pole with slope tanα has polar equa-
on θ = α. Thus when a polar graph touches the pole at θ = α, the equa on

of the tangent line at the pole is θ = α.

Example 9.5.2 Finding tangent lines at the pole.
Let r = 1 + 2 sin θ, a limaçon. Find the equa ons of the lines tangent to the
graph at the pole.

Notes:
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Note: Recall that the area of a sector of a
circle with radius r subtended by an angle
θ is A = 1
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Figure 9.5.3: Compu ng the area of a po-
lar region.
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S We need to know when r = 0.

1+ 2 sin θ = 0
sin θ = −1/2

θ =
7π
6
,
11π
6

.

Thus the equa ons of the tangent lines, in polar, are θ = 7π/6 and θ = 11π/6.
In rectangular form, the tangent lines are y = tan(7π/6)x and y = tan(11π/6)x.
The full limaçon can be seen in Figure 9.5.1; we zoom in on the tangent lines in
Figure 9.5.2.

Area

When using rectangular coordinates, the equa ons x = h and y = k defined
ver cal and horizontal lines, respec vely, and combina ons of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equa ons θ = α and r = c form lines
through the origin and circles centered at the origin, respec vely, and combi-
na ons of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar func ons by first approxima ng
with sectors of circles.

Consider Figure 9.5.3 (a)where a region definedby r = f(θ)on [α, β] is given.
(Note how the “sides” of the region are the lines θ = α and θ = β, whereas in
rectangular coordinates the “sides” of regionswere o en the ver cal lines x = a
and x = b.)

Par on the interval [α, β] into n equally spaced subintervals as α = θ1 <
θ2 < · · · < θn+1 = β. The length of each subinterval is ∆θ = (β − α)/n,
represen ng a small change in angle. The area of the region defined by the i th
subinterval [θi, θi+1] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi, θi+1]. The area of this sector is 1

2 f(ci)
2∆θ. This is shown

in part (b) of the figure, where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=1

1
2
f(ci)2∆θ.

This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the

Notes:
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Note: Example 9.5.3 requires the use of
the integral

∫
cos2 θ dθ. This is handled

well by using the power reducing formula
as found at the end of this text. Due to
the nature of the area formula, integrat-
ing cos2 θ and sin2 θ is required o en.
We offer here these indefinite integrals
as a me–saving measure.∫

cos2 θ dθ =
1
2
θ +

1
4
sin(2θ) + C∫

sin2 θ dθ =
1
2
θ − 1

4
sin(2θ) + C

...
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Figure 9.5.4: Finding the area of the
shaded region of a cardioid in Example
9.5.4.
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exact area of the region in the form of a definite integral.

Theorem 9.5.1 Area of a Polar Region

Let f be con nuous and non-nega ve on [α, β], where 0 ≤ β− α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1
2

∫ β

α

f(θ)2 dθ =
1
2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 9.5.3 Area of a polar region
Find the area of the circle defined by r = cos θ. (Recall this circle has radius 1/2.)

S This is a direct applica on of Theorem 9.5.1. The circle is
traced out on [0, π], leading to the integral

Area =
1
2

∫ π

0
cos2 θ dθ

=
1
2

∫ π

0

1+ cos(2θ)
2

dθ

=
1
4
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π

0

=
1
4
π.

Of course, we already knew the area of a circle with radius 1/2. We did this ex-
ample to demonstrate that the area formula is correct.

Example 9.5.4 Area of a polar region
Find the area of the cardioid r = 1+cos θ bound between θ = π/6 and θ = π/3,
as shown in Figure 9.5.4.

Notes:
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Figure 9.5.6: Finding the area between
polar curves in Example 9.5.5.
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S This is again a direct applica on of Theorem 9.5.1.

Area =
1
2

∫ π/3

π/6
(1+ cos θ)2 dθ

=
1
2

∫ π/3

π/6
(1+ 2 cos θ + cos2 θ) dθ

=
1
2

(
θ + 2 sin θ +

1
2
θ +

1
4
sin(2θ)

) ∣∣∣∣∣
π/3

π/6

=
1
8
(
π + 4

√
3− 4

)
≈ 0.7587.

Area Between Curves

Our study of area in the context of rectangular func ons led naturally to
finding area bounded between curves. We consider the same in the context of
polar func ons.

Consider the shaded region shown in Figure 9.5.5. We can find the area of
this region by compu ng the area bounded by r2 = f2(θ) and subtrac ng the
area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1
2

∫ β

α

r 22 dθ − 1
2

∫ β

α

r 21 dθ =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

Key Idea 9.5.2 Area Between Polar Curves

The area A of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

Example 9.5.5 Area between polar curves
Find the area bounded between the curves r = 1 + cos θ and r = 3 cos θ, as
shown in Figure 9.5.6.

S We need to find the points of intersec on between these

Notes:
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two func ons. Se ng them equal to each other, we find:

1+ cos θ = 3 cos θ
cos θ = 1/2

θ = ±π/3

Thus we integrate 1
2
(
(3 cos θ)2 − (1+ cos θ)2

)
on [−π/3, π/3].

Area =
1
2

∫ π/3

−π/3

(
(3 cos θ)2 − (1+ cos θ)2

)
dθ

=
1
2

∫ π/3

−π/3

(
8 cos2 θ − 2 cos θ − 1

)
dθ

=
1
2
(
2 sin(2θ)− 2 sin θ + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

Example 9.5.6 Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(2θ), as
shown in Figure 9.5.7 (a).

S We need to find the point of intersec on between the two
curves. Se ng the two func ons equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1
2

⇒ 2θ = π/3 ⇒ θ = π/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, θ = 0 and θ = π/6. (Note:
the dashed line lies on the line θ = π/6.) Above the dashed line the region is
bounded by r = 2 cos(2θ) and θ = π/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A1 and the area above the dashed line
A2. They are determined by the following integrals:

A1 =
1
2

∫ π/6

0
(1)2 dθ A2 =

1
2

∫ π/4

π/6

(
2 cos(2θ)

)2 dθ.

Notes:
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(The upper bound of the integral compu ng A2 is π/4 as r = 2 cos(2θ) is at the
pole when θ = π/4.)

We omit the integra on details and let the reader verify that A1 = π/12 and
A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equa ons, we now consider it in the context of polar equa-
ons. Recall that the arc length L of the graph defined by the parametric equa-
ons x = f(t), y = g(t) on [a, b] is

L =
∫ b

a

√
f ′(t)2 + g ′(t)2 dt =

∫ b

a

√
x ′(t)2 + y ′(t)2 dt. (9.1)

Now consider the polar func on r = f(θ). We again use the iden es x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equa ons based on the polar
func on. We compute x ′(θ) and y ′(θ) as done before when compu ng dy

dx , then
apply Equa on (9.1).

The expression x ′(θ)2 + y ′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

This leads us to the arc length formula.

Theorem 9.5.2 Arc Length of Polar Curves

Let r = f(θ) be a polar func on with f ′ con nuous on [α, β], on which
the graph traces itself only once. The arc length L of the graph on [α, β]
is

L =
∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

Example 9.5.7 Arc length of a limaçon
Find the arc length of the limaçon r = 1+ 2 sin t.

S With r = 1 + 2 sin t, we have r ′ = 2 cos t. The limaçon is
traced out once on [0, 2π], giving us our bounds of integra on. Applying Theo-

Notes:
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rem 9.5.2, we have

L =
∫ 2π

0

√
(2 cos θ)2 + (1+ 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

The final integral cannot be solved in terms of elementary func ons, so we re-
sorted to a numerical approxima on. (Simpson’s Rule, with n = 4, approximates
the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places a er the decimal.)

Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Theorem is based on Theorem 9.3.2.

Theorem 9.5.3 Surface Area of a Solid of Revolu on

Consider the graph of the polar equa on r = f(θ), where f ′ is con nuous
on [α, β], on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the ini al ray (θ = 0) is:

Surface Area = 2π
∫ β

α

f(θ) sin θ
√

f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π
∫ β

α

f(θ) cos θ
√

f ′(θ)2 + f(θ)2 dθ.

Notes:
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Example 9.5.8 Surface area determined by a polar curve
Find the surface area formedby revolving onepetal of the rose curve r = cos(2θ)
about its central axis (see Figure 9.5.9).

S We choose, as implied by the figure, to revolve the por on
of the curve that lies on [0, π/4] about the ini al ray. Using Theorem 9.5.3 and
the fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π
∫ π/4

0
cos(2θ) sin(θ)

√(
− 2 sin(2θ)

)2
+
(
cos(2θ)

)2 dθ
≈ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func-
ons. Simpson’s Rule, with n = 4, approximates the value at 1.36751.

This chapter has been about curves in the plane. While there is great math-
ema cs to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathema cs in 3D –
that is, in space. The next chapter begins our explora on into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathema cal
objects.

Notes:
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Exercises 9.5
Terms and Concepts

1. Given polar equa on r = f(θ), how can one create para-
metric equa ons of the same curve?

2. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with .

Problems
In Exercises 3 – 10, find:

(a) dy
dx

(b) the equa on of the tangent and normal lines to the
curve at the indicated θ–value.

3. r = 1; θ = π/4

4. r = cos θ; θ = π/4

5. r = 1+ sin θ; θ = π/6

6. r = 1− 3 cos θ; θ = 3π/4

7. r = θ; θ = π/2

8. r = cos(3θ); θ = π/6

9. r = sin(4θ); θ = π/3

10. r = 1
sin θ − cos θ

; θ = π

In Exercises 11 – 14, find the values of θ in the given inter-
val where the graph of the polar func on has horizontal and
ver cal tangent lines.

11. r = 3; [0, 2π]

12. r = 2 sin θ; [0, π]

13. r = cos(2θ); [0, 2π]

14. r = 1+ cos θ; [0, 2π]

In Exercises 15 – 16, find the equa on of the lines tangent to
the graph at the pole.

15. r = sin θ; [0, π]

16. r = sin(3θ); [0, π]

In Exercises 17 – 28, find the area of the described region.

17. Enclosed by the circle: r = 4 sin θ

18. Enclosed by the circle r = 5

19. Enclosed by one petal of r = sin(3θ)

20. Enclosed by one petal of the rose curve r = cos(n θ), where
n is a posi ve integer.

21. Enclosed by the cardioid r = 1− sin θ

22. Enclosed by the inner loop of the limaçon r = 1+ 2 cos θ

23. Enclosed by the outer loop of the limaçon r = 1 + 2 cos θ
(including area enclosed by the inner loop)

24. Enclosed between the inner and outer loop of the limaçon
r = 1+ 2 cos θ

25. Enclosed by r = 2 cos θ and r = 2 sin θ, as shown:

.....
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.
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. −1.
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.
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.
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.
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26. Enclosed by r = cos(3θ) and r = sin(3θ), as shown:
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1

.

0.5

.

x

.

y

27. Enclosed by r = cos θ and r = sin(2θ), as shown:
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1

.
x

.

y
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28. Enclosed by r = cos θ and r = 1− cos θ, as shown:

.....
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.
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.

1

.

x

.

y

In Exercises 29 – 34, answer the ques ons involving arc
length.

29. Use the arc length formula to compute the arc length of the
circle r = 2.

30. Use the arc length formula to compute the arc length of the
circle r = 4 sin θ.

31. Use the arc length formula to compute the arc length of
r = cos θ + sin θ.

32. Use the arc length formula to compute the arc length of the
cardioid r = 1 + cos θ. (Hint: apply the formula, simplify,
then use a Power–Reducing Formula to convert 1 + cos θ
into a square.)

33. Approximate the arc length of one petal of the rose curve
r = sin(3θ) with Simpson’s Rule and n = 4.

34. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug-
gested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

In Exercises 35 – 40, answer the ques ons involving surface
area.

35. Find the surface area of the sphere formed by revolving the
circle r = 2 about the ini al ray.

36. Find the surface area of the sphere formed by revolving the
circle r = 2 cos θ about the ini al ray.

37. Find the surface area of the solid formed by revolving the
cardioid r = 1+ cos θ about the ini al ray.

38. Find the surface area of the solid formed by revolving the
circle r = 2 cos θ about the line θ = π/2.

39. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, −π/4 ≤ θ ≤ π/4, about the line
θ = π/2.

40. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, 0 ≤ θ ≤ π/4, about the ini al ray.
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10: V
This chapter introduces a new mathema cal object, the vector. Defined in Sec-
on 10.2, we will see that vectors provide a powerful language for describing

quan es that have magnitude and direc on aspects. A simple example of
such a quan ty is force: when applying a force, one is generally interested in
howmuch force is applied (i.e., the magnitude of the force) and the direc on in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

This chapter begins with moving our mathema cs out of the plane and into
“space.” That is, we begin to think mathema cally not only in two dimensions,
but in three. With this founda on, we can explore vectors both in the plane and
in space.

10.1 Introduc on to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathema cs in a 2–dimensional
world. We have plo ed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
proper es of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rota ng it out of the plane.

While there is wonderful mathema cs to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathema cs involving this third di-
mension. In this sec on we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a founda on for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the rela ve posi on of P along the x-, y- and z-axes,
respec vely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problema c, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three lines represen ng the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conven ons exist for plo ng
shapes in space that we will discuss that are more than adequate.

One conven on is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
on of the posi ve x-axis, and the middle finger (bent “inward” so it is perpen-

dicular to the palm) points along the posi ve y-axis, then the extended thumb
will point in the direc on of the posi ve z-axis. (It may take some thought to



Figure 10.1.1: Plo ng the point P =
(2, 1, 3) in space.

Figure 10.1.2: Plo ng the point P =
(2, 1, 3) in space with a perspec ve used
in this text.

Chapter 10 Vectors

verify this, but this system is inherently different from the one created by using
the “le hand rule.”)

As long as the coordinate axes are posi oned so that they follow this rule,
it does not ma er how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1.1 we see the point P = (2, 1, 3) plo ed on a set of axes. The
basic conven on here is that the x-y plane is drawn in its standard way, with the
z-axis down to the le . The perspec ve is that the paper represents the x-y plane
and the posi ve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in rela on
to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posi ve z-axis is poin ng up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 10.1.2. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathema cians, and is the conven on adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y, and
z are posi ve is called the first octant. We do not name the other seven octants
in this text.

Measuring Distances

It is of cri cal importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Defini on 10.1.1 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

Example 10.1.1 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

Notes:
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Figure 10.1.3: Plo ng points P and Q in
Example 10.1.1.
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S The points P and Q are plo ed in Figure 10.1.3; no special
considera on need be made to draw the line segment connec ng these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analy cally. Applying Defini on 10.1.1, we have

||PQ|| =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidis-
tant from a given point. Defini on 10.1.1 allows us to write an equa on of the
sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

||PC|| =
√

(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equa on of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 10.1.1 Standard Equa on of a Sphere in Space

The standard equa on of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

Example 10.1.2 Equa on of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

S To determine the center and radius, we must put the equa-
on in standard form. This requires us to complete the square (three mes).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2
(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4.

The equa on of a sphere is an example of an implicit func on defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We

Notes:
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Figure 10.1.5: The plane x = 2.

Figure 10.1.6: Sketching the boundaries
of a region in Example 10.1.3.

Chapter 10 Vectors

now consider situa ons where surfaces are defined where one or two of these
variables are absent.

Introduc on to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.1.4),
the coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y
plane is characterized as the set of all points in space where the z-value is 0.
This, in fact, gives us an equa on that describes this plane: z = 0. Likewise, the
x-z plane is all points where the y-value is 0, characterized by y = 0.

the x-y plane the y-z plane the x-z plane

Figure 10.1.4: The coordinate planes.

The equa on x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.1.5.

Example 10.1.3 Regions defined by planes
Sketch the region defined by the inequali es−1 ≤ y ≤ 2.

S The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 10.1.6, which are parallel to the
x-z plane. Thus the region extends infinitely in the x and z direc ons, and is
bounded by planes in the y direc on.

Cylinders

The equa on x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equa on x2 + y2 = 1 in space. In the plane, this equa on describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.1.8 (a), we show part of the graph
of the equa on x2 + y2 = 1 by sketching 3 circles: the bo om one has a con-
stant z-value of−1.5, the middle one has a z-value of 0 and the top circle has a
z-value of 1. By plo ng all possible z-values, we get the surface shown in Figure

Notes:
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(a)

(b)

Figure 10.1.8: Sketching x2 + y2 = 1.
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10.1.8(b). This surface looks like a “tube,” or a “cylinder”; mathema cians call
this surface a cylinder for an en rely different reason.

Defini on 10.1.2 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equa ons involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the defini on, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 10.1.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this defini on.

Example 10.1.4 Graphing cylinders
Graph the following cylinders.

1. z = y2 2. x = sin z

S

1. We can view the equa on z = y2 as a parabola in the y-z plane, as il-
lustrated in Figure 10.1.7(a). As x does not appear in the equa on, the
rulings are lines through this parabola parallel to the x-axis, shown in (b).
These rulings give an idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure 10.1.7: Sketching the cylinder defined by z = y2.

Notes:
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(a)

(b)

Figure 10.1.10: Introducing surfaces of
revolu on.

Chapter 10 Vectors

2. We can view the equa on x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 10.1.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equa on x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure 10.1.9: Sketching the cylinder defined by x = sin z.

Surfaces of Revolu on

One of the applica ons of integra on we learned previously was to find the
volume of solids of revolu on – solids formed by revolving a curve about a hori-
zontal or ver cal axis. We now consider how to find the equa on of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

sec ons of this surface parallel to the y-z plane are circles, as shown in Figure
10.1.10(a). Each circle has equa on of the form y2 + z2 = r2 for some radius r.
The radius is a func on of x; in fact, it is r(x) =

√
x. Thus the equa on of the

surface shown in Figure 10.1.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equa ons of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 10.1.2 Surfaces of Revolu on, Part 1

Let r be a radius func on.

1. The equa on of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equa on of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equa on of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Notes:
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(a)

(b)

Figure 10.1.11: Revolving y = sin z about
the z-axis in Example 10.1.5.

(a)

(b)

Figure 10.1.12: Revolving z = sin x about
the z-axis in Example 10.1.6.
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Example 10.1.5 Finding equa on of a surface of revolu on
Let y = sin z on [0, π]. Find the equa on of the surface of revolu on formed by
revolving y = sin z about the z-axis.

S Using Key Idea 10.1.2, we find the surface has equa on x2+
y2 = sin2 z. The curve is sketched in Figure 10.1.11(a) and the surface is drawn
in Figure 10.1.11(b).

Note how the surface (and hence the resul ng equa on) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.1.11(a).

This par cular method of crea ng surfaces of revolu on is limited. For in-
stance, in Example 7.3.4 of Sec on 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
on of y is not trivial, as simply wri ng x = sin−1 y only gives part of the region

we desire.
What we desire is a way of wri ng the surface of revolu on formed by ro-

ta ng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rota ng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points sa sfy the equa on r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equa on of the surface.

Key Idea 10.1.3 Surfaces of Revolu on, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equa on z = f

(√
x2 + y2

)
.

Example 10.1.6 Finding equa on of surface of revolu on
Find the equa on of the surface found by revolving z = sin x about the z-axis.

S Using Key Idea 10.1.3, the surface has equa on z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 10.1.12.

Notes:
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Figure 10.1.13: The ellip c paraboloid
z = x2/4+ y2.
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Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The defini on may
look in mida ng, but we will show how to analyze these surfaces in an illumi-
na ng way.

Defini on 10.1.3 Quadric Surface

A quadric surface is the graph of the general second–degree equa on in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rota ons. There are six basic quadric sur-
faces: the ellip c paraboloid, ellip c cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersec ons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellip c paraboloid z = x2/4 + y2, shown in Figure 10.1.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equa on:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross sec ons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross sec ons parallel to the x-z plane. For instance, le ng
y = 0 gives the equa on z = x2/4, clearly a parabola. Intersec ng with the
plane x = 0 gives a cross sec on defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellip c paraboloid gets its name: some cross sec ons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equa on of each, provide a sketch with representa ve traces, and de-
scribe these traces.

Notes:
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Ellip c Paraboloid, z =
x2

a2
+

y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equa on of the ellip c paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direc on of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an ellip c paraboloid that opens along the x-axis.

Mul plying the right hand side by (−1) defines an ellip c paraboloid that “opens” in the opposite
direc on.

Ellip c Cone, z2 =
x2

a2
+

y2

b2

Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equa on as z2 − x2/a2 − y2/b2 = 0. The one variable with a posi ve
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid, x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 10.1.1.

Hyperboloid of One Sheet, x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a nega ve coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets, z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a posi ve coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power. 569








(a)

(b)

Figure 10.1.14: Sketching an ellip c
paraboloid.

(a)

(b)

Figure 10.1.15: Sketching an ellipsoid.
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Example 10.1.7 Sketching quadric surfaces
Sketch the quadric surface defined by the given equa on.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

S

1. y =
x2

4
+

z2

16
:

Wefirst iden fy the quadric by pa ern–matchingwith the equa ons given
previously. Only two surfaces have equa ons where one variable is raised
to the first power, the ellip c paraboloid and the hyperbolic paraboloid.
In the la er case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.
To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.
x = 0: The trace is the parabola y = z2/16
z = 0: The trace is the parabola y = x2/4.
Graphing each trace in the respec ve plane creates a sketch as shown in
Figure 10.1.14(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.
Graphing each trace in the respec ve plane creates a sketch as shown in
Figure 10.1.15(a). Filling in the surface gives Figure 10.1.15(b).

3. z = y2 − x2:

Notes:
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(a)

(b)

Figure 10.1.16: Sketching a hyperbolic
paraboloid.

Figure 10.1.17: A possible equa on of
this quadric surface is found in Example
10.1.8.
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This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric sec ons. Consider the traces in the y−z and x−z planes:
x = 0: The trace is z = y2, a parabola opening up in the y− z plane.
y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure 10.1.16(a),
and filling in the surface gives a sketch like (b).

Example 10.1.8 Iden fying quadric surfaces
Consider the quadric surface shown in Figure 10.1.17. Which of the following
equa ons best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

S The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equa on will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate op on (a), as the constant in that equa on is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posi ve coefficient, elimina ng (c).

The hyperboloid is wider in the z-direc on than in the y-direc on, so we
need an equa on where c > b. This eliminates (b), leaving us with (d). We
should verify that the equa on given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equa on describes a hyperboloid of two

sheets that opens in the x-direc on and is wider in the z-direc on than in the
y. Now note the coefficient of the x-term. Rewri ng 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This sec on has introduced points in space and shown how equa ons can
describe surfaces. The next sec ons explore vectors, an importantmathema cal
object that we’ll use to explore curves in space.

Notes:
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Exercises 10.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equa on x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equa on y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe the region in space defined by
the inequali es.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17. x2

4
+

y2

9
= 1

18. y = 1
x

In Exercises 19 – 22, give the equa on of the surface of revo-
lu on described.

19. Revolve z = 1
1+ y2

about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equa ons best fits the graph.

23.

(a) x = y2 + z2

9
(b) x = y2 + z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 + y2

3
+

z2

2
= 1 (b) x2 + y2

9
+

z2

4
= 1
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26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.

27. z− y2 + x2 = 0

28. z2 = x2 + y2

4

29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31. x2

9
− y2 + z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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Figure 10.2.1: Drawing the same vector
with different ini al points.
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Figure 10.2.2: Illustra ng how equal vec-
tors have the same displacement.
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10.2 An Introduc on to Vectors
Many quan es we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster o en describes wind with its speed and its direc on (“. . .
with winds from the southeast gus ng up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direc on of that force.
In both of these examples, direc on is important. Because of this, we study
vectors, mathema cal objects that convey both magnitude and direc on infor-
ma on.

One “bare–bones” defini on of a vector is based on what we wrote above:
“a vector is a mathema cal object with magnitude and direc on parameters.”
This defini on leaves much to be desired, as it gives no indica on as to how
such an object is to be used. Several other defini ons exist; we choose here a
defini on rooted in a geometric visualiza on of vectors. It is very simplis c but
readily permits further inves ga on.

Defini on 10.2.1 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the ini al point of
the vector, and the point Q is the terminal point.

The magnitude, length or norm of #  ‰PQ is the length of the line segment
PQ: || #  ‰PQ || = || PQ ||.

Two vectors are equal if they have the same magnitude and direc on.

Figure 10.2.1 shows mul ple instances of the same vector. Each directed
line segment has the same direc on and length (magnitude), hence each is the
same vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 10.2.2. The vectors look to
be equal; that is, they seem to have the same length and direc on. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the ini al point
to reach the terminal point. One can analyze this movement to measure the

Notes:
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magnitude of the vector, and the movement itself gives direc on informa on
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direc on, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direc ons the terminal point is from the ini al
point. Both the vectors #  ‰PQ and #‰RS in Figure 10.2.2 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the ini al point is the origin, (0, 0). This
leads us to a defini on of a standard and concise way of referring to vectors.

Defini on 10.2.2 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its ini al point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its ini al point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respec vely) are the components of v⃗.

It follows from the defini on that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

We prac ce using this nota on in the following example.

Example 10.2.1 Using component form nota on for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ star ng at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose ini al point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ star ng at the point Q = (1, 1, 1) and
find its magnitude.

Notes:
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Figure 10.2.3: Graphing vectors in Exam-
ple 10.2.1.
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S

1. Using P as the ini al point, wemove 2 units in the posi ve x-direc on and
−1 units in the posi ve y-direc on to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 10.2.3(a).
The magnitude of v⃗ is determined directly from the component form:

|| v⃗ || =
√

22 + (−1)2 =
√
5.

2. Using the note following Defini on 10.2.2, we have
#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 10.2.3(a) that the x- and y-displacement
of #‰RS is 2 and 4, respec vely, as the component form suggests.

3. Using Q as the ini al point, we move 2 units in the posi ve x-direc on,
−1 unit in the posi ve y-direc on, and 3 units in the posi ve z-direc on
to arrive at the terminal pointQ′ = (3, 0, 4), illustrated in Figure 10.2.3(b).
The magnitude of u⃗ is:

|| u⃗ || =
√

22 + (−1)2 + 32 =
√
14.

Now thatwehave defined vectors, and have created a nice nota onbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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Figure 10.2.4: Graphing the sum of vec-
tors in Example 10.2.2.
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Figure 10.2.5: Illustra ng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.
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Defini on 10.2.3 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addi on, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let c
be a scalar.

(a) The addi on, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addi on and scalarmul plica on are computed “component–
wise.”

Example 10.2.2 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with ini al point at the
origin.

S We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 10.2.4.

As vectors convey magnitude and direc on informa on, the sum of vectors
also convey length and magnitude informa on. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“Star ng at an ini al point, go out u⃗, then go out v⃗.”

Notes:

577



.....

u⃗

.

v⃗

.

u⃗ − v⃗

.

−
v⃗

.

u⃗ − v⃗

.

2

.

4

.

2

.

x

.

y

Figure 10.2.6: Illustra ng how to subtract
vectors graphically.
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This idea is sketched in Figure 10.2.5, where the ini al point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addi on is very important. For instance, if the vectors u⃗ and v⃗ represent forces
ac ng on a body, the sum u⃗ + v⃗ gives the resul ng force. Because of various
physical applica ons of vector addi on, the sum u⃗+ v⃗ is o en referred to as the
resultant vector, or just the “resultant.”

Analy cally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 10.2.5 also gives
a graphical representa on of this, using gray vectors. Note that the vectors u⃗
and v⃗, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗+ v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the ini al
point of u⃗ + v⃗ is the common ini al point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the proper es of the real numbers and Defini on 10.2.3 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtrac on. We
demonstrate this in the following example.

Example 10.2.3 Vector Subtrac on
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

S The computa on of u⃗ − v⃗ is straigh orward, and we show
all steps below. Usually the formal step of mul plying by (−1) is omi ed and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 10.2.6 illustrates, using the Head to Tail Rule, how the subtrac on can
be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how u⃗− v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their ini al points
are the same).

Example 10.2.4 Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with ini al point at the origin.

2. Compute the magnitudes of v⃗ and 2⃗v.

Notes:
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Figure 10.2.7: Graphing vectors v⃗ and 2⃗v
in Example 10.2.4.
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S

1. We compute 2⃗v:

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

Both v⃗ and 2⃗v are sketched in Figure 10.2.7. Make note that 2⃗v does not
start at the terminal point of v⃗; rather, its ini al point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

|| v⃗ || =
√

22 + 12

=
√
5.

|| 2⃗v || =
√

42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.

The zero vector is the vector whose ini al point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mul ply vectors by a scalar. The following the-
orem states formally the proper es of these opera ons.

Notes:
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Theorem 10.2.1 Proper es of Vector Opera ons

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ Commuta ve Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) Associa ve Property

3. v⃗+ 0⃗ = v⃗ Addi ve Iden ty

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v Distribu ve Property

6. (c+ d)⃗v = c⃗v+ d⃗v Distribu ve Property

7. 0⃗v = 0⃗

8. || c⃗v || = |c| · || v⃗ ||

9. || u⃗ || = 0 if, and only if, u⃗ = 0⃗.

As stated before, each nonvector v⃗ conveys magnitude and direc on infor-
ma on. We have amethod of extrac ng themagnitude, whichwewrite as || v⃗ ||.
Unit vectors are a way of extrac ng just the direc on informa on from a vector.

Defini on 10.2.4 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

|| v⃗ || = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direc on of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direc on of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 10.2.1 holds the key. If we divide v⃗ by its magnitude,
it becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

|| v⃗ ||
v⃗
∣∣∣∣∣∣∣∣ = 1

|| v⃗ ||
|| v⃗ || (we can pull out 1

|| v⃗ || as it is a posi ve scalar)

= 1.

Notes:
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Figure 10.2.8: Graphing vectors in Exam-
ple 10.2.5. All vectors shown have their
ini al point at the origin.
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So the vector of length 10 in the direc on of v⃗ is 10
1

|| v⃗ ||
v⃗. An example will make

this more clear.

Example 10.2.5 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direc on of v⃗.

2. Find the unit vector in the direc on of w⃗.

3. Find the vector in the direc on of v⃗ with magnitude 5.

S

1. We find || v⃗ || =
√
10. So the unit vector u⃗ in the direc on of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find || w⃗ || = 3, so the unit vector z⃗ in the direc on of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

3. To create a vector with magnitude 5 in the direc on of v⃗, we mul ply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 10.2.8.

The basic forma on of the unit vector u⃗ in the direc on of a vector v⃗ leads
to a interes ng equa on. It is:

v⃗ = || v⃗ || 1
|| v⃗ ||

v⃗.

We rewrite the equa on with parentheses to make a point:

v⃗ = || v⃗ ||︸︷︷︸
magnitude

·
(

1
|| v⃗ ||

v⃗
)

︸ ︷︷ ︸
direc on

.

This equa on illustrates the fact that a nonzero vector has both magnitude
and direc on, where we view a unit vector as supplying only direc on informa-
on. Iden fying unit vectors with direc on allows us to define parallel vectors.

Notes:
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Note: 0⃗ is direc onless; because
|| 0⃗ || = 0, there is no unit vector in the
“direc on” of 0⃗.

Some texts define two vectors as being
parallel if one is a scalar mul ple of the
other. By this defini on, 0⃗ is parallel to
all vectors as 0⃗ = 0⃗v for all v⃗.

We define what it means for two vectors
to be perpendicular in Defini on 10.3.2,
which is wri en to exclude 0⃗. It could be
wri en to include 0⃗; by such a defini on,
0⃗ is perpendicular to all vectors. While
counter-intui ve, it is mathema cally
sound to allow 0⃗ to be both parallel and
perpendicular to all vectors.

We prefer the given defini on of parallel
as it is grounded in the fact that unit vec-
tors provide direc on informa on. One
may adopt the conven on that 0⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page 604.)

..

50lb

.

45◦

.

30◦

Figure 10.2.9: A diagram of a weight
hanging from 2 chains in Example 10.2.6.
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Defini on 10.2.5 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respec ve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

If one graphed all unit vectors in R2 with the ini al point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construc on inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a par cular component form, but its deriva on
is not as straigh orward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 10.2.1 Unit Vectors

1. The unit vector in the direc on of a nonzero vector v⃗ is

u⃗ =
1

|| v⃗ ||
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situa ons, especially the
formula for unit vectors in the plane.

Example 10.2.6 Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure 10.2.9.
One chain makes an angle of 30◦ with the ver cal, and the other an angle of
45◦. Find the force applied to each chain.

S Knowing that gravity is pulling the 50lbweight straight down,

Notes:
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Figure 10.2.10: A diagram of the force
vectors from Example 10.2.6.
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we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, preven ng it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the ver cal, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.2.10), and apply Key Idea 10.2.1. As we do not
yet know themagnitudes of these vectors, (that is the problem at hand), we use
m1 andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩

F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equa ons:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equa on, 2-unkown system of linear equa ons. We leave it to
the reader to verify that the solu on is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1+
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explana on. Our equa ons were established so that the ver cal compo-
nents of each force sums to 50lb, thus suppor ng the weight. Since the chains
are at an angle, they also pull against each other, crea ng an “addi onal” hori-
zontal force while holding the weight in place.

Unit vectors were very important in the previous calcula on; they allowed
us to define a vector in the proper direc on but with an unknown magnitude.
Our computa ons were then computed component–wise. Because such calcu-
la ons are o en necessary, the standard unit vectors can be useful.

Notes:
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Figure 10.2.11: A figure of a weight being
pushed by the wind in Example 10.2.8.
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Defini on 10.2.6 Standard Unit Vectors

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 10.2.7 Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j+ 2⃗k in component form.

S

1. v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2. w⃗ = 4⃗i− 5⃗j+ 2⃗k
= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that conver ng between component form
and the standard unit vectors is rather straigh orward. Many mathema cians
prefer component form, and it is the preferred nota on in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use
that nota on.

Example 10.2.8 Finding Component Force
Aweight of 25lb is suspended from a chain of length 2 while a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 10.2.11. What
angle will the chain make with the ver cal as a result of the wind’s pushing?
How much higher will the weight be?

Notes:
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S The force of the wind is represented by the vector F⃗w = 5⃗i.
The force of gravity on the weight is represented by F⃗g = −25⃗j. The direc on
and magnitude of the vector represen ng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the ver cal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗+ 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the following
system of equa ons:

5+m cosφ = 0
−25+m sinφ = 0

(10.1)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√
(−5)2 + 252 = 5

√
26 ≈ 25.5lb.

We can then use either equality from Equa on (10.1) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

Subtrac ng 90◦ from this angle gives us an angle of 11.31◦ with the ver cal.
We can now use trigonometry to find out how high the weight is li ed.

The diagram shows that a right triangle is formed with the 2 chain as the hy-
potenuse with an interior angle of 11.31◦. The length of the adjacent side (in
the diagram, the dashed ver cal line) is 2 cos 11.31◦ ≈ 1.96 . Thus the weight
is li ed by about 0.04 , almost 1/2in.

The algebra we have applied to vectors is already demonstra ng itself to be
very useful. There are two more fundamental opera ons we can perform with
vectors, the dot product and the cross product. The next two sec ons explore
each in turn.

Notes:
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Exercises 10.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?

3. What is a unit vector?

4. Unit vectors can be thought of as conveying what type of
informa on?

5. What does it mean for two vectors to be parallel?

6. What effect does mul plying a vector by−2 have?

Problems
In Exercises 7 – 10, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

7. P = (2,−1), Q = (3, 5)

8. P = (3, 2), Q = (7,−2)

9. P = (0, 3,−1), Q = (6, 2, 5)

10. P = (2, 1, 2), Q = (4, 3, 2)

11. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.
(b) Sketch the above vectors on the same axes, along

with u⃗ and v⃗.
(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

12. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−

√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 13 – 16, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

13.

.....

u⃗

. v⃗.

x

.

y

14.

.....

u⃗

.

v⃗

.

x

.

y

15.

...

..
u⃗

.v⃗ .

x

.

y

.

z

16.

...

..
u⃗

.

v⃗

.

x

.

y

.

z

In Exercises 17 – 20, find || u⃗ ||, || v⃗ ||, || u⃗+ v⃗ || and || u⃗− v⃗ ||.

17. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩

18. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩

19. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩

20. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩

21. Under what condi ons is || u⃗ ||+ || v⃗ || = || u⃗+ v⃗ ||?

In Exercises 22 – 25, find the unit vector u⃗ in the direc on of
v⃗.

22. v⃗ = ⟨3, 7⟩

23. v⃗ = ⟨6, 8⟩

24. v⃗ = ⟨1,−2, 2⟩

25. v⃗ = ⟨2,−2, 2⟩
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26. Find the unit vector in the first quadrant of R2 that makes
a 50◦ angle with the x-axis.

27. Find the unit vector in the second quadrant of R2 that
makes a 30◦ angle with the y-axis.

28. Verify, from Key Idea 10.2.1, that

u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩

is a unit vector for all angles θ and φ.

A weight of 100lb is suspended from two chains, making an-
gles with the ver cal of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises 29 – 32, angles θ and φ are given. Find the mag-
nitude of the force applied to each chain.

29. θ = 30◦, φ = 30◦

30. θ = 60◦, φ = 60◦

31. θ = 20◦, φ = 15◦

32. θ = 0◦, φ = 0◦

A weight of plb is suspended from a chain of length ℓ while
a constant force of F⃗w pushes the weight to the right, making
an angle of θ with the ver cal, as shown in the figure below.

..

ℓ

.

p lb

.

θ

.

F⃗w

In Exercises 33 – 36, a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is li ed as it moves to
the right.

33. F⃗w = 1lb, ℓ = 1 , p = 1lb

34. F⃗w = 1lb, ℓ = 1 , p = 10lb

35. F⃗w = 1lb, ℓ = 10 , p = 1lb

36. F⃗w = 10lb, ℓ = 10 , p = 1lb
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Chapter 10 Vectors

10.3 The Dot Product
The previous sec on introduced vectors and described how to add them to-
gether and how to mul ply them by scalars. This sec on introduces a mul -
plica on on vectors called the dot product.

Defini on 10.3.1 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
prac ce evalua ng a dot product in the following example, then we will discuss
why this product is useful.

Example 10.3.1 Evalua ng dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

S

1. Using Defini on 10.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the defini on, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the defini on gives no hint as to why

Notes:
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..

u⃗

.

v⃗

. θ

(a)

(b)

Figure 10.3.1: Illustra ng the angle
formed by two vectors with the same
ini al point.

10.3 The Dot Product

we would care about this opera on, there is an amazing connec on between
the dot product and angles formed by the vectors. Before sta ng this connec-
on, we give a theorem sta ng some of the proper es of the dot product.

Theorem 10.3.1 Proper es of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ Commuta ve Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ Distribu ve Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = || v⃗ ||2

The last statement of the theorem makes a handy connec on between the
magnitude of a vector and the dot product with itself. Our defini on and theo-
rem give proper es of the dot product, but we are s ll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connec ng the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same ini al point as illustrated in Figure
10.3.1(a). (We always take θ to be the angle in [0, π] as two angles are actually
created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same ini al point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 10.3.1(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Notes:
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Figure 10.3.3: Vectors used in Example
10.3.2.

Chapter 10 Vectors

Theorem 10.3.2 The Dot Product and Angles

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = || u⃗ || || v⃗ || cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Using Theorem 10.3.1, we can rewrite this theorem as

u⃗
|| u⃗ ||

· v⃗
|| v⃗ ||

= cos θ.

Note how on the le hand side of the equa on, we are compu ng the dot prod-
uct of two unit vectors. Recalling that unit vectors essen ally only provide direc-
on informa on, we can informally restate Theorem 10.3.2 as saying “The dot

product of two direc ons gives the cosine of the angle between them.”
When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is posi ve; when θ =

π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is nega ve.
Thus the sign of the dot product gives a general indica on of the angle between
the vectors, illustrated in Figure 10.3.2.

..
u⃗ · v⃗ > 0

. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure 10.3.2: Illustra ng the rela onship between the angle between vectors and the
sign of their dot product.

We can use Theorem 10.3.2 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equa on
as

cos θ =
u⃗ · v⃗

|| u⃗ |||| v⃗ ||
⇔ θ = cos−1

(
u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
.

We prac ce using this theorem in the following example.

Example 10.3.2 Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 10.3.3. Find
the angles α, β and θ.

Notes:
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Figure 10.3.4: Vectors used in Example
10.3.3.

10.3 The Dot Product

S We start by compu ng the magnitude of each vector.

|| u⃗ || =
√
10; || v⃗ || = 2

√
10; || w⃗ || = 5.

We now apply Theorem 10.3.2 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computa on that α+β = θ, as indicated by Figure 10.3.3.
While we knew this should be the case, it is nice to see that this non-intui ve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 10.3.3 Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Figure
10.3.4. Find the angle between each pair of vectors.

S

1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

Notes:
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Note: The term perpendicular originally
referred to lines. As mathema cs pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common conven on gives preference to
the word orthogonal.

Chapter 10 Vectors

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
|| u⃗ |||| w⃗ ||

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
|| v⃗ |||| w⃗ ||

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 10.3.4. Such is the case when drawing three–
dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. No ce the common
feature in each calcula on (and also the calcula on of α in Example 10.3.2): the
dot products of each pair of angles was 0. We use this as a basis for a defini on
of the term orthogonal, which is essen ally synonymous to perpendicular.

Defini on 10.3.2 Orthogonal

Nonzero vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

Example 10.3.4 Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

S

Notes:
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.
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.
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.
θ

(b)

Figure 10.3.5: Developing the construc-
on of the orthogonal projec on.

10.3 The Dot Product

1. Recall that a line perpendicular to a line with slope m has slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinitelymany direc ons in space orthogonal to any given direc-
on, so there are an infinite number of non–parallel vectors orthogonal

to v⃗. Since there are so many, we have great leeway in finding some.
One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Le ng the third component be 0 effec vely ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

An important construc on is illustrated in Figure 10.3.5, where vectors u⃗ and
v⃗ are sketched. In part (a), a do ed line is drawn from the p of u⃗ to the line
containing v⃗, where the do ed line is orthogonal to v⃗. In part (b), the do ed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construc on is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construc on
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 10.3.5 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

|| w⃗ || = || u⃗ || cos θ. (10.2)

Notes:
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We also know that w⃗ is parallel to to v⃗ ; that is, the direc on of w⃗ is the
direc on of v⃗, described by the unit vector v⃗/|| v⃗ ||. The vector w⃗ is the vector
in the direc on v⃗/|| v⃗ || with magnitude || u⃗ || cos θ:

w⃗ =
(
|| u⃗ || cos θ

) 1
|| v⃗ ||

v⃗.

Replace cos θ using Theorem 10.3.2:

=

(
|| u⃗ || u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
1

|| v⃗ ||
v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗.

Now apply Theorem 10.3.1.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construc on is so important, it is given a special name.

Defini on 10.3.3 Orthogonal Projec on

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projec on of u⃗
onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Example 10.3.5 Compu ng the orthogonal projec on

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with ini al points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with ini al points at the origin.

S

Notes:
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Figure 10.3.6: Graphing the vectors used
in Example 10.3.5.

10.3 The Dot Product

1. Applying Defini on 10.3.3, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10

⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 10.3.6(a). Note how the
projec on is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direc on. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

2. Apply the defini on:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 10.3.6(b), and again in part (c) from
a different perspec ve. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
on has the geometric proper es it should. The graph shown in part (c)

illustrates these proper es be er.

We can use the proper es of the dot product found in Theorem 10.3.1 to
rearrange the formula found in Defini on 10.3.3:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗

=

(
u⃗ · v⃗

|| v⃗ ||

)
v⃗

|| v⃗ ||
.

The above formula shows that the orthogonal projec on of u⃗ onto v⃗ is only
concerned with the direc on of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/|| v⃗ ||, the unit vector in the direc on of v⃗.

A special case of orthogonal projec on occurs when v⃗ is a unit vector. In this
situa on, the formula for the orthogonal projec on of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (⃗u · v⃗)⃗v, as v⃗ · v⃗ = 1.

Notes:
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Figure 10.3.7: Illustra ng the orthogonal
projec on.
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This gives us a new understanding of the dot product. When v⃗ is a unit vec-
tor, essen ally providing only direc on informa on, the dot product of u⃗ and v⃗
gives “howmuch of u⃗ is in the direc on of v⃗.” This use of the dot product will be
very useful in future sec ons.

Now consider Figure 10.3.7 where the concept of the orthogonal projec on
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (10.3)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equa on (10.3) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (Nota on note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this nota on to state
“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

Key Idea 10.3.1 Orthogonal Decomposi on of Vectors

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ can bewri en as the sumof
two vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 10.3.6 Orthogonal decomposi on of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 10.3.5. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 10.3.5. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

S

Notes:
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Figure 10.3.8: Sketching the ramp and
box in Example 10.3.7. Note: The vectors
are not drawn to scale.

10.3 The Dot Product

1. In Example 10.3.5, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.
Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 10.3.5 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key
Idea, we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposi on is useful.

Example 10.3.7 Orthogonally decomposing a force vector
Consider Figure 10.3.8(a), showing a box weighing 50lb on a ramp that rises 5
over a span of 20 . Find the components of force, and their magnitudes, ac ng
on the box (as sketched in part (b) of the figure):

1. in the direc on of the ramp, and

2. orthogonal to the ramp.

S As the ramp rises 5 over a horizontal distance of 20 , we can
represent the direc on of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

Notes:
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Figure 10.3.9: Finding work when the
force and direc on of travel are given as
vectors.

Chapter 10 Vectors

1. Tofind the force of gravity in the direc onof the ramp,we computeproj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is || proj r⃗ g⃗ || = 50/
√
17 ≈ 12.13lb. Though

the box weighs 50lb, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 10.3.1.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
≈ ⟨11.76,−47.06⟩ .

Themagnitude of this force is || z⃗ || ≈ 48.51lb. In physics and engineering,
knowing this force is importantwhen compu ng things like sta c fric onal
force. (For instance, we could easily compute if the sta c fric onal force
alone was enough to keep the box from sliding down the ramp.)

Applica on to Work

In physics, the applica on of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direc on of travel). The orthogonal projec on allows us to compute work when
the force is not in the direc on of travel.

Consider Figure 10.3.9, where a force F⃗ is being applied to an object moving
in the direc on of d⃗. (The distance the object travels is the magnitude of d⃗.) The

Notes:
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Figure 10.3.10: Compu ng work when
sliding a box up a ramp in Example 10.3.8.

10.3 The Dot Product

work done is the amount of force in the direc on of d⃗, || proj d⃗ F⃗ ||, mes || d⃗ ||:

|| proj d⃗ F⃗ || · || d⃗ || =

∣∣∣∣∣
∣∣∣∣∣ F⃗ · d⃗d⃗ · d⃗

d⃗

∣∣∣∣∣
∣∣∣∣∣ · || d⃗ ||

=

∣∣∣∣∣ F⃗ · d⃗
|| d⃗ ||2

∣∣∣∣∣ · || d⃗ || · || d⃗ ||
=

∣∣∣⃗F · d⃗∣∣∣
|| d⃗ ||2

|| d⃗ ||2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be posi ve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is nega ve), the force is causing mo on
in the opposite direc on of d⃗, resul ng in “nega ve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

Defini on 10.3.4 Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

Example 10.3.8 Compu ng work
Aman slides a box along a ramp that rises 3 over a distance of 15 by applying
50lb of force as shown in Figure 10.3.10. Compute the work done.

S The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The ramp is
represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5 –lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direc on of travel; this is all inherently com-
puted by the dot product!

The dot product is a powerful way of evalua ng computa ons that depend
onangleswithout actually using angles. Thenext sec onexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:
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Exercises 10.3
Terms and Concepts

1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems
In Exercises 5 – 10, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ inR3 and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises 13 – 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17 – 20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩

18. v⃗ = ⟨−3, 5⟩

19. v⃗ = ⟨1, 1, 1⟩

20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21 – 26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projec on of u⃗ onto v⃗, and sketch all three
vectors with the same ini al point.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27 – 32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4 over a distance of
20 . Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15 ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10 with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. How much work is performed in moving a box horizontally
10 with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2 over a distance of 10 , with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2 over a distance of 10 , with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10 ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direc on of the ramp?600



10.4 The Cross Product

10.4 The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a opera on,
called the cross product, that creates such a vector. This sec on defines the
cross product, then explores its proper es and applica ons.

Defini on 10.4.1 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This defini on can be a bit cumbersome to remember. A er an example we
will give a convenient method for compu ng the cross product. For now, careful
examina on of the products and differences given in the defini on should reveal
a pa ern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s prac ce using this defini on by compu ng a cross product.

Example 10.4.1 Compu ng a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

S Using Defini on 10.4.1, we have

u⃗× v⃗ =
⟨
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

⟩
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗.

Notes:
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Chapter 10 Vectors

A convenient method of compu ng the cross product starts with forming a
par cular 3 × 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respec vely. Using u⃗ and v⃗ from Example 10.4.1, we begin with:

i⃗ j⃗ k⃗
2 −1 4
3 2 5

Now repeat the first two columns a er the original three:

i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

This gives three full “upper le to lower right” diagonals, and three full “up-
per right to lower le ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
le :

i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

−5⃗i 12⃗j 4⃗k−3⃗k 8⃗i 10⃗j

u⃗× v⃗ =
(
− 5⃗i+12⃗j+ 4⃗k

)
−
(
− 3⃗k+ 8⃗i+10⃗j

)
= −13⃗i+ 2⃗j+ 7⃗k = ⟨−13, 2, 7⟩ .

We prac ce using this method.

Example 10.4.2 Compu ng a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

S To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗
1 3 6 1 3
−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
3⃗i− 6⃗j+ 2⃗k

)
−
(
− 3⃗k+ 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

Notes:
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10.4 The Cross Product

To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mul ply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗
−1 2 1 −1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the le , and vice–versa. Thus the result is:

v⃗× u⃗ =
(
12⃗i+ j⃗− 3⃗k

)
−
(
2⃗k+ 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗.

Proper es of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using Defini on 10.4.1 that this will always be the case. The following
theorem states several useful proper es of the cross product, each of which can
be verified by referring to the defini on.

Theorem 10.4.1 Proper es of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following iden es
hold:

1. u⃗× v⃗ = −(⃗v× u⃗) An commuta ve Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ Distribu ve Proper es
(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality Proper es
(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

Notes:
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Note: We could rewrite Defini on 10.3.2
and Theorem10.4.2 to include 0⃗, then de-
fine that u⃗ and v⃗ are parallel if u⃗× v⃗ = 0⃗.
Since 0⃗ · v⃗ = 0 and 0⃗× v⃗ = 0⃗, this would
mean that 0⃗ is both parallel and orthog-
onal to all vectors. Apparent paradoxes
such as this are not uncommon in math-
ema cs and can be very useful. (See also
the marginal note on page 582.)

Chapter 10 Vectors

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construc on given in
Defini on 10.4.1 sa sfies this property. Theorem 10.4.1 asserts this property
holds; we leave it as a problem in the Exercise sec on to verify this.

Property 5 from the theorem is also le to the reader to prove in the Exercise
sec on, but it reveals something more interes ng than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 10.4.1)
= 0⃗. (by Property 5 of Theorem 10.4.1)

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 10.3.2 related the angle between two vectors
and their dot product; there is a similar rela onship rela ng the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 10.4.2 The Cross Product and Angles

Let u⃗ and v⃗ be nonzero vectors in R3. Then

|| u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of
0 is 0⃗ (see Property 9 of Theorem 10.2.1), hence the cross product of parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

Example 10.4.3 The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 10.4.2. Verify Theorem 10.4.2
by finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Notes:
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Figure 10.4.1: Illustra ng the Right Hand
Rule of the cross product.

10.4 The Cross Product

S We use Theorem 10.3.2 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
|| u⃗ || || v⃗ ||

)
= cos−1

(
11√
46

√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 10.4.2 showed that u⃗× v⃗ = ⟨−9,−7, 5⟩, hence || u⃗×
v⃗ || =

√
155. Is || u⃗ × v⃗ || = || u⃗ || || v⃗ || sin θ? Using numerical approxima ons,

we find:

|| u⃗× v⃗ || =
√
155 || u⃗ || || v⃗ || sin θ =

√
46

√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46

√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

Right Hand Rule

The an commuta ve property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direc on. When seeking a vector perpendicular to u⃗ and v⃗, we
essen ally have two direc ons to choose from, one in the direc on of u⃗× v⃗ and
one in the direc on of v⃗× u⃗. Does it ma er which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same ini al point, point
the index finger of your right hand in the direc on of u⃗ and let yourmiddle finger
point in the direc on of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direc on of u⃗× v⃗. One can “prac ce” this using Figure 10.4.1. If you switch,
and point the index finder in the direc on of v⃗ and the middle finger in the di-
rec on of u⃗, your thumb will now point in the opposite direc on, allowing you
to “visualize” the an commuta ve property of the cross product.

Applica ons of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
ma cs, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:
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Figure 10.4.2: Using the cross product to
find the area of a parallelogram.
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Figure 10.4.3: Sketching the parallelo-
grams in Example 10.4.4.

Chapter 10 Vectors

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.4.2(a). As shownwhen defining the Parallelogram Law of
vector addi on, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same ini al point, as illustrated in Figure 10.4.2(b). Trigonometry tells us
that h = || u⃗ || sin θ, hence the area of the parallelogram is

A = || u⃗ || || v⃗ || sin θ = || u⃗× v⃗ ||, (10.4)

where the second equality comes from Theorem 10.4.2. We illustrate using
Equa on (10.4) in the following example.

Example 10.4.4 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the ver ces of a parallelogram. Find the area of the
parallelogram.

S

1. Figure 10.4.3(a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = || u⃗× v⃗ || = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.4.3(b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We find

the area by compu ng the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒ || # ‰AB× # ‰BC || =

√
5 ≈ 2.236.

This applica on is perhaps more useful in finding the area of a triangle (in
short, triangles are used more o en than parallelograms). We illustrate this in
the following example.

Notes:
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Figure 10.4.4: Finding the area of a trian-
gle in Example 10.4.5.

Note: The word “parallelepiped” is pro-
nounced “parallel–eh–pipe–ed.”

Figure 10.4.5: A parallelepiped is the
three dimensional analogue to the paral-
lelogram.

Figure 10.4.6: A parallelepiped in Exam-
ple 10.4.6.

10.4 The Cross Product

Example 10.4.5 Area of a triangle
Find the area of the triangle with ver ces A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 10.4.4.

S We found the area of this triangle in Example 7.1.4 to be 1.5
using integra on. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 12bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
|| # ‰AB× # ‰AC || = 1

2
|| ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ || = 1

2
|| ⟨0, 0,−3⟩ || = 3

2
.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the opposite face, as illustrated in Figure 10.4.5. By cross-
ing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base. Do ng
this vector with u⃗ computes the volume of parallelepiped! (Up to a sign; take
the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 10.4.1. Applying
the iden es given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

Example 10.4.6 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

S We apply Equa on (10.5). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = | ⟨1, 1, 0⟩ · ⟨1, 1,−1⟩ | = 2.

So the volume of the parallelepiped is 2 cubic units.

Notes:
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Figure 10.4.7: Showing a force being ap-
plied to a lever in Example 10.4.7.

Chapter 10 Vectors

While this applica on of the Triple Scalar Product is interes ng, it is not used
all that o en: parallelepipeds are not a common shape in physics and engineer-
ing. The last applica on of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the applica on of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
rec on orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek le er
τ, or tau, and has units of N·m, a Newton–meter, or ·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resul ng torque is

τ⃗ = ℓ⃗× F⃗. (10.6)

Example 10.4.7 Compu ng torque
A lever of length 2 makes an anglewith the horizontal of 45◦. Find the resul ng
torque when a force of 10lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 10.4.7.

S

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2 long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
le hand side of Figure 10.4.7), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can state
F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using Equa on (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

Notes:
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10.4 The Cross Product

This clearly has a magnitude of 20 -lb.
We can view the force and lever arm vectors as lying “on the page”; our
computa on of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

2. Our lever arm can s ll be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,
5(−1+

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,
5(−1+

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

While the cross product has a variety of applica ons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equa ons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
ma cs. We study lines and planes in the next two sec ons.

Notes:
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Exercises 10.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.

2. One can visualize the direc on of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”

4. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

5. is a measure of the turning force applied to an
object.

6. T/F: If u⃗ and v⃗ are parallel, then u⃗× v⃗ = 0⃗.

Problems
In Exercises 7 – 16, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

7. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

8. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

9. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

10. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

11. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

12. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

13. u⃗ = ⟨a, b, 0⟩, v⃗ = ⟨c, d, 0⟩

14. u⃗ = i⃗, v⃗ = j⃗

15. u⃗ = i⃗, v⃗ = k⃗

16. u⃗ = j⃗, v⃗ = k⃗

17. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

18. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 19 – 22, the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
forma on to find the magnitude of u⃗× v⃗.

19. || u⃗ || = 2, || v⃗ || = 5, θ = 30◦

20. || u⃗ || = 3, || v⃗ || = 7, θ = π/2

21. || u⃗ || = 3, || v⃗ || = 4, θ = π

22. || u⃗ || = 2, || v⃗ || = 5, θ = 5π/6

In Exercises 23 – 26, find the area of the parallelogram de-
fined by the given vectors.

23. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

24. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

25. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

26. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 27 – 30, find the area of the triangle with the
given ver ces.

27. Ver ces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

28. Ver ces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

29. Ver ces: (1, 1), (1, 3) and (2, 2).

30. Ver ces: (3, 1), (1, 2) and (4, 3).

In Exercises 31 – 32, find the area of the quadrilateral with
the given ver ces. (Hint: break the quadrilateral into 2 trian-
gles.)

31. Ver ces: (0, 0), (1, 2), (3, 0) and (4, 3).

32. Ver ces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 33 – 34, find the volume of the parallelepiped
defined by the given vectors.

33. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

34. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 35 – 38, find a unit vector orthogonal to both u⃗
and v⃗.

35. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

36. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

37. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

38. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

39. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
cranksha . Find the magnitude of the torque applied to
the cranksha .
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40. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the cranksha , making a 30◦
anglewith the horizontal. Find themagnitude of the torque
applied to the cranksha .

41. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

42. To turn a stubborn bolt, 80lb of force is applied to a 10in

wrench in a confined space, where the direc on of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

43. Show, using the defini on of the Cross Product, that u⃗ · (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

44. Show, using the defini on of the Cross Product, that u⃗×u⃗ =
0⃗.
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Figure 10.5.2: Defining a line in space.

Chapter 10 Vectors

10.5 Lines
To find the equa on of a line in the x-y plane, we need two pieces of informa on:
a point and the slope. The slope conveys direc on informa on. As ver cal lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direc on of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with ini al point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direc on of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direc on parallel to d⃗. For instance, star ng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 10.5.2 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by star ng
with p⃗ and moving a certain distance in the direc on of d⃗. That is, we can define
the line as a func on of t:

ℓ⃗(t) = p⃗+ t d⃗. (10.7)
In many ways, this is not a new concept. Compare Equa on (10.7) to the

familiar “y = mx+ b” equa on of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

Star ng
Point Direc on

How Far To
Go In That
Direc on

Figure 10.5.1: Understanding the vector equa on of a line.

The equa ons exhibit the same structure: they give a star ng point, define
a direc on, and state how far in that direc on to travel.

Equa on (10.7) is an example of a vector–valued func on; the input of the
func on is a real number and the output is a vector. Wewill cover vector–valued
func ons extensively in the next chapter.

Notes:
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10.5 Lines

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equa on of the line through p⃗ in the direc on of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states that the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equa ons, taken together, are the parametric equa ons of the line
through p⃗ in the direc on of d⃗.

Finally, each of the equa ons for x, y and z above contain the variable t. We
can solve for t in each equa on:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equa ons of the line through
p⃗ in the direc on of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representa on has its own advantages, depending on the context. We
summarize these three forms in the following defini on, then give examples of
their use.

Notes:
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Figure 10.5.3: Graphing a line in Example
10.5.1.

Chapter 10 Vectors

Defini on 10.5.1 Equa ons of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direc on of d⃗ = ⟨a, b, c⟩ .

1. The vector equa on of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equa ons of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equa ons of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

Example 10.5.1 Finding the equa on of a line
Give all three equa ons, as given in Defini on 10.5.1, of the line through P =
(2, 3, 1) in the direc on of d⃗ = ⟨−1, 1, 2⟩. Does the point Q = (−1, 6, 6) lie on
this line?

S We iden fy the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the defini on, we have

• the vector equa on of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equa ons of the line are

x = 2− t, y = 3+ t, z = 1+ 2t; and

• the symmetric equa ons of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.

The first two equa ons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calcula ng with a computer; most so ware programs easily handle equa-
ons in these formats. (For instance, the graphics program that made Figure

10.5.3 can be given the input “(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).
Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 10.5.3

makes it clear that it does not. We can answer this ques on without the graph

Notes:
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Figure 10.5.4: A graph of the line in Exam-
ple 10.5.2.

10.5 Lines

using any of the three equa on forms. Of the three, the symmetric equa ons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not sa sfy the symmetric equa-
ons.

Example 10.5.2 Finding the equa on of a line through two points
Find the parametric equa ons of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

S Recall the statement made at the beginning of this sec on:
to find the equa on of a line, we need a point and a direc on. We have two
points; either one will suffice. The direc on of the line can be found by the
vector with ini al point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equa ons of the line ℓ through P in the direc on of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

A graph of the points and line are given in Figure 10.5.4. Note how in the
given parametriza on of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the pointQ. This relates to the understanding of the vector equa-
on of a line described in Figure 10.5.1. The parametric equa ons “start” at the

point P, and t determines how far in the direc on of #  ‰PQ to travel. When t = 0,
we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ, resul ng in
the point Q.

Parallel, Intersec ng and Skew Lines

In the plane, two dis nct lines can either be parallel or they will intersect
at exactly one point. In space, given equa ons of two lines, it can some mes
be difficult to tell whether the lines are dis nct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibili es: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersec ng lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

Notes:
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Figure 10.5.5: Sketching the lines fromEx-
ample 10.5.3.

Chapter 10 Vectors

The next two examples inves gate these possibili es.

Example 10.5.3 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equa on form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

S We start by looking at the direc ons of each line. Line ℓ1
has the direc on given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direc on given
by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1
and ℓ2 are not the same line, nor are they parallel. Figure 10.5.5 verifies this
fact (where the points and direc ons indicated by the equa ons of each line are
iden fied).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respec ve x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = −2+ 4s
2− t = 3+ s
t = 5+ 2s.

This is a rela vely simple system of linear equa ons. Since the last equa on is
already solved for t, subs tute that value of t into the equa on above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equa ons; we need to check if s =
−2, t = 1 sa sfies the first equa on as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example 10.5.4 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equa on form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

Notes:
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Figure 10.5.6: Graphing the lines in Exam-
ple 10.5.4.

10.5 Lines

S It is obviously very difficult to simply look at these equa ons
and discern anything. This is done inten onally. In the “real world,” most equa-
ons that are used do not have nice, integer coefficients. Rather, there are lots

of digits a er the decimal and the equa ons can look “messy.”
We again start by deciding whether or not each line has the same direc on.

The direc on of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direc on of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observa on
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respec ve unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1

|| d⃗1 ||
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

|| d⃗2 ||
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situa ons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of frac ons, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of frac ons, then
compute the unit vectors likewise. A er a lot of manual arithme c (or a er
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivoca on that these lines are parallel.
Are they the same line? The parametric equa ons for a line describe one

point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equa ons for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09

⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.5.6 graphs this line along with the points
and vectors described by the parametric equa ons. Note how d⃗1 and d⃗2 are
parallel, though point in opposite direc ons (as indicated by their unit vectors
above).

Notes:
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Figure 10.5.7: Establishing the distance
from a point to a line.

Figure 10.5.8: Establishing the distance
between lines.

Chapter 10 Vectors

Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is o en useful to know
the distance from the point to the line. (Here we use the standard defini on
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Iden fying p⃗ with the point P, Figure 10.5.7 will help establish a general
method of compu ng this distance h.

From trigonometry, we know h = || #  ‰PQ || sin θ. We have a similar iden ty
involving the cross product: || #  ‰PQ × d⃗ || = || #  ‰PQ || || d⃗ || sin θ. Divide both sides
of this la er equa on by || d⃗ || to obtain h:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
. (10.8)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 10.5.8.
To find the direc on orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projec on of #      ‰P1P2 onto c⃗ is the
distance h we seek:

h =
∣∣∣∣ proj c⃗ #      ‰P1P2

∣∣∣∣
=

∣∣∣∣∣∣∣∣ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∣∣∣∣∣∣∣∣

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||2

|| c⃗ ||

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

A problem in the Exercise sec on is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰P1P2 · c⃗ =

#      ‰P1P2 · (⃗d1 × d⃗2).

The following Key Idea restates these two distance formulas.

Notes:
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10.5 Lines

Key Idea 10.5.1 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
.

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

Example 10.5.5 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

S The equa on of the line gives us the point P = (1,−1, 1)
that lies on the line, hence #  ‰PQ = ⟨0, 2, 2⟩. The equa on also gives d⃗ = ⟨2, 3, 1⟩.
Following Key Idea 10.5.1, we have the distance as

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||

=
|| ⟨−4, 4,−4⟩ ||√

14

=
4
√
3√

14
≈ 1.852.

The point Q is approximately 1.852 units from the line ℓ⃗(t).

Example 10.5.6 Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

S These are the sames lines as given in Example 10.5.3, where

Notes:
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we showed them to be skew. The equa ons allow us to iden fy the following
points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 10.5.1 we have the distance h between the two lines is

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart.

One of the key points to understand from this sec on is this: to describe a
line, we need a point and a direc on. Whenever a problem is posed concern-
ing a line, one needs to take whatever informa on is offered and glean point
and direc on informa on. Many ques ons can be asked (and are asked in the
Exercise sec on) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next sec on. Many
complex three dimensional objects are studied by approxima ng their surfaces
with lines and planes.

Notes:
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Exercises 10.5
Terms and Concepts

1. To find an equa on of a line, what two pieces of informa-
on are needed?

2. Two dis nct lines in the plane can intersect or be
.

3. Two dis nct lines in space can intersect, be or be
.

4. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises 5 – 14, write the vector, parametric and symmet-
ric equa ons of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersec on of ℓ⃗1(t) and ℓ⃗2(t)
and orthogonal to both lines, where
ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersec on of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15 – 22, determine if the described lines are the
same line, parallel lines, intersec ng or skew lines. If inter-
sec ng, give the point of intersec on.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23 – 26, find the distance from the point to the
line.

23. Q = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. Q = (2, 5, 6), ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. Q = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. Q = (1, 1), ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27 – 28, find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29 – 31 explore special cases of the distance formu-
las found in Key Idea 10.5.1.

29. Let Q be a point on the line ℓ⃗(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersec ng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.
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31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Showwhy the distance formula for distance between
lines cannot be used as stated to find the distance be-
tween the lines.

(b) Show why le ng c⃗ = (
#     ‰P1P2 × d⃗2)× d⃗2 allows one to

use the formula.
(c) Show how one can use the formula for the distance

between a point and a line to find the distance be-
tween parallel lines.
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Figure 10.6.1: Illustra ng defining a plane
with a sheet of cardboard and a nail.

10.6 Planes

10.6 Planes
Any flat surface, such as a wall, table top or s ff piece of cardboard can be
thought of as represen ng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and s ck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.6.1.

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different loca ons in space. Til ng the nail (but keeping P fixed) lts
the cardboard. Both moving and l ng the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the loca on of P in space, and 2)
the direc on of the nail.

The previous sec on showed that one can define a line given a point on the
line and the direc on of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direc on the plane “faces” (using the descrip on above, the
direc on of the nail). Once again, the direc on informa on will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of wri ng an equa on describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (10.9)

Equa on (10.9) defines an implicit func on describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (10.10)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (10.11)

Notes:
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Figure 10.6.2: Sketching the plane in Ex-
ample 10.6.1.

Chapter 10 Vectors

Equa on (10.11) is especially useful asmany computer programs can graph func-
ons in this form. Equa ons (10.9) and (10.10) have specific names, given next.

Defini on 10.6.1 Equa ons of a Plane in Standard and General
Forms

The plane passing through the point P = (x0, y0, z0) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equa on with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equa on’s general form is

ax+ by+ cz = d.

A key to remember throughout this sec on is this: to find the equa on of a
plane, we need a point and a normal vector. We will give several examples of
finding the equa on of a plane, and in each one different types of informa on
are given. In each case, we need to use the given informa on to find a point on
the plane and a normal vector.

Example 10.6.1 Finding the equa on of a plane.
Write the equa on of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

S We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straigh orward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following Defini on 10.6.1, the equa on of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 10.6.2.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 10.6.2 Finding the equa on of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equa ons are given below, inter-

Notes:
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Figure 10.6.3: Sketching the plane in Ex-
ample 10.6.2.

Figure 10.6.4: The line and plane in Exam-
ple 10.6.3.

10.6 Planes

sect, then give the equa on of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

S The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersec on, we set the x, y and z equa ons equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t

−4+ 2s = 1+ t
⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the direc ons of lines ℓ1 and ℓ2,

respec vely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by compu ng
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equa on; each
line gives us infinite choices of points. We choose P, the point of intersec on.
We follow Defini on 10.6.1 to write the plane’s equa on in general form:

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equa on in general form is 5x+ 4y− 7z = 7; it is sketched in Figure
10.6.3.

Example 10.6.3 Finding the equa on of a plane
Give the equa on, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equa on ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

S As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direc on of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equa on, in standard form, is

(x+ 1) + 2y+ 2(z− 1) = 0.

The line and plane are sketched in Figure 10.6.4.

Notes:
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Figure 10.6.5: Graphing the planes and
their line of intersec on in Example
10.6.4.

Chapter 10 Vectors

Example 10.6.4 Finding the intersec on of two planes
Give the parametric equa ons of the line that is the intersec on of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

S To find an equa on of a line, we need a point on the line and
the direc on of the line.

We can find a point on the line by solving each equa on of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equa ons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equa ons of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

We now need the direc on of the line. Since the line lies in each plane,
its direc on is orthogonal to a normal vector for each plane. Considering the
equa ons for p1 and p2, we can quickly determine their normal vectors. For p1,
n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direc on orthogonal to both of
these direc ons is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equa ons of the line through P = (1, 1,−1) in the direc on
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 10.6.5.

Example 10.6.5 Finding the intersec on of a plane and a line
Find the point of intersec on, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equa on in general form 2x+ y+ z = 4.

S Theequa onof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equa on of the line shows that the line

Notes:
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Figure 10.6.6: Illustra ng the intersec on
of a line and a plane in Example 10.6.5.

Figure 10.6.7: Illustra ng finding the dis-
tance from a point to a plane.

10.6 Planes

moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersec on. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersec ng or the
line was in the plane itself.)

To find the point of intersec on, we need to find a t value such that ℓ(t)
sa sfies the equa on of the plane. Rewri ng the equa on of the line with para-
metric equa ons will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equa on of the plane with the expressions containing
t found in the equa on of the line allows us to determine a t value that indicates
the point of intersec on:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line sa sfies the equa on of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersec on between
the plane and the line, illustrated in Figure 10.6.6.

Distances

Just as itwas useful to finddistances betweenpoints and lines in the previous
sec on, it is also o en necessary to find the distance from a point to a plane.

Consider Figure 10.6.7, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projec on of #  ‰PQ
onto n⃗. That is, we want:

∣∣∣∣ proj n⃗ #  ‰PQ
∣∣∣∣ = ∣∣∣∣∣

∣∣∣∣∣ n⃗ ·
#  ‰PQ

|| n⃗ ||2
n⃗

∣∣∣∣∣
∣∣∣∣∣ = |⃗n · #  ‰PQ|

|| n⃗ ||
(10.12)

Equa on (10.12) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because Equa on (10.12) is important, we restate it as a Key Idea.

Notes:
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Chapter 10 Vectors

Key Idea 10.6.1 Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

,

where P is any point in the plane.

Example 10.6.6 Distance between a point and a plane
Find the distance between the point Q = (2, 1, 4) and the plane with equa on
2x− 5y+ 6z = 9.

S Using the equa on of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever sa sfies the equa on. Le ng x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

The distance h from Q to the plane is given by Key Idea 10.6.1:

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

=
| ⟨2,−5, 6⟩ · ⟨2, 1, 2.5⟩ |

|| ⟨2,−5, 6⟩ ||

=
|14|√
65

≈ 1.74.

Wecanuse Key Idea 10.6.1 to findother distances. Given twoparallel planes,
we can find the distance between these planes by le ng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use the
Key Idea to find the distance between them as well: again, let P be a point in the
plane and letQ be any point on the line. (One can also use Key Idea 10.5.1.) The
Exercise sec on contains problems of these types.

These past two sec ons have not explored lines and planes in space as an ex-
ercise of mathema cal curiosity. However, there are many, many applica ons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircra may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fric on. Many
equa ons that help determine air flow and heat dissipa on are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approxima ng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 10.6
Terms and Concepts

1. In order to find the equa on of a plane, what two pieces of
informa on must one have?

2. What is the rela onship between a plane and one of its nor-
mal vectors?

Problems
In Exercises 3 – 6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7 – 20, give the equa on of the described plane
in standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersec ng lines
ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersec ng lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨4, 4, 4⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21 – 22, give the equa on of the line that is the
intersec on of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23 – 26, find the point of intersec on between
the line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27 – 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0
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30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in Sec on 10.5 easier to answer once we
have an understanding of planes?
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Figure 11.1.1: Sketching the graph of a
vector–valued func on.

11: V V F
In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathema cs. In this chapter, we’ll build on this foun-
da on to define func ons whose input is a real number and whose output is a
vector. We’ll see how to graph these func ons and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beau ful applica ons to the study of moving objects.

11.1 Vector–Valued Func ons
We are very familiar with real valued func ons, that is, func ons whose output
is a real number. This sec on introduces vector–valued func ons – func ons
whose output is a vector.

Defini on 11.1.1 Vector–Valued Func ons

A vector–valued func on is a func on of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued func ons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

Evalua ng and Graphing Vector–Valued Func ons

Evalua ng a vector–valued func on at a specific value of t is straigh orward;
simply evaluate each component func on at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 11.1.1(a). Plo ng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued func on is the set of all terminal points of r⃗(t), where the
ini al point of each vector is always the origin. In Figure 11.1.1(b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respec ve
vector, as shown.

Vector–valued func ons are closely related to parametric equa ons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued func ons each such point represents a
vector. The implica ons of this will be more fully realized in the next sec on as
we apply calculus ideas to these func ons.
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Figure 11.1.2: Sketching the vector–
valued func on of Example 11.1.1.

Figure 11.1.3: The graph of r⃗(t) in Exam-
ple 11.1.2.

Chapter 11 Vector Valued Func ons

Example 11.1.1 Graphing vector–valued func ons
Graph r⃗(t) =

⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

S We start by making a table of t, x and y values as shown
in Figure 11.1.2(a). Plo ng these points gives an indica on of what the graph
looks like. In Figure 11.1.2(b), we indicate these points and sketch the full graph.
We also highlight r⃗(−1) and r⃗(2) on the graph.

Example 11.1.2 Graphing vector–valued func ons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

S We can again plot points, but careful considera on of this
func on is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
No cing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posi ve z direc on, forming a
spiral. This is graphed in Figure 11.1.3. In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498)
is highlighted to help us understand the graph.

Algebra of Vector–Valued Func ons

Defini on 11.1.2 Opera ons on Vector–Valued Func ons

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
func ons in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar defini on holds for vector–valued func ons in R3.

This defini on states that we add, subtract and scale vector-valued func ons
component–wise. Combining vector–valued func ons in this way can be very
useful (as well as create interes ng graphs).

Example 11.1.3 Adding and scaling vector–valued func ons.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

Notes:
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Figure 11.1.4: Graphing the func ons in
Example 11.1.3.

11.1 Vector–Valued Func ons

S We can graph r⃗1 and r⃗2 easily by plo ng points (or just using
technology). Let’s think about each for a moment to be er understand how
vector–valued func ons work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
func on r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direc on of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius 1. Figure 11.1.4(a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed in
Figure 11.1.4(b). The linear movement of the line combines with the circle to
create loops that move in the direc on of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the
loops.)

Mul plying r⃗(t) by 5 scales the func on by 5, producing 5⃗r(t) = ⟨5 cos t +
1, 5 sin t + 1.5⟩, which is graphed in Figure 11.1.4(c) along with r⃗(t). The new
func on is “5 mes bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks
iden cal to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly 5 mes larger than the bounds in (b).

Example 11.1.4 Adding and scaling vector–valued func ons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.1.5. Find an equa on describing the cycloid, where the circle has radius 1.

..
p

Figure 11.1.5: Tracing a cycloid.

S This problem is not very difficult if we approach it in a clever
way. We start by le ng p⃗(t) describe the posi on of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is rela vely simple given our previous experienceswith parametric
equa ons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by le ng c⃗(t) represent
the loca on of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear func on of t: f(t) = mt for some scalarm.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 2π,
the circle has made one complete revolu on, traveling a distance equal to its

Notes:
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Chapter 11 Vector Valued Func ons

circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equa on of the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 11.1.6.

Displacement

A vector–valued func on r⃗(t) is o en used to describe the posi on of amov-
ing object at me t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the loca ons r⃗(t0) and r⃗(t1) give no indica on of the path taken
between them, but o en we only care about the difference of the loca ons,
r⃗(t1)− r⃗(t0), the displacement.

Defini on 11.1.3 Displacement

Let r⃗(t) be a vector–valued func on and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawnwith ini al point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a star ng posi on
to an ending posi on.

Example 11.1.5 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

S The func on r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametriza on. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

A graph of r⃗(t) on [−1, 1] is given in Figure 11.1.7, along with the displace-
ment vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 11.1.5 took,
we can quickly verify that the object ended up a distance of 2 units from its ini al
loca on. That is, we can compute || d⃗ || = 2. However, measuring distance from
the star ng point is different from measuring distance traveled. Being a semi–

Notes:
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11.1 Vector–Valued Func ons

circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the star ng point allows us to compute average rate of
change.

Defini on 11.1.4 Average Rate of Change

Let r⃗(t) be a vector–valued func on, where each of its component func-
ons is con nuous on its domain, and let t0 < t1. The average rate of

change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 11.1.6 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 11.1.5. Find the average rate of

change of r⃗(t) on [−1, 1] and on [−1, 5].

S We computed in Example 11.1.5 that the displacement of
r⃗(t) on [−1, 1]was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1]
is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the le , while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of me.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 mes as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

We considered average rates of change in Sec ons 1.1 and 2.1 as we studied
limits and deriva ves. The same is true here; in the following sec on we apply
calculus concepts to vector–valued func ons as we find limits, deriva ves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the deriva ve; displacement gives us one applica on of integra on.

Notes:
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Exercises 11.1
Terms and Concepts

1. Vector–valued func ons are closely related to
of graphs.

2. When sketching vector–valued func ons, technically one
isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points
from a star ng posi on to an ending posi on.

4. In the context of vector–valued func ons, average rate of
change is divided by me.

Problems

In Exercises 5 – 12, sketch the vector–valued func on on the
given interval.

5. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

10. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

11. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].

12. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 13 – 16, sketch the vector–valued func on on the
given interval inR3. Technologymay be useful in crea ng the
sketch.

13. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].

14. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].

15. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].

16. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 17 – 20, find || r⃗(t) ||.

17. r⃗(t) =
⟨
t, t2
⟩
.

18. r⃗(t) = ⟨5 cos t, 3 sin t⟩.

19. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.

20. r⃗(t) =
⟨
cos t, t, t2

⟩
.

In Exercises 21 – 30, create a vector–valued func on whose
graph matches the given descrip on.

21. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

22. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

23. An ellipse, centered at (0, 0) with ver cal major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

24. An ellipse, centered at (3,−2)with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

25. A line through (2, 3) with a slope of 5.

26. A line through (1, 5) with a slope of−1/2.

27. The line through points (1, 2, 3) and (4, 5, 6), where
r⃗(0) = ⟨1, 2, 3⟩ and r⃗(1) = ⟨4, 5, 6⟩.

28. The line through points (1, 2) and (4, 4), where
r⃗(0) = ⟨1, 2⟩ and r⃗(1) = ⟨4, 4⟩.

29. A ver cally oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) a er 1 revolu on on [0, 2π].

30. A ver cally oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) a er 2 revolu ons on [0, 1].

In Exercises 31 – 34, find the average rate of change of r⃗(t) on
the given interval.

31. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

32. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

33. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

34. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].
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Note: we can define one-sided limits in a
manner very similar to Defini on 11.2.1.

11.2 Calculus and Vector–Valued Func ons

11.2 Calculus and Vector–Valued Func ons
The previous sec on introduced us to a new mathema cal object, the vector–
valued func on. We now apply calculus concepts to these func ons. We start
with the limit, then work our way through deriva ves to integrals.

Limits of Vector–Valued Func ons

The ini al defini on of the limit of a vector–valued func on is a bit in midat-
ing, as was the defini on of the limit in Defini on 1.2.1. The theorem following
the defini on shows that in prac ce, taking limits of vector–valued func ons is
no more difficult than taking limits of real–valued func ons.

Defini on 11.2.1 Limits of Vector–Valued Func ons

Let I be an open interval containing c, and let r⃗(t) be a vector–valued
func on defined on I, except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have || r⃗(t)− L⃗ || < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem 11.2.1 states that we can compute limits of vector–valued func-
ons component–wise.

Theorem 11.2.1 Limits of Vector–Valued Func ons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued func on in R2 defined
on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued func on in R3 de-
fined on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Notes:
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Note: Using one-sided limits, we can also
define con nuity on closed intervals as
done before.

Chapter 11 Vector Valued Func ons

Example 11.2.1 Finding limits of vector–valued func ons
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

S Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ .

Con nuity

Defini on 11.2.2 Con nuity of Vector–Valued Func ons

Let r⃗(t) be a vector–valued func on defined on an open interval I con-
taining c.

1. r⃗(t) is con nuous at c if lim
t→c

r⃗(t) = r⃗(c).

2. If r⃗(t) is con nuous at all c in I, then r⃗(t) is con nuous on I.

We again have a theorem that lets us evaluate con nuity component–wise.

Theorem 11.2.2 Con nuity of Vector–Valued Func ons

Let r⃗(t) be a vector–valued func on defined on an open interval I con-
taining c. Then r⃗(t) is con nuous at c if, and only if, each of its component
func ons is con nuous at c.

Example 11.2.2 Evalua ng con nuity of vector–valued func ons
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is con nuous at

t = 0 and t = 1.

S While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not con nuous
at t = 0.

At t = 1 each of the component func ons is con nuous. Therefore r⃗(t) is
con nuous at t = 1.

Notes:
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Alternate nota ons for the deriva ve of r⃗
include:

r⃗ ′(t) = d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

11.2 Calculus and Vector–Valued Func ons

Deriva ves

Consider a vector–valued func on r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Figure
11.2.1(a). Recall that dividing the displacement vector by t1 − t0 gives the aver-
age rate of change on [t0, t1], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure 11.2.1: Illustra ng displacement, leading to an understanding of the deriva ve of vector–valued func ons.

The deriva ve of a vector–valued func on is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h → 0 tomeasure the instantaneous
rate of change; this is the deriva ve of r⃗.

Defini on 11.2.3 Deriva ve of a Vector–Valued Func on

Let r⃗(t) be con nuous on an open interval I containing c.

1. The deriva ve of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The deriva ve of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

Notes:
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Note: again, using one-sided limits, we
can define differen ability on closed in-
tervals. We’ll make use of this a few mes
in this chapter.
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Figure 11.2.2: Graphing the deriva ve
of a vector–valued func on in Example
11.2.3.

Chapter 11 Vector Valued Func ons

If a vector–valued func on has a deriva ve for all c in an open interval I, we
say that r⃗(t) is differen able on I.

Once again we might view this defini on as in mida ng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute deriva ves component–wise as well, making the task
not too difficult.

Theorem 11.2.3 Deriva ves of Vector–Valued Func ons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t), h ′(t) ⟩ .

Example 11.2.3 Deriva ves of vector–valued func ons
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its ini al point at the origin and
at r⃗(1).

S

1. Theorem 11.2.3 allows us to compute deriva ves component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 11.2.2(a). Note how plot-
ng the two of these together, in this way, is not very illumina ng. When

dealing with real–valued func ons, plo ng f(x) with f ′(x) gave us useful
informa on as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued func ons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 11.2.2 with its
ini al point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 11.2.2(b).

Notes:
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Figure 11.2.3: Viewing a vector–valued
func on and its deriva ve at one point.

Figure 11.2.4: Graphing a curve in space
with its tangent line.

11.2 Calculus and Vector–Valued Func ons

Example 11.2.4 Deriva ves of vector–valued func ons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
ini al point at the origin and at r⃗(π/2).

S We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2, we
have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 11.2.3 shows a graph of r⃗(t), with r⃗ ′(π/2)
plo ed with its ini al point at the origin and at r⃗(π/2).

In Examples 11.2.3 and 11.2.4, sketching a par cular deriva vewith its ini al
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its ini al point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the deriva ve to define this term.

Defini on 11.2.4 Tangent Vector, Tangent Line

Let r⃗(t) be a differen able vector–valued func on on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direc on parallel to r⃗ ′(c). An equa on of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Example 11.2.5 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equa on of the line tangent

to the graph of r⃗ at t = −1.

S To find the equa on of a line, we need a point on the line
and the line’s direc on. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direc on comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equa on of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched in Figure 11.2.4.

Notes:
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Figure 11.2.5: Graphing r⃗(t) and its tan-
gent line in Example 11.2.6.

Chapter 11 Vector Valued Func ons

Example 11.2.6 Finding tangent lines to curves
Find the equa ons of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.

S We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

so the equa on of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 11.2.5.

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line
“has no direc on.” We cannot apply Defini on 11.2.4, hence cannot find the
equa on of the tangent line.

We were unable to compute the equa on of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 11.2.5 shows that there

is a cusp at this point. This leads us to another defini on of smooth, previously
defined by Defini on 9.2.2 in Sec on 9.2.

Defini on 11.2.5 Smooth Vector–Valued Func ons

Let r⃗(t) be a differen able vector–valued func on on an open interval I
where r⃗ ′(t) is con nuous on I. r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I.

Having established deriva ves of vector–valued func ons, we now explore
the rela onships between the deriva ve and other vector opera ons. The fol-
lowing theorem states how the deriva ve interacts with vector addi on and the
various vector products.

Notes:

642



.....

−2

.

2

. −1.

1

.

2

.

3

.

r⃗(t)

.

u⃗(t)

.

x

.

y

Figure 11.2.6: Graphing r⃗(t) and u⃗(t) in
Example 11.2.7.
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Theorem 11.2.4 Proper es of Deriva ves of Vector–Valued
Func ons

Let r⃗ and s⃗ be differen able vector–valued func ons, let f be a differen-
able real–valued func on, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

Example 11.2.7 Using deriva ve proper es of vector–valued func ons
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direc on

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with ini al
point the corresponding point on the graph of u⃗.

S

1. To form the unit vector that points in the direc on of r⃗, we need to divide
r⃗(t) by its magnitude.

|| r⃗(t) || =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 11.2.6. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

Notes:
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Figure 11.2.7: Graphing some of the
deriva ves of u⃗(t) in Example 11.2.7.
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2. To compute u⃗ ′(t), we use Theorem 11.2.4, wri ng

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩

and then take the deriva ve. It is ama er of preference; this la ermethod
requires two applica ons of theQuo ent Rulewhere ourmethod uses the
Product and Chain Rules.)
We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 11.2.4:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

This is admi edly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ ′(−2), u⃗ ′(−1)
and u⃗ ′(0):

u⃗ ′(−2) =
⟨
− 15
13

√
13

,− 10
13

√
13

⟩
≈ ⟨−0.320,−0.213⟩

u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩

Each of these is sketched in Figure 11.2.7. Note how the length of the
vector gives an indica on of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn rela vely slow; when t =
−1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:
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illustrated in Figure 11.2.7; each tangent vector is perpendicular to the line that
passes through its ini al point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued func on that has a constant length, that is,
that traces out part of a circle. It has important implica ons later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 11.2.5 Vector–Valued Func ons of Constant Length

Let r⃗(t) be a vector–valued func on of constant length that is differen-
able on an open interval I. That is, || r⃗(t) || = c for all t in I (equivalently,

r⃗(t) · r⃗(t) = c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

Integra on

Before formally defining integrals of vector–valued func ons, consider the
following equa on that our calculus experience tells us should be true:∫ b

a
r⃗ ′(t) dt = r⃗(b)− r⃗(a).

That is, the integral of a rate of change func on should give total change. In
the context of vector–valued func ons, this total change is displacement. The
above equa on is true; we now develop the theory to show why.

We can define an deriva ves and the indefinite integral of vector–valued
func ons in the samemanner we defined indefinite integrals in Defini on 5.1.1.
However, we cannot define the definite integral of a vector–valued func on as
we did in Defini on 5.2.1. That defini onwas based on the signed area between
a func on y = f(x) and the x-axis. An area–based defini on will not be useful
in the context of vector–valued func ons. Instead, we define the definite inte-
gral of a vector–valued func on in a manner similar to that of Theorem 5.3.2,
u lizing Riemann sums.

Notes:
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Defini on11.2.6 An deriva ves, Indefinite and Definite Integrals
of Vector–Valued Func ons

Let r⃗(t) be a con nuous vector–valued func on on [a, b]. An an deriva-
ve of r⃗(t) is a func on R⃗(t) such that R⃗′(t) = r⃗(t).

The set of all an deriva ves of r⃗(t) is the indefinite integral of r⃗(t), de-
noted by ∫

r⃗(t) dt.

The definite integral of r⃗(t) on [a, b] is∫ b

a
r⃗(t) dt = lim

||∆t||→0

n∑
i=1

r⃗(ci)∆ti,

where∆ti is the length of the i th subinterval of a par on of [a, b], ||∆t||
is the length of the largest subinterval in the par on, and ci is any value
in the i th subinterval of the par on.

It is probably difficult to infer meaning from the defini on of the definite
integral. The important thing to realize from the defini on is that it is built upon
limits, which we can evaluate component–wise.

The following theorem simplifies the computa on of definite integrals; the
rest of this sec on and the following sec on will give meaning and applica on
to these integrals.

Theorem 11.2.6 Indefinite and Definite Integrals of Vector–Valued
Func ons

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued func on in R2 that are con n-
uous on [a, b].

1.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

2.
∫ b

a
r⃗(t) dt =

⟨∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued func ons in R3.
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Example 11.2.8 Evalua ng a definite integral of a vector–valued func on

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

∫ 1

0
r⃗(t) dt.

S We follow Theorem 11.2.6.∫ 1

0
r⃗(t) dt =

∫ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨∫ 1

0
e2t dt ,

∫ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
≈ ⟨3.19, 0.460⟩ .

Example 11.2.9 Solving an ini al value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t), where r⃗(0) = ⟨−7,−1, 2⟩ and
r⃗ ′(0) = ⟨5, 3, 0⟩ .

S Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evalua ng
the indefinite integral.∫

r⃗ ′′(t) dt =
⟨∫

2 dt ,
∫

cos t dt ,
∫

12t dt
⟩

=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

∫
r⃗ ′(t) dt =

⟨∫
2t+ 5 dt,

∫
sin t+ 3 dt,

∫
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗.

Notes:
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With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+⟨−7, 0, 2⟩ =

⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

What does the integra on of a vector–valued func on mean? There are
many applica ons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued func on.

A key understanding for us comes from considering the integral of a deriva-
ve: ∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

Integra ng a rate of change func on gives displacement.
No ng that vector–valued func ons are closely related to parametric equa-

ons, we can describe the arc length of the graph of a vector–valued func on
as an integral. Given parametric equa ons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g ′(t)2 dt,

as stated in Theorem 9.3.1. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g ′(t)2 =
|| r⃗ ′(t) ||. Therefore we can express the arc length of the graph of a vector–
valued func on as an integral of the magnitude of its deriva ve.

Theorem 11.2.7 Arc Length of a Vector–Valued Func on

Let r⃗(t) be a vector–valued func on where r⃗ ′(t) is con nuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
|| r⃗ ′(t) || dt.

Note that we are actually integra ng a scalar–func on here, not a vector–
valued func on.

The next sec on takes what we have established thus far and applies it to
objects in mo on. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the informa on provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:
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Exercises 11.2
Terms and Concepts
1. Limits, deriva ves and integrals of vector–valued func ons

are all evaluated –wise.

2. The definite integral of a rate of change func on gives
.

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

4. Theorem 11.2.4 contains three product rules. What are the
three different types of products used in these rules?

Problems
In Exercises 5 – 8, evaluate the given limit.

5. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
6. lim

t→3

⟨
et, t

2 − 9
t+ 3

⟩

7. lim
t→0

⟨ t
sin t

, (1+ t)
1
t

⟩

8. lim
h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 9 – 10, iden fy the interval(s) on which r⃗(t) is
con nuous.

9. r⃗(t) =
⟨
t2, 1/t

⟩
10. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 11 – 16, find the deriva ve of the given func on.

11. r⃗(t) =
⟨
cos t, et, ln t

⟩
12. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

13. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩

14. r(t) =
⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

15. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

16. r⃗(t) = ⟨cosh t, sinh t⟩

In Exercises 17 – 20, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
ini al point of r⃗ ′(1) at r⃗(1).

17. r⃗(t) =
⟨
t2 + t, t2 − t

⟩

18. r⃗(t) =
⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
19. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
20. r⃗(t) =

⟨
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

⟩
In Exercises 21 – 24, give the equa on of the line tangent to
the graph of r⃗(t) at the given t value.

21. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

22. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.

23. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.

24. r⃗(t) =
⟨
et, tan t, t

⟩
at t = 0.

In Exercises 25 – 28, find the value(s) of t for which r⃗(t) is not
smooth.

25. r⃗(t) = ⟨cos t, sin t− t⟩

26. r⃗(t) =
⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
27. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩

28. r⃗(t) =
⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 29 – 32 ask you to verify parts of Theorem 11.2.4.
In each let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =⟨

sin t, et, t
⟩
. Compute the various deriva ves as indicated.

29. Simplify f(t)⃗r(t), then find its deriva ve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

30. Simplify r⃗(t) · s⃗(t), then find its deriva ve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

31. Simplify r⃗(t)× s⃗(t), then find its deriva ve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

32. Simplify r⃗
(
f(t)
)
, then find its deriva ve; show this is the

same as r⃗ ′
(
f(t)
)
f ′(t).

In Exercises 33 – 36, evaluate the given definite or indefinite
integral.

33.
∫ ⟨

t3, cos t, tet
⟩
dt

34.
∫ ⟨

1
1+ t2

, sec2 t
⟩

dt

35.
∫ π

0
⟨− sin t, cos t⟩ dt

36.
∫ 2

−2
⟨2t+ 1, 2t− 1⟩ dt
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In Exercises 37 – 40, solve the given ini al value problems.

37. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.

38. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and
r⃗(0) = ⟨1, 2⟩.

39. Find r⃗(t), given that r⃗ ′′(t) =
⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.

40. Find r⃗(t), given that r⃗ ′′(t) =
⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 41 – 44 , find the arc length of r⃗(t) on the indi-

cated interval.

41. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

42. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

43. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

44. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

45. Prove Theorem 11.2.5; that is, show if r⃗(t) has constant
length and is differen able, then r⃗(t) · r⃗ ′(t) = 0. (Hint:
use the Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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Figure 11.3.1: Graphing the posi on, ve-
locity and accelera on of an object in Ex-
ample 11.3.1.

11.3 The Calculus of Mo on

11.3 The Calculus of Mo on
A common use of vector–valued func ons is to describe themo on of an object
in the plane or in space. A posi on func on r⃗(t) gives the posi on of an object
at me t. This sec on explores how deriva ves and integrals are used to study
the mo on described by such a func on.

Defini on 11.3.1 Velocity, Speed and Accelera on

Let r⃗(t) be a posi on func on in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of posi on
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, || v⃗(t) ||.

3. Accelera on, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example 11.3.1 Finding velocity and accelera on
An object is moving with posi on func on r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and me is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their ini al point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

S

1. Taking deriva ves, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that accelera on is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are plo ed with r⃗(t) in Figure 11.3.1(a).
We can think of accelera on as “pulling” the velocity vector in a certain
direc on. At t = −1, the velocity vector points down and to the le ; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direc on and is

Notes:
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Chapter 11 Vector Valued Func ons

now poin ng up and to the right. In Figure 11.3.1(b) we plot more veloc-
ity/accelera on vectors, making more clear the effect accelera on has on
velocity.
Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

|| v⃗(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the deriva ve equal to 0 and solve for t, etc.) but we can find it by
inspec on. Inside the square root we have a quadra c which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

/s.
The graph in Figure 11.3.1(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indica ng high speed; dots that are close together imply the
object did not travel far in 1 second, indica ng a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 11.3.2 Analyzing Mo on
Two objects follow an iden cal path at different rates on [−1, 1]. The posi on
func on for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the posi on func on for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and me is measured

in seconds. Compare the velocity, speed and accelera on of the two objects on
the path.

S We begin by compu ng the velocity and accelera on func-
on for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant accelera on, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three mes that of Object 1 and so it follows that the speed of
Object 2 is three mes that of Object 1 (3

√
5 /s compared to

√
5 /s.)

Notes:
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Figure 11.3.3: Comparing the posi ons of
Objects 1 and 2 in Example 11.3.2.
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At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗! This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 11.3.2, we see the velocity and accelera on vectors for Object 1
plo ed for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
era on vector seems to “pull” the velocity vector from poin ng down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
accelera on vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩!)

Instead, we simply plot the loca ons of Object 1 and 2 on intervals of 1/5th
of a second, shown in Figure 11.3.3(a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no accelera on in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

In part (b) of the Figure, we see the points plo ed for Object 2. Note the
large change in posi on from t = −1 to t = −0.8; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same loca on, they have the same
displacement. Since they begin and end at the same me, with the same dis-
placement, they have the same average rate of change (i.e, they have the same
average velocity). Since they follow the same path, they have the same distance
traveled. Even though these three measurements are the same, the objects ob-
viously travel the path in very different ways.

Example 11.3.3 Analyzing the mo on of a whirling ball on a string
A young boy whirls a ball, a ached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revolu ons per
second. The string has length 2 .

1. Find the posi on func on r⃗(t) that describes this situa on.

2. Find the accelera on of the ball and give a physical interpreta on of it.

3. A tree stands 10 in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

S

1. The ball whirls in a circle. Since the string is 2 long, the radius of the
circle is 2. The posi on func on r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centered at the origin, but makes a full revolu on every
2π seconds, not two revolu ons per second. Wemodify the period of the

Notes:
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trigonometric func ons to be 1/2 bymul plying t by 4π. The final posi on
func on is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revolu on is made in 1/2 a
second.)

2. To find a⃗(t), we take the deriva ve of r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direc on. Why is this?

Recall the classic physics equa on, “Force=mass× accelera on.” A force
ac ng on a mass induces accelera on (i.e., the mass moves); accelera on
ac ng on a mass induces a force (gravity gives our mass a weight). Thus
force and accelera on are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
a ached to the boy’s handby a string. The string applies a force to the ball,
affec ng it’s mo on: the string accelerates the ball. This is not accelera-
on in the sense of “it travels faster;” rather, this accelera on is changing

the velocity of the ball. In what direc on is this force/accelera on being
applied? In the direc on of the string, towards the boy’s hand.

Themagnitude of the accelera on is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direc on/velocity.
When velocity is changing rapidly, the accelera on must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning accelera on is 0⃗ and the ball can nowmove in a straight
line in the direc on of v⃗(t).

Let t = t0 be the me when the boy lets go of the string. The ball will be
at r⃗(t0), traveling in the direc on of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10 directly in front of the
boy).

There are many ways to find this me value. We choose one that is rela-
vely simple computa onally. As shown in Figure 11.3.4, the vector from

the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

Notes:
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r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0
−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0
sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016+ n/2

This is a wonderful formula. Every 1/2 second a er t = 0.016s the boy
can release the string (since the ball makes 2 revolu ons per second, he
has two chances each second to release the ball).

Example 11.3.4 Analyzing mo on in space
An object moves in a spiral with posi on func on r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and me is in minutes. Describe the object’s
speed and accelera on at me t.

S With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is || v⃗(t) || =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direc on, but rather moves up at a constant rate of 1m/min.

The objects in Examples 11.3.3 and 11.3.4 traveled at a constant speed. That
is, || v⃗(t) || = c for some constant c. Recall Theorem 11.2.5, which states that
if a vector–valued func on r⃗(t) has constant length, then r⃗(t) is perpendicular
to its deriva ve: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity func on has
constant length, therefore we can conclude that the velocity is perpendicular to
the accelera on: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intui ve understanding of this. If accelera on is parallel to veloc-
ity, then it is only affec ng the object’s speed; it does not change the direc on
of travel. (For example, consider a dropped stone. Accelera on and velocity are

Notes:
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Note: This text uses g = 32 /s2 when us-
ing Imperial units, and g = 9.8m/s2 when
using SI units.
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parallel – straight down – and the direc on of velocity never changes, though
speed does increase.) If accelera on is not perpendicular to velocity, then there
is some accelera on in the direc on of travel, influencing the speed. If speed
is constant, then accelera on must be orthogonal to velocity, as it then only
affects direc on, and not speed.

Key Idea 11.3.1 Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and accelera on
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

Projec le Mo on

An important applica on of vector–valued posi on func ons is projec le
mo on: the mo on of objects under only the influence of gravity. We will mea-
sure me in seconds, and distances will either be inmeters or feet. Wewill show
that we can completely describe the path of such an object knowing its ini al
posi on and ini al velocity (i.e., where it is and where it is going.)

Suppose an object has ini al posi on r⃗(0) = ⟨x0, y0⟩ and ini al velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direc on u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be wri en
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of eleva on.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the accelera on of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravita onal constant, we can find r⃗(t) knowing our two ini al condi-
ons. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos θ, sin θ⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

Notes:

656



11.3 The Calculus of Mo on

We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Key Idea 11.3.2 Projec le Mo on

The posi on func on of a projec le propelled from an ini al posi on of
r⃗0 = ⟨x0, y0⟩, with ini al speed v0, with angle of eleva on θ and neglect-
ing all accelera ons but gravity is

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Le ng v⃗0 = v0 ⟨cos θ, sin θ⟩, r⃗(t) can be wri en as

r⃗(t) =
⟨
0,−1

2
gt2
⟩
+ v⃗0t+ r⃗0.

We demonstrate how to use this posi on func on in the next two examples.

Example 11.3.5 Projec le Mo on
Sydney shoots her Red Ryder® bb gun across level ground from an eleva on of
4 , where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adver sed rate
of 350 /s and ignoring air resistance.

S A direct applica on of Key Idea 11.3.2 gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

Notes:
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wherewe set her ini al posi on to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by se ng the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03s.

(We discarded a nega ve solu on that resulted from our quadra c equa on.)
We have found that the bb lands 2.03s a er firing; with t = 2.03, we find

the x-component of our posi on func on is 346.67(2.03) = 703.74 . The bb
lands about 704 feet away.

Example 11.3.6 Projec le Mo on
Alex holds his sister’s bb gun at a height of 3 and wants to shoot a target that
is 6 above the ground, 25 away. At what angle should he hold the gun to hit
his target? (We s ll assume the muzzle velocity is 350 /s.)

S The posi on func on for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equa on for cos θ
and sin θ, respec vely.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean Iden ty cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

Mul ply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0.

Notes:
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This is a quadra c in t2. That is, we can apply the quadra c formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Clearly the nega ve t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07s a er firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22s later. The
first op on is clearly the op on he should choose.

Distance Traveled

Consider a driver who sets her cruise–control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her star ng posi on is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given informa on. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || v⃗(t) ||.

Theorem 11.3.1 Distance Traveled

Let v⃗(t) be a velocity func on for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a
|| v⃗(t) || dt.

Note that this is just a restatement of Theorem 11.2.7: arc length is the same as
distance traveled, just viewed in a different context.

Notes:
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Figure 11.3.5: The path of the par cle in
Example 11.3.7.

Chapter 11 Vector Valued Func ons

Example 11.3.7 Distance Traveled, Displacement, and Average Speed
Apar clemoves in spacewith posi on func on r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the par cle on [−2, 2].

2. The displacement of the par cle on [−2, 2].

3. The par cle’s average speed.

S

1. We use Theorem 11.3.1 to establish the integral:

distance traveled =

∫ 2

−2
|| v⃗(t) || dt

=

∫ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary func ons so we turn to nu-
merical integra on, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the par cle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.3.5).

3. We found above that the par cle traveled 12.88mover 4 seconds. We can
compute average speed by dividing: 12.88/4 = 3.22m/s.
We should also consider Defini on 5.4.1 of Sec on 5.4, which says that
the average value of a func on f on [a, b] is 1

b−a

∫ b
a f(x) dx. In our context,

the average value of the speed is

average speed =
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a par cle traveling gives meaning to a
more abstract concept learned earlier.

In Defini on 5.4.1 of Chapter 5 we defined the average value of a func on
f(x) on [a, b] to be

1
b− a

∫ b

a
f(x) dx.

Notes:
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Note how in Example 11.3.7 we computed the average speed as

distance traveled
travel me

=
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt;

that is, we just found the average value of || v⃗(t) || on [−2, 2].
Likewise, given posi on func on r⃗(t), the average velocity on [a, b] is

displacement
travel me

=
1

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea 11.3.3 Average Speed, Average Velocity

Let r⃗(t) be a differen able posi on func on on [a, b].

The average speed is:

distance traveled
travel me

=

∫ b
a || v⃗(t) || dt

b− a
=

1
b− a

∫ b

a
|| v⃗(t) || dt.

The average velocity is:

displacement
travel me

=

∫ b
a r⃗ ′(t) dt
b− a

=
1

b− a

∫ b

a
r⃗ ′(t) dt.

The next two sec ons inves gate more proper es of the graphs of vector–
valued func ons and we’ll apply these new ideas to what we just learned about
mo on.

Notes:
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Exercises 11.3
Terms and Concepts

1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises 7 – 10 , a posi on func on r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩

8. r⃗(t) =
⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11 – 14 , a posi on func on r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(t0) and a⃗(t0) to your sketch, with their ini al points at r⃗(t0),
for the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩

on [−1, 1]; t0 = 0

In Exercises 15 – 24 , a posi on func on r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. Projec leMo on: r⃗(t) =
⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0, 2v0 sin θ

g

]
In Exercises 25 – 28 , posi on func ons r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respec ve
intervals.

(a) Show that the posi ons are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and accelera on of the two
objects at t0 and s0, respec vely.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29 – 32 , find the posi on func on of an object
given its accelera on and ini al velocity and posi on.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩

30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩

31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩

32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩

In Exercises 33 – 36 , find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33. An object with posi on func on r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and me is in sec-
onds, on [0, 2π].
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34. An object with posi on func on r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and me is in sec-
onds, on [0, π].

35. An object with velocity func on v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and me is in seconds, on
[0, 2π].

36. An object with velocity func on v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and me is in seconds, on
[0, 10].

Exercises 37 – 42 ask you to solve a variety of problems based
on the principles of projec le mo on.

37. A boy whirls a ball, a ached to a 3 string, above his head
in a counter–clockwise circle. The ball makes 2 revolu ons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10 in front of
him?

38. David faces Goliath with only a stone in a 3 sling, which
he whirls above his head at 4 revolu ons per second. They
stand 20 apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6
and Goliath’s forehead is 9 above the ground. What
angle of eleva onmustDavid apply to the stone to hit
Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5 , and she aims for a spot on the
deer 4 above the ground. The crossbow fires her arrows
at 300 /s.

(a) At what angle of eleva on should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch
should she lead the deer in order to hit it in the de-
sired loca on?

40. A baseball player hits a ball at 100mph, with an ini al height
of 3 and an angle of eleva on of 20◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37 high located 310 from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of eleva on is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000 at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6 ,
intending to hit his receiver 20yds away at a height of 5 .

(a) If the ball is thrown at a rate of 50mph, what angle of
eleva on is needed to hit his intended target?

(b) If the ball is thrown at with an angle of eleva on of
8◦, what ini al ball speed is needed to hit his target?
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Figure 11.4.1: Plo ng unit tangent vec-
tors in Example 11.4.1.

Chapter 11 Vector Valued Func ons

11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector–valued func on r⃗(t), we defined in Defini on 11.2.4
that any vector parallel to r⃗ ′(t0) is tangent to the graphof r⃗(t) at t = t0. It is o en
useful to consider just the direc on of r⃗ ′(t) and not its magnitude. Therefore
we are interested in the unit vector in the direc on of r⃗ ′(t). This leads to a
defini on.

Defini on 11.4.1 Unit Tangent Vector

Let r⃗(t) be a smooth func on on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t).

Example 11.4.1 Compu ng the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

S We apply Defini on 11.4.1 to find T⃗(t).

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are plo ed in Figure 11.4.1 with their ini al points at r⃗(0) and r⃗(1), re-
spec vely. (They look rather “short” since they are only length 1.)

The unit tangent vector T⃗(t) always has a magnitude of 1, though it is some-
mes easy to doubt that is true. We can help solidify this thought in our minds

by compu ng || T⃗(1) ||:

|| T⃗(1) || ≈
√

(−0.505)2 + 0.3242 + 0.82 = 1.000001.

Notes:
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Figure 11.4.2: Plo ng unit tangent vec-
tors in Example 11.4.2.
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Figure 11.4.3: Given a direc on in the
plane, there are always two direc ons or-
thogonal to it.

Note: T⃗(t) is a unit vector, by defini on.
This does not imply that T⃗ ′(t) is also a unit
vector.

11.4 Unit Tangent and Normal Vectors

We have rounded in our computa on of T⃗(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representa on of T⃗(1) to verify it has
length 1.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leav-
ing us with a formula that is not as clean.

Example 11.4.2 Compu ng the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

S We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

|| r⃗ ′(t) || =
√

(2t− 1)2 + (2t+ 1)2 =
√

8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/

√
2, 1/

√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are plo ed in Figure 11.4.2

Unit Normal Vector

Just as knowing the direc on tangent to a path is important, knowing a direc-
on orthogonal to a path is important. When dealingwith real-valued func ons,

we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued func ons. Given r⃗(t) inR2, we have 2 direc ons perpendic-
ular to the tangent vector, as shown in Figure 11.4.3. It is good to wonder “Is
one of these two direc ons preferable over the other?”

Given r⃗(t) inR3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, wemight wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 11.2.5, which states
that if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direc on, we define this newly found vector to be a unit vector.

Notes:
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Figure 11.4.4: Plo ng unit tangent and
normal vectors in Example 11.4.4.

Chapter 11 Vector Valued Func ons

Defini on 11.4.2 Unit Normal Vector

Let r⃗(t) be a vector–valued func on where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1

|| T⃗ ′(t) ||
T⃗ ′(t).

Example 11.4.3 Compu ng the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 11.4.1. Sketch both T⃗(π/2) and
N⃗(π/2) with ini al points at r⃗(π/2).

S In Example 11.4.1, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and || T⃗ ′(t) || = 3

5
.

Thus

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 11.4.4.

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains frac ons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 11.4.4 Compu ng the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 11.4.2. Find N⃗(t) and sketch r⃗(t) with

the unit tangent and normal vectors at t = −1, 0 and 1.

S In Example 11.4.2, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applica ons of the Quo ent Rule:

Notes:
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Figure 11.4.5: Plo ng unit tangent and
normal vectors in Example 11.4.4.

11.4 Unit Tangent and Normal Vectors

T ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

|| T⃗ ′(t) || =

√
16(2t+ 1)2
(8t2 + 2)3

+
16(1− 2t)2
(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 11.4.5.

The final result for N⃗(t) in Example 11.4.4 is suspiciously similar to T⃗(t).
There is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the
only unit vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we
can quickly determine N⃗(t) if we know which term to mul ply by (−1).

Consider again Figure 11.4.5, where we have plo ed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direc on that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:
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Note: Keep in mind that both aT and
aN are func ons of t; that is, the scalar
changes depending on t. It is conven on
to drop the “(t)” nota on from aT(t) and
simply write aT.

Chapter 11 Vector Valued Func ons

Theorem 11.4.1 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued func on in R2 where T⃗ ′(t) is smooth on an
open interval I. Let t0 be in I and T⃗(t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

Applica on to Accelera on

Let r⃗(t) be a posi on func on. It is a fact (stated later in Theorem 11.4.2)
that accelera on, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are
scalar func ons aT(t) and aN(t) such that

a⃗(t) = aT(t)⃗T(t) + aN(t)N⃗(t).

We generally drop the “of t” part of the nota on and just write aT and aN.
The scalar aT measures “howmuch” accelera on is in the direc on of travel,

that is, it measures the component of accelera on that affects the speed. The
scalar aN measures “how much” accelera on is perpendicular to the direc on
of travel, that is, it measures the component of accelera on that affects the
direc on of travel.

We can find aT using the orthogonal projec on of a⃗(t) onto T⃗(t) (review Def-
ini on 10.3.3 in Sec on 10.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direc on of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compu ng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Notes:
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11.4 Unit Tangent and Normal Vectors

Theorem 11.4.2 Accelera on in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a posi on func on with accelera on a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
|| v⃗(t) ||

)
aN = a⃗(t) · N⃗(t) =

√
|| a⃗(t) ||2 − a2T =

|| a⃗(t)× v⃗(t) ||
|| v⃗(t) ||

= || v⃗(t) || || T⃗ ′(t) ||

Note the second formula for aT:
d
dt

(
|| v⃗(t) ||

)
. This measures the rate of

change of speed, which again is the amount of accelera on in the direc on of
travel.

Example 11.4.5 Compu ng aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 11.4.1 and 11.4.3. Find aT and aN.

S The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the prac cal interpreta on of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all accelera on comes in the
form of direc on change.

Example 11.4.6 Compu ng aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 11.4.2 and 11.4.4. Find aT and aN.

Notes:
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Chapter 11 Vector Valued Func ons

S The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 11.4.2.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =
√
|| a⃗(t) ||2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret this to

mean that at t = 2, the par cle is accelera ng mostly by increasing speed, not
by changing direc on. As the path near t = 2 is rela vely straight, this should
make intui ve sense. Figure 11.4.6 gives a graph of the path for reference.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here the

par cle’s speed is not changing and all accelera on is in the form of direc on
change.

Example 11.4.7 Analyzing projec le mo on
A ball is thrown from a height of 240 with an ini al speed of 64 /s and an angle
of eleva on of 30◦. Find the posi on func on r⃗(t) of the ball and analyze aT and
aN.

S Using Key Idea 11.3.2 of Sec on 11.3 we form the posi on
func on of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 11.4.7.
From thiswefind v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.

Compu ng T⃗(t) is not difficult, and with some simplifica on we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Notes:
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t aT aN
0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 11.4.8: A table of values of aT and
aN in Example 11.4.7.

11.4 Unit Tangent and Normal Vectors

We choose to not find N⃗(t) andfindaN through the formulaaN =
√

|| a⃗(t) ||2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32

√
3√

t2 − 2t+ 4
.

Figure 11.4.8 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

A er t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the accelera on is in the form of
speeding up the ball, and not in changing its direc on.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of mo on. The work in Example 11.4.7 gave quan ta ve analysis
of what we intui vely knew.

The next sec on provides two more important steps towards this analysis.
We currently describe posi on only in terms of me. In everyday life, though,
we o en describe posi on in terms of distance (“The gas sta on is about 2miles
ahead, on the le .”). The arc length parameter allows us to reference posi on
in terms of distance traveled.

We also intui vely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quan ta ve
measurement of how curvy a curve is.

Notes:
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Exercises 11.4
Terms and Concepts
1. If T⃗(t) is a unit tangent vector, what is || T⃗(t) ||?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The accelera on vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the accelera on is affec ng the
of an object.

Problems
In Exercises 5 – 8 , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9 – 12 , find the equa on of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 –
8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13 – 16 , find N⃗(t) using Defini on 11.4.2. Con-
firm the result using Theorem 11.4.1.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17 – 20 , a posi on func on r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.
(b) Using a graph of r⃗(t) and Theorem 11.4.1, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t, 1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21 – 24 , find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩

22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩

23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25 – 30 , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the rela ve sizes of
aT and aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.
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Figure 11.5.1: Introducing the arc length
parameter.

11.5 The Arc Length Parameter and Curvature

11.5 The Arc Length Parameter and Curvature
In normal conversa on we describe posi on in terms of both me and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued func ons have defined pointswith a parameter
t, whichweo en take to represent me. Consider Figure 11.5.1(a), where r⃗(t) =⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2 are

shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is me and r⃗ is posi on,
we can say that the par cle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.5.1(b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are plo ed.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an ini al loca on (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametriza on of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0
|| r⃗ ′(u) || du.

We can turn this into a func on: as t varies, we find the arc length s from 0 to t.
This func on is

s(t) =
∫ t

0
|| r⃗ ′(u) || du. (11.1)

This establishes a rela onship between s and t. Knowing this rela onship
explicitly, we can rewrite r⃗(t) as a func on of s: r⃗(s). We demonstrate this in an
example.

Example 11.5.1 Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

S Using Equa on (11.1), we write

s(t) =
∫ t

0
|| r⃗ ′(u) || du.

Notes:
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Figure 11.5.2: Graphing r⃗ in Example
11.5.1 with parameters t and s.

Chapter 11 Vector Valued Func ons

We can integrate this, explicitly finding a rela onship between s and t:

s(t) =
∫ t

0
|| r⃗ ′(u) || du

=

∫ t

0

√
32 + 42 du

=

∫ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.

Clearly, as shown in Figure 11.5.2, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
ini al point? We find it with r⃗(2) = ⟨1/5, 18/5⟩.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5

− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, r⃗(2) is indeed 2 units away, in the direc on of travel, from the ini al point.

Things worked out very nicely in Example 11.5.1; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integra ng a square–root. There are a number
of things that we can learn about the arc length parameter from Equa on (11.1),
though, that are incredibly useful.

First, take the deriva ve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.1) states that

ds
dt

= s ′(t) = || r⃗ ′(t) ||. (11.2)

Le ng t represent me and r⃗(t) represent posi on, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intui on.

The Chain Rule states that
d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · || r⃗ ′(t) ||.

Notes:
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Figure 11.5.3: Establishing the concept of
curvature.

11.5 The Arc Length Parameter and Curvature

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

|| r⃗ ′(t) ||
= T⃗(t), (11.3)

where T⃗(t) is the unit tangent vector. Equa on 11.3 is o en misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 11.5.1 Arc Length Parameter

Let r⃗(s) be a vector–valued func on. The parameter s is the arc length
parameter if, and only if, || r⃗ ′(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.5.3(a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 11.5.3(b), where
unit tangent vectors are graphed around points A and B. No ce how the direc-
on of the unit tangent vector changes quite a bit near A, whereas it does not

change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Defini on 11.5.1 Curvature

Let r⃗(s) be a vector–valued func on where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ d⃗Tds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣ T⃗ ′(s)

∣∣∣∣ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

|| r⃗ ′(s) ||
and N⃗(s) =

T⃗ ′(s)
|| T⃗ ′(s) ||

.

Notes:
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Having defined || T⃗ ′(s) || = κ, we can rewrite the second equa on as

T⃗ ′(s) = κN⃗(s). (11.4)

We already knew that T⃗ ′(s) is in the same direc on as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direc on of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direc on of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direc on is not changing rapidly.

We use Defini on 11.5.1 to find the curvature of the line in Example 11.5.1.

Example 11.5.2 Finding the curvature of a line
Use Defini on 11.5.1 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

S In Example 11.5.1, we found that the arc length parameter
was defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5+ 2⟩ parametrized r⃗ with the
arc length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣ T⃗ ′(s)

∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

While the defini on of curvature is a beau ful mathema cal concept, it is
nearly impossible to use most of the me; wri ng r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
cula ng this value that are much easier. There is a tradeoff: the defini on is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though it may be hard to understand why they work.

Notes:
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Theorem 11.5.2 Formulas for Curvature

Let C be a smooth curve in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued func on in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x ′y ′′ − x ′′y ′|(
(x ′)2 + (y ′)2

)3/2 .
3. If C is defined in space by a vector–valued func on r⃗(t), then

κ =
|| T⃗ ′(t) ||
|| r⃗ ′(t) ||

=
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3
=

a⃗(t) · N⃗(t)
|| v⃗(t) ||2

.

We prac ce using these formulas.

Example 11.5.3 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by c⃗(t) = ⟨r cos t, r sin t⟩.

S Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 11.5.2.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r.

Example 11.5.3 gives a great result. Before this example, if we were told

Notes:
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Chapter 11 Vector Valued Func ons

“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the oscula ng circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 11.5.4 shows the graph of the curve seen earlier in Figure 11.5.3
and its oscula ng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “oscula ng” comes from a La n word related to kissing; an oscula ng cir-
cle “kisses” the graph at a par cular point. Many beau ful ideas inmathema cs
have come from studying the oscula ng circles to a curve.)

Example 11.5.4 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

S We use the first formula found in Theorem 11.5.2.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature
is κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 11.5.5. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0.

Example 11.5.5 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

Notes:
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Figure 11.5.6: Understanding the curva-
ture of a curve in space.

11.5 The Arc Length Parameter and Curvature

S Weuse the third formula in Theorem11.5.2 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3

=
||
⟨
12t2,−12t, 2

⟩
||

|| ⟨1, 2t, 6t2⟩ ||3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a par cularly “nice” formula, it does explicitly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very me consuming. Instead, consider the graph of κ(t)
as given in Figure 11.5.6(a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized.

Curvature and Mo on

Let r⃗(t) be a posi on func on of an object, with velocity v⃗(t) = r⃗ ′(t) and
accelera on a⃗(t) = r⃗ ′′(t). In Sec on 11.4 we established that accelera on is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 11.4.2 gives formulas for aT and aN:

aT =
d
dt

(
|| v⃗(t) ||

)
and aN =

|| v⃗(t)× a⃗(t) ||
|| v⃗(t) ||

.

We understood that the amount of accelera on in the direc on of T⃗ relates only
to how the speed of the object is changing, and that the amount of accelera on
in the direc on of N⃗ relates to how the direc on of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direc on, aN = 0.)

In Equa on (11.2) at the beginning of this sec on, we found s ′(t) = || v⃗(t) ||.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
|| v⃗(t) ||

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Notes:
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Opera ng
Speed (mph)

Minimum
Radius ( )

35 310
40 430
45 540

Figure 11.5.7: Opera ng speed and mini-
mum radius in highway cloverleaf design.

Chapter 11 Vector Valued Func ons

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
me. We see once more that the component of accelera on in the direc on of

travel relates only to speed, not to a change in direc on.
Now compare the formula for aN above to the formula for curvature in The-

orem 11.5.2:

aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||
and κ =

|| r⃗ ′(t)× r⃗ ′′(t) ||
|| r⃗ ′(t) ||3

=
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||3
.

Thus

aN = κ|| v⃗(t) ||2 (11.5)

= κ
(
s ′(t)

)2
This last equa on shows that the component of accelera on that changes

the object’s direc on is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but ghten the
turn (i.e., increase κ), once again the door will push harder against you.

Pu ng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ|| v⃗(t) ||2N⃗(t).

This is not a par cularly prac cal way of finding aT and aN, but it reveals some
great concepts about how accelera on interacts with speed and the shape of a
curve.

Example 11.5.6 Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
opera ng speed, as given in the table in Figure 11.5.7. For each curve and speed,
compute aN.

S Using Equa on (11.5), we can compute the accelera on
normal to the curve in each case. We start by conver ng each speed from “miles
per hour” to “feet per second” by mul plying by 5280/3600.

Notes:
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35mph, 310 ⇒ 51.33 /s, κ = 1/310
aN = κ || v⃗(t) ||2

=
1

310
(
51.33

)2
= 8.50 /s2.

40mph, 430 ⇒ 58.67 /s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00 /s2.

45mph,540 ⇒ 66 /s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07 /s2.

Note that each accelera on is similar; this is by design. Considering the classic
“Force=mass× accelera on” formula, this accelera on must be kept small in
order for the res of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310 at a rate of 50mph, the accelera on is double, at 17.35 /s2.
If the accelera on is too high, the fric onal force created by the resmay not be
enough to keep the car from sliding. Civil engineers rou nely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
onal safety.

We end this chapter with a reflec on on what we’ve covered. We started
with vector–valued func ons, which may have seemed at the me to be just
another way of wri ng parametric equa ons. However, we have seen that the
vector perspec ve has given us great insight into the behavior of func ons and
the study of mo on. Vector–valued posi on func ons convey displacement,
distance traveled, speed, velocity, accelera on and curvature informa on, each
of which has great importance in science and engineering.

Notes:
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Exercises 11.5
Terms and Concepts
1. It is common to describe posi on in terms of both

and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.

4. Describe in your own words what an “oscula ng circle” is.

5. Complete the iden ty: T⃗ ′(s) = N⃗(s).

6. Given a posi on func on r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises 7 – 10 , a posi on func on r⃗(t) is given, where
t = 0 corresponds to the ini al posi on. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩

8. r⃗(t) = ⟨7 cos t, 7 sin t⟩

9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11 – 22 , a curve C is described alongwith 2 points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the
2 given points.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.

13. C is defined by y = cos x; points given at x = 0 and
x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0
and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is defined by r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.

21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at
t = 0 and t = π/2.

22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points
given at t = 0 and t = π/2.

In Exercises 23 – 26 , find the value of x or t where curvature
is maximized.

23. y = 1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27 – 30 , find the radius of curvature at the indi-
cated value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31 – 34 , find the equa on of the oscula ng circle
to the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0
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12: F S
V

A func on of the form y = f(x) is a func on of a single variable; given a value
of x, we can find a value y. Even the vector–valued func ons of Chapter 11 are
single–variable func ons; the input is a single variable though the output is a
vector.

There are many situa ons where a desired quan ty is a func on of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s ba ng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mul variable func ons, that is, func ons with more
than one input.

12.1 Introduc on to Mul variable Func ons

Defini on 12.1.1 Func on of Two Variables

LetD be a subset ofR2. A func on f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

Example 12.1.1 Understanding a func on of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

S Using the defini on f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1
f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R.
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Figure 12.1.1: Illustra ng the domain of
f(x, y) in Example 12.1.2.
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Figure 12.1.2: Graphing a func on of two
variables.

Chapter 12 Func ons of Several Variables

Example 12.1.2 Understanding a func on of two variables

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the domain and range of f.

S The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equa ondescribes an ellipse and its interior as shown in Figure 12.1.1.
We can represent the domain D graphically with the figure; in set nota on, we
can write D = {(x, y)| x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is≥ 0. Since the x and y terms are squared, then subtracted, in-
side the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1].

Graphing Func ons of Two Variables

The graph of a func on f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by plo ng points, but this has limita ons.
Consider Figure 12.1.2(a)where 25points havebeenplo edof f(x, y) =

1
x2 + y2 + 1

.
More points have been plo ed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the func on looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.1.2b which does a far be er job of illustra ng
the behavior of f.

While technology is readily available to help us graph func ons of two vari-
ables, there is s ll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a func on. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of represen ng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.1.3, represent the surface
of Earth by indica ng points with the same eleva on with contour lines. The
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Figure 12.1.3: A topographical map dis-
plays eleva on by drawing contour lines,
along with the eleva on is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

12.1 Introduc on to Mul variable Func ons

eleva ons marked are equally spaced; in this example, each thin line indicates
an eleva on change in 50 increments and each thick line indicates a change
of 200 . When lines are drawn close together, eleva on changes rapidly (as
one does not have to travel far to rise 50 ). When lines are far apart, such as
near “Aspen Campground,” eleva on changesmore gradually as one has to walk
farther to rise 50 .

Given a func on z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “eleva on” is changing.
Examples will help one understand this concept.

Example 12.1.3 Drawing Level Curves

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

S Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0)with horizontal major axis of length 6 andminor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

Notes:
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In general, for z = c, the level curve is:

c =
√

1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.1.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.1.4(b), the curves are drawn on a graph of f in space. Note how
the eleva ons are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly.

Example 12.1.4 Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

S We begin by se ng f(x, y) = c for an arbitrary c and seeing
if algebraic manipula on of the equa on reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
comple ng the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, ±0.4 and ±0.6 are sketched in Figure

12.1.5(a). To help illustrate “eleva on,” we use thicker lines for c values near 0,
and dashed lines indicate where c < 0.

There is one special level curve, when c = 0. The level curve in this situa on
is x+ y = 0, the line y = −x.

Notes:

686




...

..

−5

.

5

.

−4

.

−2

.

2

.

4

.

c = 0

.

c = 0.2

.

c = 0.4

.

x

.

y

(a)

(b)

Figure 12.1.5: Graphing the level curves
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12.1 Introduc on to Mul variable Func ons

In Figure 12.1.5(b) we see a graph of the surface. Note how the y-axis is
poin ng away from the viewer to more closely resemble the orienta on of the
level curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
eleva on change, though the level curve does.

Func ons of Three Variables

We extend our study of mul variable func ons to func ons of three vari-
ables. (One can make a func on of as many variables as one likes; we limit our
study to three variables.)

Defini on 12.1.2 Func on of Three Variables

Let D be a subset of R3. A func on f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this defini on closely resembles that of Defini on 12.1.1.

Example 12.1.5 Understanding a func on of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the
domain and range of f.

S f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y.

Notes:
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c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 12.1.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 12.1.6.
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Level Surfaces

It is very difficult to produce a meaningful graph of a func on of three vari-
ables. A func on of one variable is a curve drawn in 2 dimensions; a func on of
two variables is a surface drawn in 3 dimensions; a func on of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 12.1.6 Finding level surfaces
If a point source S is radia ng energy, the intensity I at a given point P in space
is inversely propor onal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.
Let k = 1; find the level surfaces of I.

S Wecan (mostly) answer this ques onusing “common sense.”
If energy (say, in the form of light) is emana ng from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathema cally. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centered

at the origin.
Figure 12.1.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a li le more than before.

Note how each me the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next sec on we apply the concepts of limits to func ons of two or
more variables.

Notes:
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Exercises 12.1
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” func ons that require more than one input.

2. The graph of a func on of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a func on does not
change.

5. The analogue of a level curve for func ons of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
In Exercises 7 – 14, give the domain and range of the mul -
variable func on.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) = 1
x+ 2y

11. f(x, y) = 1
x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) = 1√
x2 + y2 − 9

In Exercises 15 – 22, describe in words and sketch the level
curves for the func on and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) = 1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) = 2x− 2y
x2 + y2 + 1

; c = −1, 0, 1

20. f(x, y) = y− x3 − 1
x

; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

In Exercises 23 – 26, give the domain and range of the func-
ons of three variables.

23. f(x, y, z) = x
x+ 2y− 4z

24. f(x, y, z) = 1
1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

In Exercises 27 – 30, describe the level surfaces of the given
func ons of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) = x2 + y2

z

30. f(x, y, z) = z
x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.2.1: Illustra ng open and
closed sets in the x-y plane.

Chapter 12 Func ons of Several Variables

12.2 Limits andCon nuity ofMul variable Func ons
We con nue with the pa ern we have established in this text: a er defining a
new kind of func on, we apply calculus ideas to it. The previous sec on defined
func ons of two and three variables; this sec on inves gates what it means for
these func ons to be “con nuous.”

We begin with a series of defini ons. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous defini ons for open and closed sets in the x-y plane.

Defini on 12.2.1 Open Disk, Boundary and Interior Points,
Open and Closed Sets, Bounded Sets

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tered at the origin with radius M, contains S. A set that is not bounded
is unbounded.

Figure 12.2.1 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centered there that lies en rely within the set.

The set depicted in Figure 12.2.1(a) is a closed set as it contains all of its
boundary points. The set in (b) is open, for all of its points are interior points
(or, equivalently, it does not contain any of its boundary points). The set in (c)
is neither open nor closed as it contains some of its boundary points.

Notes:
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Figure 12.2.2: Sketching the domain of
the func on in Example 12.2.2.

Note: While our first limit defini on was
defined over an open interval, we now
define limits over a set S in the plane
(where S does not have to be open). As
planar sets can be far more complicated
than intervals, our defini on adds the re-
stric on “. . . where every open disk cen-
tered at P contains points in S other than
P.” In this text, all sets we’ll consider will
sa sfy this condi on andwewon’t bother
to check; it is included in the defini on for
completeness.

12.2 Limits and Con nuity of Mul variable Func ons

Example 12.2.1 Determining open/closed, bounded/unbounded
Determine if the domain of the func on f(x, y) =

√
1− x2/9− y2/4 is open,

closed, or neither, and if it is bounded.

S This domain of this func on was found in Example 12.1.2 to
be D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1.

Since the region includes the boundary (indicated by the use of “≤”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centered at the origin, contains D.

Example 12.2.2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

S As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 12.2.2. Note how we can draw an open
disk around any point in the domain that lies en rely inside the domain, and
also note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–defini onof the limit of a func onof one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–defini on holds for func ons of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal defini on is given below.

Defini on 12.2.2 Limit of a Func on of Two Variables

Let S be a set containing P = (x0, y0) where every open disk centered at
P contains points in S other than P, let f be a func on of two variables
defined on S, except possibly at P, and let L be a real number. The limit
of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y) in
S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centered at (x0, y0)
with radius δ, then |f(x, y)− L| < ε.

Notes:
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Figure 12.2.3: Illustra ng the defini on
of a limit. The open disk in the x-y plane
has radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.
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The concept behind Defini on 12.2.2 is sketched in Figure 12.2.3. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0)
in the x-y plane with radius δ, then f(x, y) should be within ε of L.

Compu ng limits using this defini on is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 12.2.1 Basic Limit Proper es of Func ons of Two
Variables

Let b, x0, y0, L and K be real numbers, let n be a posi ve integer, and let
f and g be func ons with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Iden ty lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar Mul ples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quo ents: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 1.3.2 and 1.3.3 of Sec on 1.3, al-
lows us to evaluate many limits.

Example 12.2.3 Evalua ng a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy
x2 + y2

Notes:
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12.2 Limits and Con nuity of Mul variable Func ons

S

1. The aforemen oned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
=

π

1
+ cos π

= π − 1.

2. We a empt to evaluate the limit by subs tu ng 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with func ons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direc on, the le or the right.

In the plane, there are infinitely many direc ons from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a par cular direc on, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limi ng val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the le and right hand limits

of single variable func ons not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limi ng value is obtained regardless of the path chosen. The case where
the limit does not exist is o en easier to deal with, for we can o en pick two
paths along which the limit is different.

Example 12.2.4 Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

Notes:
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2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

S

1. Evalua ng lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evalua ng the resul ng limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limi ng values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.

By applying L’Hôpital’s Rule, we can show this limit is 0 except whenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hôpital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “−2/0” ⇒ the limit does not exist.

Notes:

694



12.2 Limits and Con nuity of Mul variable Func ons

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.

Example 12.2.5 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

S It is rela vely easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply Defini on 12.2.2. Let ε > 0 be given. We
want to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)−0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.
Let
√
(x− 0)2 + (y− 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2x2 + y2

− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0.

Con nuity

Defini on 1.5.1 defines what it means for a func on of one variable to be
con nuous. In brief, it meant that the graph of the func on did not have breaks,
holes, jumps, etc. We define con nuity for func ons of two variables in a similar
way as we did for func ons of one variable.

Notes:
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Defini on 12.2.3 Con nuous

Let a func on f(x, y) be defined on a set S containing the point (x0, y0).

1. f is con nuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is con nuous on S if f is con nuous at all points in S. If f is con n-
uous at all points in R2, we say that f is con nuous everywhere.

Example 12.2.6 Con nuity of a func on of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f con nuous at (0, 0)? Is f con nuous

everywhere?

S To determine if f is con nuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the defini on of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Subs tu ng 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is con nuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 1.3.5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 12.2.1 of this sec on states that we can combine these two
limits as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.
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Figure 12.2.4: A graph of f(x, y) in Exam-
ple 12.2.6.

12.2 Limits and Con nuity of Mul variable Func ons

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is con nuous at

(0, 0).
A similar analysis shows that f is con nuous at all points in R2. As long as

x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is con nuous everywhere. A graph
of f is given in Figure 12.2.4. No ce how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 1.5.1, giving us ways to
combine con nuous func ons to create other con nuous func ons.

Theorem 12.2.2 Proper es of Con nuous Func ons

Let f and g be con nuous on a set S, let c be a real number, and let n be
a posi ve integer. The following func ons are con nuous on S.

1. Sums/Differences: f± g

2. Constant Mul ples: c · f

3. Products: f · g

4. Quo ents: f/g (as longs as g ̸= 0 on S)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd,

then true for all values of f on S.)

7. Composi ons: Adjust the defini ons of f and g to: Let f be
con nuous on S, where the range of f on S is
J, and let g be a single variable func on that is
con nuous on J. Then g ◦ f, i.e., g(f(x, y)), is
con nuous on S.

Example 12.2.7 Establishing con nuity of a func on
Let f(x, y) = sin(x2 cos y). Show f is con nuous everywhere.

S Wewill apply both Theorems 1.5.1 and 12.2.2. Let f1(x, y) =
x2. Since y is not actually used in the func on, and polynomials are con nuous
(by Theorem 1.5.1), we conclude f1 is con nuous everywhere. A similar state-
ment can be made about f2(x, y) = cos y. Part 3 of Theorem 12.2.2 states that
f3 = f1 · f2 is con nuous everywhere, and Part 7 of the theorem states the
composi on of sine with f3 is con nuous: that is, sin(f3) = sin(x2 cos y) is con-
nuous everywhere.

Notes:
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Func ons of Three Variables

The defini ons and theorems given in this sec on can be extended in a natu-
ral way to defini ons and theorems about func ons of three (ormore) variables.
We cover the key concepts here; some terms from Defini ons 12.2.1 and 12.2.3
are not redefined but their analogous meanings should be clear to the reader.

Defini on 12.2.4 Open Balls, Limit, Con nuous

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let D be a set in R3 containing (x0, y0, z0) where every open ball cen-
tered at (x0, y0, z0) contains points of D other than (x0, y0, z0), and let
f(x, y, z) be a func on of three variables defined on D, except possibly
at (x0, y0, z0). The limit of f(x, y, z) as (x, y, z) approaches (x0, y0, z0) is
L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all (x, y, z)
in D, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball centered at
(x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). f is con nuous
at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0); if f is con nuous

at all points in D, we say f is con nuous on D.

These defini ons can also be extended naturally to apply to func ons of four
or more variables. Theorem 12.2.2 also applies to func on of three or more
variables, allowing us to say that the func on

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is con nuous everywhere.
When considering single variable func ons, we studied limits, then con nu-

ity, then the deriva ve. In our current study of mul variable func ons, we have
studied limits and con nuity. In the next sec on we study deriva on, which
takes on a slight twist as we are in a mul varible context.
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Exercises 12.2
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior points of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
In Exercises 7 – 10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.
(c) State whether S is bounded or unbounded.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}

8. S =
{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

In Exercises 11 – 14:
(a) Find the domain D of the given func on.
(b) State whether D is an open or closed set.
(c) State whether D is bounded or unbounded.

11. f(x, y) =
√

9− x2 − y2

12. f(x, y) =
√

y− x2

13. f(x, y) = 1√
y− x2

14. f(x, y) = x2 − y2

x2 + y2

In Exercises 15 – 20, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.
(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.
(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.
(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.
(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.
(b) Along the path y = x− π/2.
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(a)

(b)

Figure 12.3.1: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate nota ons for fx(x, y) include:

∂

∂x
f(x, y), ∂f

∂x
,

∂z
∂x

, and zx,

with similar nota ons for fy(x, y). For
ease of nota on, fx(x, y) is o en abbre-
viated fx.

Chapter 12 Func ons of Several Variables

12.3 Par al Deriva ves

Let y be a func on of x. We have studied in great detail the deriva ve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This sec on begins our inves ga on into these rates
of change.

Consider the func on z = f(x, y) = x2 + 2y2, as graphed in Figure 12.3.1(a).
By fixing y = 2, we focus our a en on to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a func on of just one variable. We
can take the deriva ve of zwith respect to x along this curve and find equa ons
of tangent lines, etc.

The key no on to extract from this example is: by trea ng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of par al deriva ves. We state the formal,
limit–based defini on first, then show how to compute these par al deriva ves
without directly taking limits.

Defini on 12.3.1 Par al Deriva ve

Let z = f(x, y) be a con nuous func on on a set S in R2.

1. The par al deriva ve of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The par al deriva ve of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

Example 12.3.1 Compu ng par al deriva ves with the limit defini on
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit defini on.

Notes:
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12.3 Par al Deriva ves

S Using Defini on 12.3.1, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2.

Example 12.3.1 found a par al deriva ve using the formal, limit–based def-
ini on. Using limits is not necessary, though, as we can rely on our previous
knowledge of deriva ves to compute par al deriva ves easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
deriva ve with respect to x by trea ng y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are trea ng y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are trea ng y as a

constant. More examples will help make this clear.

Example 12.3.2 Finding par al deriva ves
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

S

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, trea ng it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.

Notes:
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To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine func on.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1+
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.

We have shown how to compute a par al deriva ve, but it may s ll not be
clear what a par al deriva ve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your loca on, you might walk up, sharply down, or perhaps not
change eleva on at all. This is similar to measuring zx: you are moving only east
(in the “x”-direc on) and not north/south at all. Going back to your original lo-
ca on, imagine now walking due north (in the “y”-direc on). Perhaps walking
due north does not change your eleva on at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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(a)

(b)

Figure 12.3.2: Illustra ng the meaning of
par al deriva ves.

12.3 Par al Deriva ves

The following example helps us visualize this more.

Example 12.3.3 Evalua ng par al deriva ves
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

S We begin by compu ng fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 12.3.2(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 12.3.2(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direc on than in the y-direc on.

Second Par al Deriva ves

Let z = f(x, y). We have learned to find the par al deriva ves fx(x, y) and
fy(x, y), which are each func ons of x and y. Thereforewe can take par al deriva-
ves of them, each with respect to x and y. We define these “second par als”

along with the nota on, give examples, then discuss their meaning.

Notes:
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Note: The terms in Defini on 12.3.2
all depend on limits, so each defini on
comes with the caveat “where the limit
exists.”

Chapter 12 Func ons of Several Variables

Defini on 12.3.2 Second Par al Deriva ve, Mixed Par al
Deriva ve

Let z = f(x, y) be con nuous on a set S.

1. The second par al deriva ve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second par al deriva ve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar defini ons hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second par al deriva ves fxy and fyx aremixed par al deriva ves.

The nota on of second par al deriva ves gives some insight into the nota-
on of the second deriva ve of a func on of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” por on means “take the deriva ve of y twice,” while
“dx2” means “with respect to x both mes.” When we only know of func ons of
a single variable, this la er phrase seems silly: there is only one variable to take
the deriva ve with respect to. Now that we understand func ons of mul ple
variables, we see the importance of specifying which variables we are referring
to.

Example 12.3.4 Second par al deriva ves
For each of the following, find all six first and second par al deriva ves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

S In each, we give fx and fy immediately and then spend me de-
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12.3 Par al Deriva ves

riving the second par al deriva ves.

1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following par al deriva ves get rather long, weomit the extra
nota on and just give the results. In several cases, mul ple applica ons
of the Product and Chain Rules will be necessary, followed by some basic
combina on of like terms.
fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

Notes:
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No ce how in each of the three func ons in Example 12.3.4, fxy = fyx. Due
to the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 12.3.1 Mixed Par al Deriva ves

Let f be defined such that fxy and fyx are con nuous on a set S. Then for
each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second Par al Deriva ves

Now that we know how to find second par als, we inves gatewhat they tell
us.

Again we refer back to a func on y = f(x) of a single variable. The second
deriva ve of f is “the deriva ve of the deriva ve,” or “the rate of change of the
rate of change.” The second deriva ve measures how much the deriva ve is
changing. If f ′′(x) < 0, then the deriva ve is ge ng smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the deriva ve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking deriva ves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direc on. Using the analogy of standing in the rolling meadow
used earlier in this sec on, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direc on. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direc on. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed par als fxy and fyx. The mixed par al fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east ge ng steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and
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(a)

(b)

Figure 12.3.3: Understanding the second
par al deriva ves in Example 12.3.5.

12.3 Par al Deriva ves

graphs.

Example 12.3.5 Understanding second par al deriva ves
Let z = x2 − y2 + xy. Evaluate the 6 first and second par al deriva ves at
(−1/2, 1/2) and interpret what each of these numbers mean.

S We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direc on of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direc on
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of changewill be−3/2. These tangents lines are graphed in Figure 12.3.3(a)
and (b), respec vely, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.3.3(a). Three directed tangent lines are drawn
(two are dashed), each in the direc on of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all nega ve, ge ng closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posi ve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
12.3.3(b) where again three directed tangent lines are drawn, this me each
in the direc on of y with slopes determined by fy. As x increases, the slopes
become less steep (closer to 0). Since these are nega ve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now
interpret fxx and fyy. In Figure 12.3.3(a), we see a curve drawn where x is held
constant at x = −1/2: only y varies. This curve is clearly concave down, corre-
sponding to the fact that fyy < 0. In part (b) of the figure, we see a similar curve
where y is constant and only x varies. This curve is concave up, corresponding
to the fact that fxx > 0.

Par al Deriva ves and Func ons of Three Variables

The concepts underlying par al deriva ves can be easily extend to more
than two variables. We give some defini ons and examples in the case of three
variables and trust the reader can extend these defini ons to more variables if
needed.

Notes:
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Defini on 12.3.3 Par al Deriva ves with Three Variables

Let w = f(x, y, z) be a con nuous func on on a set D in R3.
The par al deriva ve of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar defini ons hold for fy(x, y, z) and fz(x, y, z).

By taking par al deriva ves of par al deriva ves, we can find second par al
deriva ves of f with respect to z then y, for instance, just as before.

Example 12.3.6 Par al deriva ves of func ons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

S

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)

Higher Order Par al Deriva ves

We can con nue taking par al deriva ves of par al deriva ves of par al
deriva ves of …; we do not have to stop with second par al deriva ves. These
higher order par al deriva ves do not have a dy graphical interpreta on; nev-
ertheless they are not hard to compute and worthy of some prac ce.

We do not formally define each higher order deriva ve, but rather give just
a few examples of the nota on.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.

Notes:
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Example 12.3.7 Higher order par al deriva ves

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

S

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)
fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)
fyxx = 4y− y sin(xy)−

(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each par al deriva ve
is con nuous, it does not ma er the order in which the par al deriva ves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at mes. Had we known this, the second part of Example
12.3.7 would have been much simpler to compute. Instead of compu ng fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.

Notes:
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Chapter 12 Func ons of Several Variables

A brief review of this sec on: par al deriva ves measure the instantaneous
rate of change of a mul variable func on with respect to one variable. With
z = f(x, y), the par al deriva ves fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respec vely. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direc on given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of Sec on 12.6. First, we need to define what it means for a func on
of two variables to be differen able.

Notes:
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Exercises 12.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a func on z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed par al frac on fxy, which is computed first, fx
or fy?

4. In the mixed par al frac on ∂2f
∂x∂y

, which is computed first,
fx or fy?

Problems
In Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

In Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) = x
y

12. f(x, y) = 4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) = 1
x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) = ln x
4y

26. f(x, y) = 5ex sin y+ 9

In Exercises 27 – 30, form a func on z = f(x, y) such that fx
and fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

In Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) = 3x
7y2z

34. f(x, y, z) = ln(xyz)
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Note: From Defini on 12.4.1, we can
write

dz = ⟨ fx, fy⟩ · ⟨dx, dy⟩.

While not explored in this sec on, the
vector ⟨fx, fy⟩ is seen again in the next sec-
on and fully defined in Sec on 12.6.

Chapter 12 Func ons of Several Variables

12.4 Differen ability and the Total Differen al
We studied differen als in Sec on 4.4, where Defini on 4.4.1 states that if y =
f(x) and f is differen able, then dy = f ′(x)dx. One important use of this differ-
en al is in Integra on by Subs tu on. Another important applica on is approx-
ima on. Let∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the
change in y resul ng from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between ∆y and dy goes to 0. Another
way of sta ng this: as dx goes to 0, the error in approxima ng∆y with dy goes
to 0.

We extend this idea to func ons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respec vely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direc ons,
respec vely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indica on of whether or not this
approxima on is any good. First we give a name to dz.

Defini on 12.4.1 Total Differen al

Let z = f(x, y) be con nuous on a set S. Let dx and dy represent changes
in x and y, respec vely. Where the par al deriva ves fx and fy exist, the
total differen al of z is

dz = fx(x, y)dx+ fy(x, y)dy.

Example 12.4.1 Finding the total differen al
Let z = x4e3y. Find dz.

S We compute the par al deriva ves: fx = 4x3e3y and fy =
3x4e3y. Following Defini on 12.4.1, we have

dz = 4x3e3ydx+ 3x4e3ydy.

We can approximate ∆z with dz, but as with all approxima ons, there is
error involved. A good approxima on is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be func ons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

Notes:
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12.4 Differen ability and the Total Differen al

If the approxima on of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approxima on of∆z by dz is even be er if, as dx and dy go to
0, so do Ex and Ey. This leads us to our defini on of differen ability.

Defini on 12.4.2 Mul variable Differen ability

Let z = f(x, y) be defined on a set S containing (x0, y0) where fx(x0, y0)
and fy(x0, y0) exist. Let dz be the total differen al of z at (x0, y0), let
∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey be func ons of dx
and dy such that

∆z = dz+ Exdx+ Eydy.

1. We say f is differen able at (x0, y0) if, given ε > 0, there is a δ > 0
such that if || ⟨dx, dy⟩ || < δ, then || ⟨Ex, Ey⟩ || < ε. That is, as dx
and dy go to 0, so do Ex and Ey.

2. We say f is differen able on S if f is differen able at every point in
S. If f is differen able on R2, we say that f is differen able every-
where.

Example 12.4.2 Showing a func on is differen able
Show f(x, y) = xy+ 3y2 is differen able using Defini on 12.4.2.

S We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

It is straigh orward to compute fx = y and fy = x+6y. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)
= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)

Notes:
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is differen able for all pairs (x, y) in R2, or, equivalently, that f is differen able
everywhere.

Our intui ve understanding of differen ability of func ons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intui ve understand-
ing of func ons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differen able func ons are con nuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of func ons are differen able or not.

Theorem 12.4.1 Con nuity and Differen ability of Mul variable
Func ons

Let z = f(x, y) be defined on a set S containing (x0, y0). If f is differen-
able at (x0, y0), then f is con nuous at (x0, y0).

Theorem 12.4.2 Differen ability of Mul variable Func ons

Let z = f(x, y) be defined on a set S. If fx and fy are both con nuous on
S, then f is differen able on S.

The theorems assure us that essen ally all func ons thatwe see in the course
of our studies here are differen able (and hence con nuous) on their natural
domains. There is a difference between Defini on 12.4.2 and Theorem 12.4.2,
though: it is possible for a func on f to be differen able yet fx and/or fy is not
con nuous. Such strange behavior of func ons is a source of delight for many
mathema cians.

When fx and fy exist at a point but are not con nuous at that point, we need
to use other methods to determine whether or not f is differen able at that
point.

For instance, consider the func on

f(x, y) =
{ xy

x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)

Notes:
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12.4 Differen ability and the Total Differen al

We can find fx(0, 0) and fy(0, 0) using Defini on 12.3.1:

fx(0, 0) = lim
h→0

f(0+ h, 0)− f(0, 0)
h

= lim
h→0

0
h2

= 0;

fy(0, 0) = lim
h→0

f(0, 0+ h)− f(0, 0)
h

= lim
h→0

0
h2

= 0.

Both fx and fy exist at (0, 0), but they are not con nuous at (0, 0), as

fx(x, y) =
y(y2 − x2)
(x2 + y2)2

and fy(x, y) =
x(x2 − y2)
(x2 + y2)2

are not con nuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not con nuous. Therefore it is possible, by
Theorem 12.4.2, for f to not be differen able.

Indeed, it is not. One can show that f is not con nuous at (0, 0) (see Exam-
ple 12.2.4), and by Theorem 12.4.1, this means f is not differen able at (0, 0).

Approxima ng with the Total Differen al

By the defini on, when f is differen able dz is a good approxima on for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

Example 12.4.3 Approxima ng with the total differen al
Let z =

√
x sin y. Approximate f(4.1, 0.8).

S Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approximate
f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =

√
4 sin(π/4) =

2
(√

2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the best approxima on we

could reasonably come up with. The total differen al gives us a way of adjus ng
this ini al approxima on to hopefully get a more accurate answer.

We let∆z = f(4.1, 0.8)−f(4, π/4). The total differen al dz is approximately
equal to∆z, so

f(4.1, 0.8)− f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+ f(4, π/4). (12.1)

To find dz, we need fx and fy.

Notes:
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fx(x, y) =
sin y
2
√
x

⇒ fx(4, π/4) =
sin π/4
2
√
4

=

√
2/2
4

=
√
2/8.

fy(x, y) =
√
x cos y ⇒ fy(4, π/4) =

√
4
√
2
2

=
√
2.

Approxima ng 4.1 with 4 gives dx = 0.1; approxima ng 0.8 with π/4 gives
dy ≈ 0.015. Thus

dz(4, π/4) = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2
8

(0.1) +
√
2(0.015)

≈ 0.039.

Returning to Equa on (12.1), we have

f(4.1, 0.8) ≈ 0.039+ 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8)with a calculator; the
actual value, accurate to 5 places a er the decimal, is 1.45254. Obviously our
approxima on is quite good.

The point of the previous example was not to develop an approxima on
method for known func ons. A er all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approxima on works, and to reinforce the following concept:

“New posi on = old posi on+ amount of change,” so
“New posi on≈ old posi on + approximate amount of change.”

In the previous example, we could easily compute f(4, π/4) and could ap-
proximate the amount of z-change when compu ng f(4.1, 0.8), le ng us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and fy at a par cular point without actually knowing the func on f. The total
differen al gives a good method of approxima ng f at nearby points.

Example 12.4.4 Approxima ng an unknown func on
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).

Notes:
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12.4 Differen ability and the Total Differen al

S The total differen al approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148.

Error/Sensi vity Analysis

The total differen al gives an approxima on of the change in z given small
changes in x and y. We can use this to approximate error propaga on; that is,
if the input is a li le off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example 12.4.5 Sensi vity analysis
A cylindrical steel storage tank is to be built that is 10 tall and 4 across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensi ve to changes in the diameter or in
the height of the tank?

S A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a func on of two variables, r and h. We can compute
par al deriva ves of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

The total differen al is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr + 4πdh. Note that the coefficient of dr is 40π ≈ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be mul plied by 125.7, whereas a small change in height will be mul plied
by 12.57. Thus the volume of the tank is more sensi ve to changes in radius
than in height.

The previous example showed that the volume of a par cular tankwasmore
sensi ve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1 and radius of
5 would be more sensi ve to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differen al.

Differen ability of Func ons of Three Variables
The defini on of differen ability for func ons of three variables is very simi-

lar to that of func ons of two variables. We again start with the total differen al.

Defini on 12.4.3 Total Differen al

Let w = f(x, y, z) be con nuous on a set D. Let dx, dy and dz represent
changes in x, y and z, respec vely. Where the par al deriva ves fx, fy
and fz exist, the total differen al of w is

dw = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differen al can be a good approxima on of the change in w when w =
f(x, y, z) is differen able.

Defini on 12.4.4 Mul variable Differen ability

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0) where
fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the total dif-
feren al of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 + dz) −
f(x0, y0, z0), and let Ex, Ey and Ez be func ons of dx, dy and dz such that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. We say f is differen able at (x0, y0, z0) if, given ε > 0, there is a
δ > 0 such that if || ⟨dx, dy, dz⟩ || < δ, then || ⟨Ex, Ey, Ez⟩ || < ε.

2. We say f is differen able on B if f is differen able at every point
in B. If f is differen able on R3, we say that f is differen able ev-
erywhere.

Just as before, this defini on gives a rigorous statement about what it means
to be differen able that is not very intui ve. We follow it with a theorem similar
to Theorem 12.4.2.

Notes:
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Theorem12.4.3 Con nuity andDifferen ability of Func ons of Three
Variables

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0).

1. If f is differen able at (x0, y0, z0), then f is con nuous at (x0, y0, z0).

2. If fx, fy and fz are con nuous on B, then f is differen able on B.

This set of defini on and theorem extends to func ons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
ons that we encounter are differen able on their natural domains.

This sec on has given us a formal defini on of what it means for a func ons
to be “differen able,” along with a theorem that gives a more accessible un-
derstanding. The following sec ons return to no ons prompted by our study of
par al deriva ves that make use of the fact that most func ons we encounter
are differen able.

Notes:
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Exercises 12.4
Terms and Concepts
1. T/F: If f(x, y) is differen able on S, the f is con nuous on S.

2. T/F: If fx and fy are con nuous on S, then f is differen able
on S.

3. T/F: If z = f(x, y) is differen able, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
In Exercises 5 – 8, find the total differen al dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y

8. z = xex+y

In Exercises 9 – 12, a func on z = f(x, y) is given. Give the
indicated approxima on using the total differen al.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.

10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing
f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing
f(2, 3) = −6.

12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing
f(5, 4) = 0.

Exercises 13 – 16 ask a variety of ques ons dealing with ap-
proxima ng error and sensi vity analysis.

13. A cylindrical storage tank is to be 2 tall with a radius of 1 .
Is the volume of the tank more sensi ve to changes in the
radius or the height?

14. Projec le Mo on: The x-value of an object moving un-
der the principles of projec le mo on is x(θ, v0, t) =
(v0 cos θ)t. A par cular projec le is fired with an ini al ve-
locity of v0 = 250 /s and an angle of eleva on of θ = 60◦.
It travels a distance of 375 in 3 seconds.

Is the projec le more sensi ve to errors in ini al speed or
angle of eleva on?

15. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensi ve to er-
rors in the measurement of x or in θ?

ℓ =?

θ

x

16. It is “common sense” that it is far be er to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape mes the number
n of mes it was used. For instance, using a 3’ tape 10
mes gives a length of 30’. To measure the same distance

with a 12’ tape, we would use the tape 2.5 mes. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each me a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(I.e., dℓ = 1/16′′ ≈ 0.005 ). Using differen als, show
why common sense proves correct in that it is be er to use
a long tape to measure long distances.

In Exercises 17 – 18, find the total differen al dw.

17. w = x2yz3

18. w = ex sin y ln z

In Exercises 19 – 22, use the informa on provided and the
total differen al to make the given approxima on.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0, fz(3, 3, 3) =
−2. Approximate f(3.1, 3.1, 3.1).
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Figure 12.5.1: Understanding the applica-
on of the Mul variable Chain Rule.

12.5 The Mul variable Chain Rule

12.5 The Mul variable Chain Rule
Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
on likely changes. What factors determine howquickly your eleva on rises and

falls? A er some thought, generally one recognizes that one’s velocity (speed
and direc on) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by amul variable func-
on z = f(x, y); one can represent the path of the off-road vehicle, as seen from

above, with a vector–valued func on r⃗(t) = ⟨x(t), y(t)⟩; the velocity of the ve-
hicle is thus r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

Consider Figure 12.5.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the x-y plane. Restric ng f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The
deriva ve df

dt gives the instantaneous rate of change of f with respect to t. If we
consider an object traveling along this path, df

dt =
dz
dt gives the rate at which the

object rises/falls (i.e., “the rate of eleva on change” of the vehicle.) Concep-
tually, the Mul variable Chain Rule combines terrain and velocity informa on
properly to compute this rate of eleva on change.

Abstractly, let z be a func on of x and y; that is, z = f(x, y) for some func on
f, and let x and y each be func ons of t. By choosing a t-value, x- and y-values
are determined, which in turn determine z: this defines z as a func on of t. The
Mul variable Chain Rule gives a method of compu ng dz

dt .

Theorem 12.5.1 Mul variable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differen able
func ons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a func on of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

= ⟨ fx, fy⟩ · ⟨x′, y′⟩.

The Chain Rule of Sec on 2.5 states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g ′(x). If

t = g(x), we can express the Chain Rule as
df
dx

=
df
dt

dt
dx

;

recall that the deriva ve nota on is deliberately chosen to reflect their frac on–

Notes:
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Chapter 12 Func ons of Several Variables

like proper es. A similar effect is seen in Theorem 12.5.1. In the second line of
equa ons, one can think of the dx and ∂x as “sort of” canceling out, and likewise
with dy and ∂y.

No ce, too, the third line of equa ons in Theorem 12.5.1. The vector ⟨ fx, fy⟩
contains informa on about the surface (terrain); the vector ⟨x′, y′⟩ can represent
velocity. In the context measuring the rate of eleva on change of the off-road
vehicle, theMul variable Chain Rule states it can be found through a product of
terrain and velocity informa on.

We now prac ce applying the Mul variable Chain Rule.

Example 12.5.1 Using the Mul variable Chain Rule
Let z = x2y+ x, where x = sin t and y = e5t. Find

dz
dt

using the Chain Rule.

S Following Theorem 12.5.1, we find

fx(x, y) = 2xy+ 1, fy(x, y) = x2,
dx
dt

= cos t,
dy
dt

= 5e5t.

Applying the theorem, we have

dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

This may look odd, as it seems that dz
dt is a func on of x, y and t. Since x and y

are func ons of t, dz
dt is really just a func on of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t.

The previous example can make us wonder: if we subs tuted for x and y at
the end to show that dz

dt is really just a func on of t, why not subs tute before
differen a ng, showing clearly that z is a func on of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the deriva ve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is

Notes:
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Figure 12.5.2: Plo ng the path of a par-
cle on a surface in Example 12.5.3.

12.5 The Mul variable Chain Rule

extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but o en in “the real world” we know rate–of–change informa on
(i.e., informa on about deriva ves) without explicitly knowing the underlying
func ons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theore c use, giving us insight
into the behavior of certain construc ons (as we’ll see in the next sec on).

We demonstrate this in the next example.

Example 12.5.2 Applying the Mul varible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at me t = t0 it is known that :

∂z
∂x

= 5,
∂z
∂y

= −2,
dx
dt

= 3 and
dy
dt

= 7.

Find dz
dt at me t0.

S The Mul variable Chain Rule states that

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= 5(3) + (−2)(7)
= 1.

By knowing certain rates–of–change informa on about the surface and about
the path of the par cle in the x-y plane, we can determine how quickly the ob-
ject is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 12.5.3 Applying the Mul variable Chain Rule
Consider the surface z = x2 + y2 − xy, a paraboloid, on which a par cle moves
with x and y coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0,
and find where the par cle reaches its maximum/minimum z-values.

S It is straigh orward to compute

fx(x, y) = 2x− y, fy(x, y) = 2y− x,
dx
dt

= − sin t,
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

Notes:
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When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the par cle is moving down, as shown in Figure 12.5.2.

To find where z-value is maximized/minimized on the par cle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t
0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First Deriva ve Test to find that on [0, 2π], z has reaches its
absolute minimum at t = π/4 and 5π/4; it reaches its absolute maximum at
t = 3π/4 and 7π/4, as shown in Figure 12.5.2.

We can extend the Chain Rule to include the situa on where z is a func on
of more than one variable, and each of these variables is also a func on of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
func ons of two variables, say s and t.

Theorem 12.5.2 Mul variable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differen able func ons. Then z is a func on of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm)be a differen able func onofm variables,
where each of the xi is a differen able func on of the variables
t1, t2, . . . , tn. Then z is a func on of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Notes:
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Example 12.5.4 Using the Mul varible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

S Following Theorem12.5.2, we compute the following par al
deriva ves:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus
∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z
∂s

= 100 and
∂z
∂t

= −46.

Example 12.5.5 Using the Mul varible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

S Following Theorem12.5.2, we compute the following par al
deriva ves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w
∂t

= π(2π) + π2 = 3π2.

Implicit Differen a on

We studied finding dy
dx when y is given as an implicit func on of x in detail

in Sec on 2.6. We find here that the Mul variable Chain Rule gives a simpler
method of finding dy

dx .

Notes:
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For instance, consider the implicit func on x2y−xy3 = 3.We learned to use
the following steps to find dy

dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx

− y3 − 3xy2
dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (12.2)

Instead of using this method, consider z = x2y − xy3. The implicit func on
above describes the level curve z = 3. Considering x and y as func ons of x, the
Mul variable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (12.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
Equa on (12.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our solu on for dy
dx in Equa on (12.2) is just the par al deriva ve

of z with respect to x, divided by the par al deriva ve of z with respect to y, all
mul plied by (−1).

We state the above as a theorem.

Theorem 12.5.3 Implicit Differen a on

Let f be a differen able func on of x and y, where f(x, y) = c defines y
as an implicit func on of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

We prac ce using Theorem 12.5.3 by applying it to a problem from Sec on
2.6.

Notes:
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Example 12.5.6 Implicit Differen a on
Given the implicitly defined func on sin(x2y2)+y3 = x+y, find y ′. Note: this is
the same problem as given in Example 2.6.4 of Sec on 2.6, where the solu on
took about a full page to find.

S Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
func on above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem
12.5.3. We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2) + 3y2 − 1,

so
dy
dx

= − 2xy2 cos(x2y2)− 1
2x2y cos(x2y2) + 3y2 − 1

,

which matches our solu on from Example 2.6.4.

In Sec on 12.3we learned howpar al deriva ves give certain instantaneous
rate of change informa on about a func on z = f(x, y). In that sec on, wemea-
sured the rate of change of f by holding one variable constant and le ng the
other vary (such as, holding y constant and le ng x vary gives fx). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direc on that is not parallel to a coordinate
axis? Can we s ll measure instantaneous rates of change? Yes; we find out
how in the next sec on. In doing so, we’ll see how the Mul variable Chain Rule
informs our understanding of these direc onal deriva ves.

Notes:
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Exercises 12.5
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The Mul variable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can subs -
tute and write z as an explicit func on of t.
T/F: Using the Mul variable Chain Rule to find dz

dt is some-
mes easier than first subs tu ng and then taking the

deriva ve.

5. T/F: TheMul variable Chain Rule is only useful when all the
related func ons are known explicitly.

6. The Mul variable Chain Rule allows us to compute implicit
deriva ves easily by just compu ng two deriva-
ves.

Problems
In Exercises 7 – 12, func ons z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the Mul variable Chain Rule to compute dz
dt

.

(b) Evaluate dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1

8. z = x2 − y2, x = t, y = t2 − 1; t = 1

9. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3; t = π/4

10. z = x
y2 + 1

, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4

12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13 – 18, func ons z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = 0. Note:
these are the same surfaces/curves as found in Exercises 7 –
12.

13. z = 3x+ 4y, x = t2, y = 2t

14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z = x
y2 + 1

, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19 – 22, func ons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the Mul variable Chain Rule to compute ∂z
∂s

and
∂z
∂t

.

(b) Evaluate ∂z
∂s

and ∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+ π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23 – 26, find dy
dx

using Implicit Differen a on and
Theorem 12.5.3.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25. x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1

In Exercises 27 – 30, find dz
dt

, or ∂z
∂s

and ∂z
∂t

, using the supplied
informa on.

27. ∂z
∂x

= 2, ∂z
∂y

= 1, dx
dt

= 4, dy
dt

= −5

28. ∂z
∂x

= 1, ∂z
∂y

= −3, dx
dt

= 6, dy
dt

= 2

29. ∂z
∂x

= −4, ∂z
∂y

= 9,

∂x
∂s

= 5, ∂x
∂t

= 7, ∂y
∂s

= −2, ∂y
∂t

= 6

30. ∂z
∂x

= 2, ∂z
∂y

= 1,

∂x
∂s

= −2, ∂x
∂t

= 3, ∂y
∂s

= 2, ∂y
∂t

= −1

728
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12.6 Direc onal Deriva ves
Par al deriva ves give us an understanding of how a surface changes when we
move in the x and y direc ons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Par al deriva ves
alone cannot measure this. This sec on inves gates direc onal deriva ves,
which do measure this rate of change.

We begin with a defini on.

Defini on 12.6.1 Direc onal Deriva ves

Let z = f(x, y) be con nuous on a set S and let u⃗ = ⟨u1, u2⟩ be a unit
vector. For all points (x, y), the direc onal deriva ve of f at (x, y) in the
direc on of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The par al deriva ves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a par cular unit vector u⃗. This may look a bit in mida ng but in reality it is
not too difficult to deal with; it o en just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 12.6.1 Direc onal Deriva ves

Let z = f(x, y) be differen able on a set S containing (x0, y0), and let
u⃗ = ⟨u1, u2⟩ be a unit vector. The direc onal deriva ve of f at (x0, y0) in
the direc on of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Example 12.6.1 Compu ng direc onal deriva ves
Let z = 14− x2 − y2 and let P = (1, 2). Find the direc onal deriva ve of f, at P,
in the following direc ons:

1. toward the point Q = (3, 4),

2. in the direc on of ⟨2,−1⟩, and

Notes:
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Figure 12.6.1: Understanding the direc-
onal deriva ve in Example 12.6.1.

Chapter 12 Func ons of Several Variables

3. toward the origin.

S The surface is plo ed in Figure 12.6.1, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
in this direc on is u⃗1 =

⟨
1/

√
2, 1/

√
2
⟩
. Thus the direc onal deriva ve of

f at (1, 2) in the direc on of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direc on of u⃗1 (which points toward the point Q) is
about−4.24. Moving in this direc on moves one steeply downward.

2. We seek the direc onal deriva ve in the direc on of ⟨2,−1⟩. The unit
vector in this direc on is u⃗2 =

⟨
2/

√
5,−1/

√
5
⟩
. Thus the direc onal

deriva ve of f at (1, 2) in the direc on of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

Star ng on the surface of f at (1, 2) andmoving in the direc on of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direc on towalk that does not
change the eleva on. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direc ons of “no eleva on change” is important.

3. At P = (1, 2), the direc on towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direc on is u⃗3 =

⟨
−1/

√
5,−2/

√
5
⟩
.

The direc onal deriva ve of f at P in the direc on of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
ini al slope of about 4.47.

As we study direc onal deriva ves, it will help to make an important con-
nec on between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direc on and
the par al deriva ves fx and fy. We start with a defini on and follow this with a
Key Idea.
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Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathema cs the
expression∇f is pronounced “del f.”

12.6 Direc onal Deriva ves

Defini on 12.6.2 Gradient

Let z = f(x, y) be differen able on a set S that contains the point (x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

To simplify nota on, we o en express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute direc onal deriva ves in terms of a dot product.

Key Idea 12.6.1 The Gradient and Direc onal Deriva ves

The direc onal deriva ve of z = f(x, y) in the direc on of u⃗ is

Du⃗ f = ∇f · u⃗.

The proper es of the dot product previously studied allow us to inves gate
the proper es of the direc onal deriva ve. Given that the direc onal deriva ve
gives the instantaneous rate of change of z when moving in the direc on of u⃗,
three ques ons naturally arise:

1. In what direc on(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direc on(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direc on(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = || ∇f || || u⃗ || cos θ = || ∇f || cos θ, (12.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, || u⃗ || =
1.) This equa on allows us to answer the three ques ons stated previously.

1. Equa on 12.4 is maximized when cos θ = 1, i.e., when the gradient and u⃗
have the same direc on. We conclude the gradient points in the direc on
of greatest z change.

Notes:
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2. Equa on 12.4 is minimized when cos θ = −1, i.e., when the gradient and
u⃗ have opposite direc ons. We conclude the gradient points in the oppo-
site direc on of the least z change.

3. Equa on 12.4 is 0 when cos θ = 0, i.e., when the gradient and u⃗ are or-
thogonal to each other. We conclude the gradient is orthogonal to direc-
ons of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direc on that leads you steepest uphill. Then the direc on that
leads steepest downhill is directly behind you, and side–stepping either le or
right (i.e., moving perpendicularly to the direc on you face) does not change
your eleva on at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a func on do not change. Let a surface z = f(x, y) be given, and let’s
represent one such level curve as a vector–valued func on, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t, for

some constant c.
Since f is constant for all t, df

dt = 0. By the Mul variable Chain Rule, we also
know

df
dt

= fx(x, y)x ′(t) + fy(x, y)y ′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x ′(t), y ′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states ∇f · r⃗ ′(t) = 0: the gradient is orthogonal to the
deriva ve of r⃗, meaning the gradient is orthogonal to the graph of r⃗. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.

Theorem 12.6.2 The Gradient and Direc onal Deriva ves

Let z = f(x, y) be differen able on a set S with gradient ∇f, let P =
(x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is || ∇f(x0, y0) ||; the direc on
of maximal z increase is∇f(x0, y0).

2. Theminimum value of Du⃗ f(x0, y0) is−|| ∇f(x0, y0) ||; the direc on
of minimal z increase is−∇f(x0, y0).

3. At P, ∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0, f(x0, y0)

)
.

Notes:
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(a)

(b)

Figure 12.6.2: Graphing the surface and
important direc ons in Example 12.6.2.

Figure 12.6.3: At the top of a paraboloid,
all direc onal deriva ves are 0.

12.6 Direc onal Deriva ves

Example 12.6.2 Finding direc ons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the direc ons of max-
imal/minimal increase, and find a direc on where the instantaneous rate of z
change is 0.

S We begin by finding the gradient. fx = cos x cos y and fy =
− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.

Thus the direc on of maximal increase is ⟨1/4,−3/4⟩. In this direc on, the
instantaneous rate of z change is || ⟨1/4,−3/4⟩ || =

√
10/4 ≈ 0.79.

Figure 12.6.2 shows the surface plo ed from two different perspec ves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direc on of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ||∇f ||⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ||∇f ||, hence we can think of it as a vector with
slope of ||∇f || in the direc on of∇f, helping us visualize how “steep” the surface
is in its steepest direc on.

The direc on ofminimal increase is ⟨−1/4, 3/4⟩; in this direc on the instan-
taneous rate of z change is−

√
10/4 ≈ −0.79.

Any direc on orthogonal to ∇f is a direc on of no z change. We have two
choices: the direc on of ⟨3, 1⟩ and the direc on of ⟨−3,−1⟩. The unit vector
in the direc on of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direc on of no z-change, this vector is tangent to the
level curve at P.

Example 12.6.3 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the direc onal deriva ve of f in any
direc on at P = (1, 1).

S Wefind∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 12.6.2, this is the direc on of maximal increase.
However, ⟨0, 0⟩ is direc onless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 12.6.3 helps us understand what this means. We can see that P lies
at the top of a paraboloid. In all direc ons, the instantaneous rate of change is
0.

So what is the direc on of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all direc onal deriva ves are 0.

Notes:
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The fact that the gradient of a surface always points in the direc on of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 12.6.4 The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

S Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued func on de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direc on; therefore, at any
point on its path, it will be moving in the direc on of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x ′(t), y ′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x ′(t) as dx
dt and y ′(t) as dy

dt . Then

c∇f = ⟨x ′(t), y ′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies
−2cx =

dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit rela onship between x and y, we can integrate both sides with
respect to t. Recall from our study of differen als that

dx
dt

dt = dx. Thus:∫
1
2x

dx
dt

dt =
∫

1
4y

dy
dt

dt∫
1
2x

dx =
∫

1
4y

dy

1
2
ln |x| = 1

4
ln |y|+ C1

2 ln |x| = ln |y|+ C1
ln |x2| = ln |y|+ C1

Notes:
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Figure 12.6.4: A graph of the surface de-
scribed in Example 12.6.4 along with the
path in the x-y planewith the level curves.

12.6 Direc onal Deriva ves

Now raise both sides as a power of e:

x2 = eln |y|+C1

x2 = eln |y|eC1 (Note that eC1 is just a constant.)
x2 = yC2

1
C2

x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.

As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1
4

⇒ C =
1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.6.4(a). In part (b) of the figure,
the level curves of the surface are plo ed in the x-y plane, along with the curve
y = x2/4. No ce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves.

Func ons of Three Variables

The concepts of direc onal deriva ves and the gradient are easily extended
to three (and more) variables. We combine the concepts behind Defini ons
12.6.1 and 12.6.2 and Theorem 12.6.1 into one set of defini ons.

Defini on 12.6.3 Direc onal Deriva ves and Gradient with Three
Variables

Let w = F(x, y, z) be differen able on a set D and let u⃗ be a unit vector
in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The direc onal deriva ve of F in the direc on of u⃗ is

Du⃗ F = ∇F · u⃗.

The same proper es of the gradient given in Theorem 12.6.2, when f is a

Notes:
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func on of two variables, hold for F, a func on of three variables.

Theorem 12.6.3 The Gradient and Direc onal Deriva ves with
Three Variables

Let w = F(x, y, z) be differen able on a set D, let∇F be the gradient of
F, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F is || ∇F ||, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direc on of maximal increase is
∇F.

2. The minimum value of Du⃗ F is −|| ∇F ||, obtained when the angle
between ∇F and u⃗ is π, i.e., the direc on of minimal increase is
−∇F.

3. Du⃗ F = 0 when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

Example 12.6.5 Finding direc onal deriva ves with func ons of three
variables

If a point source S is radia ng energy, the intensity I at a given point P in space
is inversely propor onal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the direc onal deriva ve of I at P in the di-
rec on of u⃗, and find the direc on of greatest intensity increase at P.

S Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
par al deriva ve requires a simple applica on of the Quo ent Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

≈ −0.0078.

The direc onal deriva ve tells us that moving in the direc on of u⃗ from P re-
sults in a decrease in intensity of about −0.008 units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

Notes:

736



12.6 Direc onal Deriva ves

The gradient gives the direc on of greatest intensity increase. No ce that

∇I(2, 5, 3) =
⟨

−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is poin ng in the direc on of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intui ve sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The direc onal deriva ve allows us to find the instantaneous rate of z change
in any direc on at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next sec on.
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Exercises 12.6
Terms and Concepts
1. What is the difference between a direc onal deriva ve and

a par al deriva ve?

2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direc on of increase.

6. It is generally more informa ve to view the direc onal
deriva ve not as the result of a limit, but rather as the result
of a product.

Problems
In Exercises 7 – 12, a func on z = f(x, y) is given. Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) = 1
x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

In Exercises 13 – 18, a func on z = f(x, y) and a point P are
given. Find the direc onal deriva ve of f in the indicated di-
rec ons. Note: these are the same func ons as in Exercises
7 through 12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direc on of v⃗ = ⟨3, 4⟩
(b) In the direc on toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direc on of v⃗ = ⟨1, 1⟩.
(b) In the direc on toward the point Q = (0, 0).

15. f(x, y) = 1
x2 + y2 + 1

, P = (1, 1).

(a) In the direc on of v⃗ = ⟨1,−1⟩.
(b) In the direc on toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direc on of v⃗ = ⟨3, 1⟩ .

(b) In the direc on toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direc on of v⃗ = ⟨−2, 5⟩

(b) In the direc on toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direc on of v⃗ = ⟨3, 3⟩

(b) In the direc on toward the point Q = (1, 2).

In Exercises 19 – 24, a func on z = f(x, y) and a point P are
given.

(a) Find the direc on of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direc on of minimal increase of f at P.

(d) Give a direc on u⃗ such that D⃗u f = 0 at P.

Note: these are the same func ons and points as in Exercises
13 through 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) = 1

x2 + y2 + 1
, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

In Exercises 25 – 28, a func on w = F(x, y, z), a vector v⃗ and
a point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P, where u⃗ is the unit vector in the direc on
of v⃗.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) = 2
x2 + y2 + z2

, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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Figure 12.7.1: Showing various lines tan-
gent to a surface.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

12.7 Tangent Lines, Normal Lines, and Tangent Planes
Deriva ves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with func ons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intui on of being “tangent” to the surface.

In Figure 12.7.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next defini on formally defines what it means to be “tangent
to a surface.”

Defini on 12.7.1 Direc onal Tangent Line

Let z = f(x, y) be differen able on a set S containing (x0, y0) and let u⃗ =
⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direc on of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direc on of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direc on of u⃗ at (x0, y0).

It is instruc ve to consider each of three direc ons given in the defini on in
terms of “slope.” The direc on of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direc on and the “rise” is fx(x0, y0) units in the z-direc on. Note
how the slope is just the par al deriva ve with respect to x. A similar statement
can be made for ℓy. The direc on of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direc on (where u⃗ is a unit vector) and the “rise” is the direc onal
deriva ve of z in that direc on.

Defini on 12.7.1 leads to the following parametric equa ons of direc onal
tangent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Notes:
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(a)

(b)

Figure 12.7.2: A surface and direc onal
tangent lines in Example 12.7.1.

Chapter 12 Func ons of Several Variables

Example 12.7.1 Finding direc onal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
direc ons and also in the direc on of v⃗ = ⟨−1, 1⟩ .

S The par al deriva ves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equa ons of the line tangent to f at (π/2, π/2) in the

direc ons of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 12.7.2(a). To find the equa-
on of the tangent line in the direc on of v⃗, we first find the unit vector in the

direc on of v⃗: u⃗ =
⟨
−1/

√
2, 1/

√
2
⟩
. The direc onal deriva ve at (π/2, π, 2) in

the direc on of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the direc onal tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direc on of v⃗ is shown in Figure 12.7.2(b)
along with ℓ⃗u(t).

Example 12.7.2 Finding direc onal tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equa ons of all direc onal tangent lines to
f at (1, 1).

S First note that f(1, 1) = 2. We need to compute direc onal
deriva ves, so we need∇f. We begin by compu ng par al deriva ves.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direc onal
deriva ve of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notma er

Notes:
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Figure 12.7.3: Graphing f in Example
12.7.2.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

what direc on we choose; the direc onal deriva ve is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 12.7.3 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a rela ve maximum at this point, hence its tangent line will have
a slope of 0. The following sec on inves gates the points on surfaces where all
tangent lines have a slope of 0.

Normal Lines

When dealing with a func on y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to func ons of two variables.

Let z = f(x, y) be a differen able func on of two variables. By Defini on
12.7.1, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and
ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direc ons
through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point

and orthogonal to these direc ons would be orthogonal, or normal, to the sur-
face. We can use this direc on to create a normal line.

The direc on of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
on is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple

form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .

It is o en more convenient to refer to the opposite of this direc on, namely
⟨fx, fy,−1⟩. This leads to a defini on.

Notes:
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Figure 12.7.4: Graphing a surface with a
normal line from Example 12.7.3.

Chapter 12 Func ons of Several Variables

Defini on 12.7.2 Normal Line

Let z = f(x, y) be differen able on a set S containing (x0, y0) where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direc on parallel to n⃗ is the normal line
to f at P.

Thus the parametric equa ons of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

Example 12.7.3 Finding a normal line
Find the equa on of the normal line to z = −x2 − y2 + 2 at (0, 1).

S We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direc on of the normal line, follow-
ing Defini on 12.7.2, to be n⃗ = ⟨0,−2,−1⟩. The line with this direc on going
through the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 − y2 + 2, along with the found normal line, is graphed
in Figure 12.7.4.

The direc on of the normal line has many uses, one of which is the defini-
on of the tangent plane which we define shortly. Another use is in measuring

distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that #  ‰PQ is parallel to the normal line to f at P.

Notes:
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Example 12.7.4 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

S This surface is used in Example 12.7.2, so we know that at
(x, y), the direc on of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on
the surfacewill have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c #  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equa on, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two frac ons imply x = y, and so the last frac on can be rewri en as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)
4x3 = 2− x

4x3 + x− 2 = 0.

This last equa on is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

|| #  ‰PQ || =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a par cular distance from a surface at a given point P on the
surface.

Notes:
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Figure 12.7.5: Graphing the surface in Ex-
ample 12.7.5 along with points 4 units
from the surface.

Chapter 12 Func ons of Several Variables

Example 12.7.5 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that are 4 units from the surface of f at P. That is, find Q such that || #  ‰PQ || = 4
and #  ‰PQ is orthogonal to f at P.

S We begin by finding par al deriva ves:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direc on of n⃗:

u⃗ =
n⃗

|| n⃗ ||
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be wri en as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametriza on of the line is that le ng t = t0 gives a
point on the line that is |t0| units from P. (This is because the direc on of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

width=150pt The surface is graphed along with points P, Q1, Q2 and a por on of
the normal line to f at P.

Tangent Planes

We can use the direc on of the normal line to define a plane. With a =
fx(x0, y0), b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩

is orthogonal to f at P. The plane through P with normal vector n⃗ is therefore
tangent to f at P.

Notes:
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Figure 12.7.6: Graphing a surface with
tangent plane from Example 12.7.6.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

Defini on 12.7.3 Tangent Plane

Let z = f(x, y) be differen able on a set S containing (x0, y0), where
a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.

Example 12.7.6 Finding tangent planes
Find the equa on of the tangent plane to z = −x2 − y2 + 2 at (0, 1).

S Note that this is the same surface and point used in Exam-
ple 12.7.3. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the
equa on of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2−y2+2 and tangent plane are graphed in Figure 12.7.6.

Example 12.7.7 Using the tangent plane to approximate func on values
The point (3,−1, 4) lies on the surface of an unknown differen able func on f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equa on of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

S Knowing the par al deriva ves at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equa on
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approxima ons of curves near their point
of intersec on, tangent planes provide excellent approxima ons of surfaces near
their point of intersec on. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approxima on. Compare the right hand expres-
sion for z in Equa on (12.5) to the total differen al:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Notes:
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). Asmen onedwhen studying the total differen al, it is not uncommon
to know par al deriva ve informa on about a unknown func on, and tangent
planes are used to give accurate approxima ons of the func on.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this sec on so far give a straigh orward method
of finding equa ons of normal lines and tangent planes for surfaces with explicit
equa ons of the form z = f(x, y). However, they do not handle implicit equa-
ons well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find

vectors orthogonal to these surfaces based on the gradient.

Defini on 12.7.4 Gradient

Let w = F(x, y, z) be differen able on a set D that contains the point
(x0, y0, z0).

1. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0). Then F(x, y, z) =
c is a level surface that contains the point (x0, y0, z0). The following theorem
states that∇F(x0, y0, z0) is orthogonal to this level surface.

Theorem 12.7.1 The Gradient and Level Surfaces

Let w = F(x, y, z) be differen able on a set D containing (x0, y0, z0) with
gradient∇F, where F(x0, y0, z0) = c.

The vector∇F(x0, y0, z0) is orthogonal to the level surface F(x, y, z) = c
at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direc on can be used to find tangent planes and normal lines.

Notes:
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Figure 12.7.7: An ellipsoid and its tangent
plane at a point.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

Example 12.7.8 Using the gradient to find a tangent plane

Find the equa on of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

S We consider the equa on of the ellipsoid as a level surface
of a func on F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equa on of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 12.7.7.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approxima ons. Normal lines also
have many uses. In this sec on we focused on using them to measure distances
from a surface. Another interes ng applica on is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next sec on inves gates another use of par al deriva ves: determining
rela ve extrema. When dealing with func ons of the form y = f(x), we found
rela ve extrema by finding x where f ′(x) = 0. We can start finding rela ve
extrema of z = f(x, y) by se ng fx and fy to 0, but it turns out that there is more
to consider.

Notes:
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Exercises 12.7
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differen able at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to ℓx and ℓy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direc onal
tangent lines to a surface at a point.

Problems
In Exercises 5 – 8, a func on z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equa ons of the following
direc onal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direc on of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

In Exercises 9 – 12, a func on z = f(x, y) and a point P are
given. Find the equa on of the normal line to f at P. Note:
these are the same func ons as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, P = (2, 3).

10. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 13 – 16, a func on z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface
f at P. Note: these are the same func ons as in Exercises 5 –
8.

13. f(x, y) = 2x2y− 4xy2, P = (2, 3).

14. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 17 – 20, a func on z = f(x, y) and a point P are
given. Find the equa on of the tangent plane to f at P. Note:
these are the same func ons as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, P = (2, 3).

18. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 21 – 24, an implicitly defined func on of x, y and
z is given along with a point P that lies on the surface. Use
the gradient∇F to:

(a) find the equa on of the normal line to the surface at
P, and

(b) find the equa on of the plane tangent to the surface
at P.

21. x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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12.8 Extreme Values

Given a func on z = f(x, y), we are o en interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost func on, we
would likely want to know what (x, y) values minimize the cost. If z represents
the ra o of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following defini on.

Defini on 12.8.1 Rela ve and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute maxi-
mum at P
If f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an absolute mini-
mum at P.

2. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all points (x, y) that are in both D and S, then f has a rela ve
maximum at P.
If there is an open disk D containing P such that f(x0, y0) ≤ f(x, y)
for all points (x, y) that are in both D and S, then f has a rela ve
minimum at P.

3. If f has an absolute maximum or minimum at P, then f has an ab-
solute extrema at P.
If f has a rela ve maximum or minimum at P, then f has a rela ve
extrema at P.

If f has a rela ve or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a rela ve or absolute maximum at P.
Recalling what we learned in Sec on 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since direc onal deriva ves are computed
using fx and fy, we are led to the following defini on and theorem.

Defini on 12.8.2 Cri cal Point

Let z = f(x, y) be con nuous on a set S. A cri cal point P = (x0, y0) of f
is a point in S such that, at P,

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Notes:
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Figure 12.8.1: The surface in Example
12.8.1 with its absolute minimum indi-
cated.

Figure 12.8.2: The surface in Example
12.8.2 with its absolute maximum indi-
cated.
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Theorem 12.8.1 Cri cal Points and Rela ve Extrema

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a rela ve extrema at P, then P is a cri cal point of f.

Therefore, to find rela ve extrema, we find the cri cal points of f and de-
termine which correspond to rela ve maxima, rela ve minima, or neither. The
following examples demonstrate this process.

Example 12.8.1 Finding cri cal points and rela ve extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the rela ve extrema of f.

S We start by compu ng the par al deriva ves of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A cri cal point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equa ons:

2x− y− 1 = 0 and − x+ 2y = 0.

This solu on to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

The graph in Figure 12.8.1 shows f along with this cri cal point. It is clear
from the graph that this is a rela veminimum; further considera on of the func-
on shows that this is actually the absolute minimum.

Example 12.8.2 Finding cri cal points and rela ve extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the rela ve extrema of f.

S We start by compu ng the par al deriva ves of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 & y ̸= 0, and that fy = 0 when y = 0 & x ̸= 0.
At (0, 0), both fx and fy are not 0, but rather undefined. The point (0, 0) is s ll a
cri cal point, though, because the par al deriva ves are undefined. This is the
only cri cal point of f.

The surface of f is graphed in Figure 12.8.2 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.
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Figure 12.8.3: The surface in Example
12.8.3 with both cri cal points marked.

12.8 Extreme Values

In each of the previous two examples, we found a cri cal point of f and then
determinedwhether or not it was a rela ve (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a cri cal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 12.8.3 Finding cri cal points and rela ve extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the rela ve extrema of f.

S Once again we start by finding the par al deriva ves of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Se ng each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.

We have two cri cal points: (−1, 2) and (1, 2). To determine if they correspond
to a rela ve maximum or minimum, we consider the graph of f in Figure 12.8.3.

The cri cal point (−1, 2) clearly corresponds to a rela ve maximum. How-
ever, the cri cal point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interes ng characteris c.

If one walks parallel to the y-axis towards this cri cal point, then this point
becomes a rela vemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a rela ve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
defini on follows.

Defini on 12.8.3 Saddle Point

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at P. We
say P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all direc ons is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.
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Before Example 12.8.3 we men oned the need for a test to differen ate be-
tween rela ve maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second par al deriva ves
of f.

Recall that with single variable func ons, such as y = f(x), if f ′′(c) > 0,
then if f is concave up at c, and if f ′(c) = 0, then f has a rela ve minimum at
x = c. (We called this the Second Deriva ve Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direc on you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ rela ve minimum
fxx and fyy < 0 ⇒ rela ve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. Func ons f exist where fxx and fyy are both
posi ve but a saddle point s ll exists. In such a case, while the concavity in the
x-direc on is up (i.e., fxx > 0) and the concavity in the y-direc on is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-direc ons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when con nuous (refer back to Theorem 12.3.1), we can rewrite this as D =
fxxfyy − f 2xy. D can be used to test whether the concavity at a point changes
depending on direc on. If D > 0, the concavity does not switch (i.e., at that
point, the graph is concave up or down in all direc ons). If D < 0, the concavity
does switch. If D = 0, our test fails to determine whether concavity switches or
not. We state the use of D in the following theorem.

Theorem 12.8.2 Second Deriva ve Test

Let R be an open set on which a func on z = f(x, y) and all its first and
second par al deriva ves are defined, let P = (x0, y0) be a cri cal point
of f in R, and let

D = fxx(x0, y0)fyy(x0, y0)− f 2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then f has a rela ve minimum at P.

2. If D > 0 and fxx(x0, y0) < 0, then f has a rela ve maximum at P.

3. If D < 0, then f has a saddle point at P.

4. If D = 0, the test is inconclusive.
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We first prac ce using this test with the func on in the previous example,
where we visually determined we had a rela ve maximum and a saddle point.

Example 12.8.4 Using the Second Deriva ve Test
Let f(x, y) = x3−3x−y2+4y as in Example 12.8.3. Determinewhether the func-
on has a rela ve minimum, maximum, or saddle point at each cri cal point.

S We determined previously that the cri cal points of f are
(−1, 2) and (1, 2). To use the Second Deriva ve Test, we must find the second
par al deriva ves of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

ve Test, f has a rela ve maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second Deriva ve Test states that f has a

saddle point at (1, 2).
The Second Deriva ve Test confirmed what we determined visually.

Example 12.8.5 Using the Second Deriva ve Test
Find the rela ve extrema of f(x, y) = x2y+ y2 + xy.

S We start by finding the first and second par al deriva ves of
f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.
We find the cri cal points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Se ng fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0
x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two cri cal points: (−1, 0)
and (0, 0).
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Figure 12.8.4: Graphing f from Example
12.8.5 and its rela ve extrema.

Chapter 12 Func ons of Several Variables

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0
x2 + 2y+ x = 0, and since x = −1/2, we have

1/4+ 2y− 1/2 = 0
y = 1/8.

Thus if x = −1/2, y = 1/8 giving the cri cal point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second Deriva ve Test to each cri cal

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a rela ve minimum.
Figure 12.8.4 shows a graph of f and the three cri cal points. Note how this

func on does not vary much near the cri cal points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or rela veminimum (or even
a cri cal point at all!). This is one reason why the Second Deriva ve Test is so
important to have.

Constrained Op miza on

When op mizing func ons of one variable such as y = f(x), we made use of
Theorem 3.1.1, the Extreme Value Theorem, that said that over a closed inter-
val I, a con nuous func on has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all cri cal points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to func ons of two variables. A
con nuous func on over a closed set also a ains a maximum and minimum
value (see the following theorem). We can find these values by evalua ng the
func on at the cri cal values in the set and over the boundary of the set. A er
formally sta ng this extreme value theorem, we give examples.

Theorem 12.8.3 Extreme Value Theorem

Let z = f(x, y) be a con nuous func on on a closed, bounded set S. Then
f has a maximum and minimum value on S.

Example 12.8.6 Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with ver ces (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.
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Figure 12.8.5: Plo ng the surface of f
along with the restricted domain S in Ex-
ample 12.8.6.

12.8 Extreme Values

S It can help to see a graph of f along with the set S. In Figure
12.8.5(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the por on of f enclosed by the
“triangle” on its surface.

We begin by finding the cri cal points of f. With fx = 2x and fy = −2y, we
find only one cri cal point, at (0, 0).

We now find the maximum and minimum values that f a ains along the
boundary of S, that is, along the edges of the triangle. In Figure 12.8.5(b) we
see the triangle sketched in the plane with the equa ons of the lines forming its
edges labeled.

Start with the bo om edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our func on reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its cri cal
points and at the endpoints.

The cri cal points of f1 are found by se ng its deriva ve equal to 0:

f ′1(x) = 0 ⇒ x = 0.

Evalua ng f1 at this cri cal point, and at the endpoints of [−1, 2] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2
f1(0) = 1 ⇒ f(0,−2) = 1
f1(2) = 5 ⇒ f(2,−2) = 5.

No ce how evalua ng f1 at a point is the same as evalua ng f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the le edge, along the line y = 3x+ 1, we subs tute 3x+ 1 in for y
in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its cri cal points and the endpoints of the interval. We find the
cri cal points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8.

Evaluate f2 at its cri cal point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2
f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 4 ⇒ f(0, 1) = 4.
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Figure 12.8.6: The surface of f along with
important points along the boundary of S
and the interior in Example 12.8.6.

Chapter 12 Func ons of Several Variables

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The cri cal points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this cri cal point and at the endpoints of the interval [0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4
f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the cri cal point of f, (0, 0). We find f(0, 0) = 5.
Wehave evaluated f at a total of 7 different places, all shown in Figure 12.8.6.

We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2,−0.8); the minimum is 1, found at (0,−2).

This por on of the text is en tled “Constrained Op miza on” because we
want to op mize a func on (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the func on can a ain. In
the previous example, we constrained ourselves by considering a func on only
within the boundary of a triangle. This was largely arbitrary; the func on and
the boundary were chosen just as an example, with no real “meaning” behind
the func on or the chosen constraint.

However, solving constrainedop miza onproblems is a very important topic
in appliedmathema cs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 12.8.7 Constrained Op miza on
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

S Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then 2(w+ h) = 4w. The
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Figure 12.8.7: Graphing the volume of a
box with girth 4w and length ℓ, subject to
a size constraint.

12.8 Extreme Values

volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this volume
subject to the constraint 4w+ ℓ ≤ 130, or ℓ ≤ 130− 4w. (Common sense also
indicates that ℓ > 0,w > 0.)

We begin by finding the cri cal values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this cri cal point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(w, ℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the cri cal values of V1, we take the deriva ve and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12

≈ 21.67.

We found two cri cal values: when w = 0 and when w = 21.67. We again
ignore the w = 0 solu on; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19, 408in3.

The volume func on V(w, ℓ) is shown in Figure 12.8.7 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the func on. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of op miza on. In “the real
world,” we rou nely seek to make something be er. By expressing the some-
thing as a mathema cal func on, “making something be er” means “op mize
some func on.”

The techniques shownhere are only the beginning of an incredibly important
field. Many func ons that we seek to op mize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗ ” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.
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Exercises 12.8
Terms and Concepts
1. T/F: Theorem 12.8.1 states that if f has a cri cal point at P,

then f has a rela ve extrema at P.

2. T/F: A point P is a cri cal point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a cri cal point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained op miza on”
problem.

Problems
In Exercises 5 – 14, find the cri cal points of the given func-
on. Use the Second Deriva ve Test to determine if each crit-

ical point corresponds to a rela ve maximum, minimum, or
saddle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) = 1
x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) = 1
3
x3 − x+ 1

3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

In Exercises 15 – 18, find the absolute maximum and mini-
mum of the func on subject to the given constraint.

15. f(x, y) = x2 + y2 + y + 1, constrained to the triangle with
ver ces (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.
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13: M I
The previous chapter introduced mul variable func ons and we applied con-
cepts of differen al calculus to these func ons. We learned how we can view a
func on of two variables as a surface in space, and learned how par al deriva-
ves convey informa on about how the surface is changing in any direc on.
In this chapterwe apply techniques of integral calculus tomul variable func-

ons. In Chapter 5 we learned how the definite integral of a single variable func-
on gave us “area under the curve.” In this chapter we will see that integra on

applied to a mul variable func on gives us “volume under a surface.” And just
as we learned applica ons of integra on beyond finding areas, we will find ap-
plica ons of integra on in this chapter beyond finding volume.

13.1 Iterated Integrals and Area
In Chapter 12 we found that it was useful to differen ate func ons of several
variables with respect to one variable, while trea ng all the other variables as
constants or coefficients. We can integrate func ons of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
∫

fx(x, y) dx

=

∫
2xy dx

= x2y+ C.

Make a careful note about the constant of integra on, C. This “constant” is
something with a deriva ve of 0 with respect to x, so it could be any expres-
sion that contains only constants and func ons of y. For instance, if f(x, y) =
x2y+ sin y+ y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a func on
of y, we write:

f(x, y) =
∫

fx(x, y) dx = x2y+ C(y).

Using this process we can even evaluate definite integrals.

Example 13.1.1 Integra ng func ons of more than one variable

Evaluate the integral
∫ 2y

1
2xy dx.

S Wefind the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:∫ 2y

1
2xy dx = x2y

∣∣∣2y
1

= (2y)2y− (1)2y
= 4y3 − y.
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We can also integrate with respect to y. In general,∫ h2(y)

h1(y)
fx(x, y) dx = f(x, y)

∣∣∣h2(y)
h1(y)

= f
(
h2(y), y

)
− f
(
h1(y), y

)
,

and ∫ g2(x)

g1(x)
fy(x, y) dy = f(x, y)

∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f
(
x, g1(x)

)
.

Note that when integra ng with respect to x, the bounds are func ons of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a func on of y.
When integra ng with respect to y, the bounds are func ons of x (of the form
y = g1(x) and y = g2(x)) and the final result is a func on of x. Another example
will help us understand this.

Example 13.1.2 Integra ng func ons of more than one variable
Evaluate

∫ x

1

(
5x3y−3 + 6y2

)
dy.

S We consider x as staying constant and integratewith respect
to y: ∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5
2
x3x−2 + 2x3

)
−
(
−5
2
x3 + 2

)
=

9
2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a func on of x.

In the previous example, we integrated a func on with respect to y and
ended up with a func on of x. We can integrate this as well. This process is
known as iterated integra on, ormul ple integra on.

Example 13.1.3 Integra ng an integral

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx.

S We follow a standard “order of opera ons” and perform the
opera ons inside parentheses first (which is the integral evaluated in Example
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13.1.2.)∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx =
∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9
2
x3 − 5

2
x− 2

)
dx

=

(
9
8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89
8
.

Note how the bounds of x were x = 1 to x = 2 and the final result was a num-
ber.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we inves gate
these ques ons, we offer some defini ons.

Defini on 13.1.1 Iterated Integra on

Iterated integra on is the process of repeatedly integra ng the results
of previous integra ons. Integra ng one integral is denoted as follows.

Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
func ons of x and y, respec vely. Then:

1.
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)
f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy, x varies from h1(y) to h2(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = h1(y) and x = h2(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remember
that when se ng up and evalua ng such iterated integrals, we integrate “from
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Figure 13.1.2: Calcula ng the area of a
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curve to curve, then from point to point.”

We now begin to inves gate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 13.1.1. We learned in Sec on 7.1 that the area of R is given by

∫ b

a

(
g2(x)− g1(x)

)
dx.

We can view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)
1 dy =

∫ g2(x)

g1(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

∫ b

a

(
g2(x)− g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)
dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), as
shown in Figure 13.1.2. Using a process similar to that above, we have

the area of R =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

We state this formally in a theorem.

Notes:
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Figure 13.1.3: Calcula ng the area of a
rectangle with an iterated integral in Ex-
ample 13.1.4.

.....

y = 1

.

y
=

2x
−

5

.

y =
x

.

R

. 4. 5. 1. 2. 3.

1

.

2

.

3

.

4

.

5

.
x

.

y

Figure 13.1.4: Calcula ng the area of a tri-
angle with iterated integrals in Example
13.1.5.

13.1 Iterated Integrals and Area

Theorem 13.1.1 Area of a plane region

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are con nuous func ons on [a, b]. The area
A of R is

A =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are con nuous func ons on [c, d]. The area
A of R is

A =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

The following examples should help us understand this theorem.

Example 13.1.4 Area of a rectangle
Find the area A of the rectangle with corners (−1, 1) and (3, 3), as shown in
Figure 13.1.3.

S Mul ple integra on is obviously overkill in this situa on, but
we proceed to establish its use.

The region R is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1
1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1
2 dx = 2x

∣∣∣3
−1

= 8.

We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1
1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1
4 dy = 4y

∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interes ng to note
that this method works.

Example 13.1.5 Area of a triangle
Find the area A of the triangle with ver ces at (1, 1), (3, 1) and (5, 5), as shown
in Figure 13.1.4.

S The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y

Notes:
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Figure 13.1.5: Calcula ng the area of a
plane region with iterated integrals in Ex-
ample 13.1.6.
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to x = y+5
2 , while y is bounded by y = 1 to y = 5. (Recall that since x-values

increase from le to right, the le most curve, x = y, is the lower bound and the
rightmost curve, x = (y+ 5)/2, is the upper bound.) The area is

A =

∫ 5

1

∫ y+5
2

y
dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1
2
y+

5
2

)
dy

=

(
−1
4
y2 +

5
2
y
) ∣∣∣5

1

= 4.

We can also find the area by integra ng with respect to y first. In this situa-
on, though, we have two func ons that act as the lower bound for the region

R, y = 1 and y = 2x − 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1
1 dy dx +

∫ 5

3

∫ x

2x−5
1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2
= 4.

As expected, we get the same answer both ways.

Example 13.1.6 Area of a plane region
Find the area of the region enclosed by y = 2x and y = x2, as shown in Figure
13.1.5.

S Once again we’ll find the area of the region using both or-
ders of integra on.

Using dy dx:∫ 2

0

∫ 2x

x2
1 dy dx =

∫ 2

0
(2x− x2) dx =

(
x2 − 1

3
x3
)∣∣∣2

0
=

4
3
.

Notes:
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Figure 13.1.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 13.1.7.

13.1 Iterated Integrals and Area

Using dx dy:∫ 4

0

∫ √y

y/2
1 dx dy =

∫ 4

0
(
√
y− y/2) dy =

(
2
3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4
3
.

Changing Order of Integra on

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integra on. We
integrated using both orders of integra on to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
gra on from a different perspec ve. Instead of star ng with a region and cre-
a ng iterated integrals, we will start with an iterated integral and rewrite it in
the other integra on order. To do so, we’ll need to understand the region over
which we are integra ng.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 13.1.4), and so:∫ b

a

∫ d

c
1 dy dx =

∫ d

c

∫ b

a
1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integra ng over looks
like. From the sketch we can then rewrite the integral with the other order of
integra on.

Examples will help us develop this skill.

Example 13.1.7 Changing the order of integra on

Rewrite the iterated integral
∫ 6

0

∫ x/3

0
1 dy dxwith the order of integra on dx dy.

S We need to use the bounds of integra on to determine the
region we are integra ng over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0, y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 13.1.6 shows these curves, indica ng that R is
a triangle.

To change the order of integra on, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral as∫ 2

0

∫ 6

3y
1 dx dy.

Notes:
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mined by the bounds of integra on in Ex-
ample 13.1.8.
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Example 13.1.8 Changing the order of integra on

Change the order of integra on of
∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy.

S We sketch the region described by the bounds to help us
change the integra on order. x is bounded below and above (i.e., to the le and
right) by x = y2/4 and x = (y+ 4)/2 respec vely, and y is bounded between 0
and 4. Graphing the previous curves, we find the region R to be that shown in
Figure 13.1.7.

To change the order of integra on, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need two double integrals.
The upper bound for each is y = 2

√
x. Thus we have∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy =

∫ 2

0

∫ 2
√
x

0
1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4
1 dy dx.

This sec on has introduced a new concept, the iterated integral. We devel-
oped one applica on for iterated integra on: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next sec on we apply iterated integra on to solve problems we cur-
rently do not know how to handle. The “real” goal of this sec on was not to
learn a new way of compu ng area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following sec ons.

Notes:
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Exercises 13.1
Terms and Concepts

1. When integra ng fx(x, y) with respect to x, the constant of
integra on C is really which: C(x) or C(y)? What does this
mean?

2. Integra ng an integral is called .

3. When evalua ng an iterated integral, we integrate from
to , then from to .

4. One understanding of an iterated integral is that∫ b

a

∫ g2(x)

g1(x)
dy dx gives the of a plane region.

Problems
In Exercises 5 – 10, evaluate the integral and subsequent it-
erated integral.

5. (a)
∫ 5

2

(
6x2 + 4xy− 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy− 3y2

)
dy dx

6. (a)
∫ π

0

(
2x cos y+ sin x

)
dx

(b)
∫ π/2

0

∫ π

0

(
2x cos y+ sin x

)
dx dy

7. (a)
∫ x

1

(
x2y− y+ 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y− y+ 2

)
dy dx

8. (a)
∫ y2

y

(
x− y

)
dx

(b)
∫ 1

−1

∫ y2

y

(
x− y

)
dx dy

9. (a)
∫ y

0

(
cos x sin y

)
dx

(b)
∫ π

0

∫ y

0

(
cos x sin y

)
dx dy

10. (a)
∫ x

0

(
1

1+ x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1+ x2

)
dy dx

In Exercises 11 – 16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integra on dy dx
and dx dy, that give the area of R. Evaluate one of the iter-
ated integrals to find the area.
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In Exercises 17 – 22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integra on.

17.
∫ 2

−2

∫ 4−x2

0
dy dx

18.
∫ 1

0

∫ 5−5x2

5−5x
dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0
dx dy

20.
∫ 3

−3

∫ √
9−x2

−
√

9−x2
dy dx

21.
∫ 1

0

∫ √y

−√y
dx dy+

∫ 4

1

∫ √y

y−2
dx dy

22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2
dy dx
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Figure 13.2.1: Developing a method for
finding signed volume under a surface.

13.2 Double Integra on and Volume

13.2 Double Integra on and Volume
The definite integral of f over [a, b],

∫ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and le ng
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the region under the curve with width∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing all the rectangle’s areas gave an approxima on of the
definite integral, and Theorem 5.3.2 stated that∫ b

a
f(x) dx = lim

∥∆x∥→0

∑
f(ci)∆xi,

connec ng the area under the curve with sums of the areas of rectangles.

We use a similar approach in this sec on to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a con nuous func on defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a posi ve volume; space above f and
under the x-y planewill have a “nega ve” volume, similar to the no on of signed
area used before.)

We start by par oning R into n rectangular subregions as shown in Figure
13.2.1(a). For simplicity’s sake, we let all widths be ∆x and all heights be ∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approxima on. Arbitrarily number the rectangles 1 through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Figure
13.2.1(b). Note how this rectangular solid only approximates the true volume
under the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a be er approxima on we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a

Notes:
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Note: Recall that the integra on symbol
“
∫
” is an “elongated S,” represen ng the

word “sum.” We interpreted
∫ b
a f(x) dx as

“take the sum of the areas of rectangles
over the interval [a, b].” The double inte-
gral uses two integra on symbols to rep-
resent a “double sum.” When adding up
the volumes of rectangular solids over a
par on of a region R, as done in Figure
13.2.1, one could first add up the volumes
across each row (one type of sum), then
add these totals together (another sum),
as in

n∑
j=1

m∑
i=1

f(xi, yj)∆xi∆yj.

One can rewrite this as
n∑

j=1

(
m∑
i=1

f(xi, yj)∆xi

)
∆yj.

The summa on inside the parenthesis
indicates the sum of heights × widths,
which gives an area; mul plying these ar-
eas by the thickness ∆yj gives a volume.
The illustra on in Figure 13.2.2 relates to
this understanding.

Chapter 13 Mul ple Integra on

volume of f(xi, yi)∆Ai. Let ||∆A|| denote the length of the longest diagonal of all
rectangles in the subdivision of R; ||∆A|| → 0means each rectangle’s width and
height are both approaching 0. If f is a con nuous func on, as ||∆A|| shrinks

(and hence n → ∞) the summa on
n∑

i=1
f(xi, yi)∆Ai approximates the signed

volume be er and be er. This leads to a defini on.

Defini on 13.2.1 Double Integral, Signed Volume

Let z = f(x, y) be a con nuous func on defined over a closed, bounded
region R in the x-y plane. The signed volume V under f over R is denoted
by the double integral

V =

∫∫
R
f(x, y) dA.

Alternate nota ons for the double integral are∫∫
R
f(x, y) dA =

∫∫
R
f(x, y) dx dy =

∫∫
R
f(x, y) dy dx.

The defini on above does not state how to find the signed volume, though
the nota on offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

Theorem 13.2.1 Double Integrals and Signed Volume

Let z = f(x, y) be a con nuous func on defined over a closed , bounded
region R in the x-y plane. Then the signed volume V under f over R is

V =

∫∫
R
f(x, y) dA = lim

||∆A||→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The par on of the region R is not specified, so any par oning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very sa sfying way of compu ng volume, though. Our
experience has shown that evalua ng the limits of sums can be tedious. We
seek a more direct method.

Notes:
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Figure 13.2.2: Finding volume under a
surface by sweeping out a cross–sec onal
area.

13.2 Double Integra on and Volume

Recall Theorem 7.2.1 in Sec on 7.2. This stated that if A(x) gives the cross-
sec onal area of a solid at x, then

∫ b
a A(x) dx gave the volume of that solid over

[a, b].
Consider Figure 13.2.2, where a surface z = f(x, y) is drawn over a region R.

Fixing a par cular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
∫ g2(x)

g1(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integra on are func ons of x: the bounds depend
on the value of x.

As A(x) is a cross-sec onal area func on, we can find the signed volume V
under f by integra ng it:

V =

∫ b

a
A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedure where we started with y fixed, resul ng in an iter-
ated integral with the order of integra on dx dy. The following theorem states
that both methods give the same result, which is the value of the double inte-
gral. It is such an important theorem it has a name associated with it.

Theorem 13.2.2 Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a con nuous func on on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are con nuous func ons on [a, b], then∫∫

R
f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1
and h2 are con nuous func ons on [c, d], then∫∫

R
f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

Notes:
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Figure 13.2.3: Finding the signed volume
under a surface in Example 13.2.1.
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Note that once again the bounds of integra on follow the “curve to curve,
point to point” pa ern discussed in the previous sec on. In fact, one of the
main points of the previous sec on is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quan es, not just signed volume under
a surface.

Example 13.2.1 Evalua ng a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (3, 1) and (4, 2) pictured in Figure 13.2.3, using Fubini’s
Theorem and both orders of integra on.

S We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.

Using the order dy dx:∫∫
R

(
xy+ ey

)
dA =

∫ 4

3

∫ 2

1

(
xy+ ey

)
dy dx

=

∫ 4

3

([
1
2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3
2
x+ e2 − e

)
dx

=

(
3
4
x2 +

(
e2 − e

)
x
)∣∣∣∣4

3

=
21
4

+ e2 − e ≈ 9.92.

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy+ ey

)
dA =

∫ 2

1

∫ 4

3

(
xy+ ey

)
dx dy

=

∫ 2

1

([
1
2
x2y+ xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7
2
y+ ey

)
dy

=

(
7
4
y2 + ey

)∣∣∣∣2
1

=
21
4

+ e2 − e ≈ 9.92.

Both orders of integra on return the same result, as expected.

Notes:
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Figure 13.2.4: Finding the signed volume
under the surface in Example 13.2.2.

13.2 Double Integra on and Volume

Example 13.2.2 Evalua ng a double integral
Evaluate

∫∫
R

(
3xy− x2 − y2 + 6

)
dA, where R is the triangle bounded by x = 0,

y = 0 and x/2+ y = 1, as shown in Figure 13.2.4.

S While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not ma er which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 ≤
y ≤ 1− x/2, and the bounds on x go from “point to point,” i.e., 0 ≤ x ≤ 2.∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0
(3xy− x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3
2
xy2 − x2y− 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0
dx

=

∫ 2

0

(
11
12

x3 − 11
4
x2 − x+

17
3

)
dx

=

(
11
48

x4 − 11
12

x3 − 1
2
x2 +

17
3
x
)∣∣∣∣2

0

=
17
3

= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 ≤
x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0
(3xy− x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3
2
x2y− 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0
dy

=

∫ 1

0

(
32
3
y3 − 22y2 + 2y+

28
3

)
dy

=

(
8
3
y4 − 22

3
y3 + y2 +

28
3
y
)∣∣∣∣1

0

=
17
3

= 5.6.

We obtained the same result using both orders of integra on.

Note how in these two examples that the bounds of integra on depend only
on R; the bounds of integra on have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.
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Figure 13.2.5: R is the union of two
nonoverlapping regions, R1 and R2.

Figure 13.2.6: Finding the signed volume
under a surface in Example 13.2.3.
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Key Idea 13.2.1 Double Integra on Bounds

When evalua ng
∫∫

R f(x, y) dA using an iterated integral, the bounds of
integra on depend only on R. The surface f does not determine the
bounds of integra on.

Before doing another example, we give some proper es of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem 13.2.3 Proper es of Double Integrals

Let f and g be con nuous func ons over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R
c f(x, y) dA = c

∫∫
R
f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R
f(x, y) dA±

∫∫
R
g(x, y) dA

3. If f(x, y) ≥ 0 on R, then
∫∫

R
f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫
R
g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1
∪

R2
(see Figure 13.2.5). Then∫∫

R
f(x, y) dA =

∫∫
R1
f(x, y) dA+

∫∫
R2
f(x, y) dA.

Example 13.2.3 Evalua ng a double integral
Let f(x, y) = sin x cos y and R be the triangle with ver ces (−1, 0), (1, 0) and
(0, 1) (see Figure 13.2.6). Evaluate the double integral

∫∫
R f(x, y) dA.

S If we a empt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We would need to split the triangle into two regions
along the y-axis, then use Theorem 13.2.3, part 5.

Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤ x ≤
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Figure 13.2.7: Finding the volume under
the surface in Example 13.2.4.

13.2 Double Integra on and Volume

1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫
R
f(x, y) dA =

∫ 1

0

∫ 1−y

y−1
sin x cos y dx dy

=

∫ 1

0

(
− cos x cos y

)∣∣∣1−y

y−1
dy

=

∫ 1

0
cos y

(
− cos(1− y) + cos(y− 1)

)
dy.

Recall that the cosine func on is an even func on; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− 1) = cos(1− y). Thus
the integrand simplifies to 0, and we have∫∫

R
f(x, y) dA =

∫ 1

0
0 dy

= 0.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure 13.2.6), giving a final signed volume of 0.

Example 13.2.4 Evalua ng a double integral
Evaluate

∫∫
R(4−y) dA, where R is the region bounded by the parabolas y2 = 4x

and x2 = 4y, graphed in Figure 13.2.7.

S Graphing each curve can help us find their points of inter-
sec on. Solving analy cally, the second equa on tells us that y = x2/4. Sub-
s tu ng this value in for y in the first equa on gives us x4/16 = 4x. Solving for
x:

x4

16
= 4x

x4 − 64x = 0
x(x3 − 64) = 0

x = 0, 4.

Thus we’ve found analy cally what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 13.2.7.

We now choose an order of integra on: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.
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Figure 13.2.8: Determining the region R
determined by the bounds of integra on
in Example 13.2.5.
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Thus we have the following “curve to curve, point to point” bounds: y2/4 ≤
x ≤ 2√y, and 0 ≤ y ≤ 4.∫∫

R
(4− y) dA =

∫ 4

0

∫ 2√y

y2/4
(4− y) dx dy

=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y− y2

4
)(
4− y)

)
dy =

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176
15

= 11.73.

The signed volume under the surface f is about 11.7 cubic units.

In the previous sec on we prac ced changing the order of integra on of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integra ng in one order is really hard, if not impossible,
whereas integra ng with the other order is feasible.

Example 13.2.5 Changing the order of integra on

Rewrite the iterated integral
∫ 3

0

∫ 3

y
e−x2 dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

S Once again we make a sketch of the region over which we
are integra ng to facilitate changing the order. The bounds on x are from x = y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 13.2.8, enclosing the region R.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integra on are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated in-

tegral
∫ 3

0

∫ x

0
e−x2 dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegra ng dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

∫
e−x2 dx; we have stated before (see Sec on 5.5) that this

integral cannot be evaluated in terms of elementary func ons. We are stuck.
Changing the order of integra onmakes a big difference here. In the second
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Figure 13.2.9: Showing the surface f de-
fined in Example 13.2.5 over its region R.

13.2 Double Integra on and Volume

iterated integral, we are faced with
∫
e−x2 dy; integra ng with respect to y gives

us ye−x2 + C, and the first definite integral evaluates to∫ x

0
e−x2 dy = xe−x2 .

Thus ∫ 3

0

∫ x

0
e−x2 dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with subs tu on, giving a final answer of
1
2 (1− e−9) ≈ 0.5. Figure 13.2.9 shows the surface over R.

In short, evalua ng one iterated integral is impossible; the other iterated in-
tegral is rela vely simple.

Defini on 5.4.1 defines the average value of a single–variable func on f(x)
on the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

Defini on 13.2.2 The Average Value of f on R

Let z = f(x, y) be a con nuous func on defined over a closed, bounded
region R in the x-y plane. The average value of f on R is

average value of f on R =

∫∫
R
f(x, y) dA∫∫
R
dA

.

Example 13.2.6 Finding average value of a func on over a region R
Find the average value of f(x, y) = 4− y over the region R, which is bounded by
the parabolas y2 = 4x and x2 = 4y. Note: this is the same func on and region
as used in Example 13.2.4.

S In Example 13.2.4 we found∫∫
R
f(x, y) dA =

∫ 4

0

∫ 2√y

y2/4
(4− y) dx dy =

176
15

.
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Figure 13.2.10: Finding the average value
of f in Example 13.2.6.

Figure 13.2.11: Showing how an iterated
integral used to find area also finds a cer-
tain volume.
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We find the area of R by compu ng
∫∫

R dA:∫∫
R
dA =

∫ 4

0

∫ 2√y

y2/4
dx dy =

16
3
.

Dividing the volume under the surface by the area gives the average value:

average value of f on R =
176/15
16/3

=
11
5

= 2.2.

While the surface, as shown in Figure 13.2.10, covers z-values from z = 0 to
z = 4, the “average” z-value on R is 2.2.

The previous sec on introduced the iterated integral in the context of find-
ing the area of plane regions. This sec on has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
on. Given a region R in the plane, we computed

∫∫
R 1 dA; again, our under-

standing at the me was that we were finding the area of R. However, we can
now view the func on z = 1 as a surface, a flat surface with constant z-value
of 1. The double integral

∫∫
R 1 dA finds the volume, under z = 1, over R, as

shown in Figure 13.2.11. Basic geometry tells us that if the base of a general
right cylinder has area A, its volume is A · h, where h is the height. In our case,
the height is 1. We were “actually” compu ng the volume of a solid, though we
interpreted the number as an area.

The next sec on extends our abili es to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integra ng over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by conver ng
everything into polar coordinates.
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Exercises 13.2
Terms and Concepts

1. An integral can be interpreted as giving the signed area over
an interval; a double integral can be interpreted as giving
the signed over a region.

2. Explain why the following statement is false: “Fu-

bini’s Theorem states that
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =∫ b

a

∫ g2(y)

g1(y)
f(x, y) dx dy.”

3. Explain why if f(x, y) > 0 over a region R, then∫∫
R f(x, y) dA > 0.

4. If
∫∫

R f(x, y) dA =
∫∫

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems
In Exercises 5 – 10,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integra-
on.

5.
∫ 2

1

∫ 1

−1

(
x
y
+ 3
)

dx dy

6.
∫ π/2

−π/2

∫ π

0
(sin x cos y) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y+ 2

)
dy dx

8.
∫ 3

1

∫ 3

y

(
x2y− xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√

1−y
(x+ y+ 2) dx dy

10.
∫ 9

0

∫ √y

y/3

(
xy2
)
dx dy

In Exercises 11 – 18:

(a) Sketch the region R given by the problem.

(b) Set up the iterated integrals, in both orders, that eval-
uate the given double integral for the described region
R.

(c) Evaluate one of the iterated integrals to find the signed
volume under the surface z = f(x, y) over the region
R.

11.
∫∫

R
x2y dA, where R is bounded by y =

√
x and y = x2.

12.
∫∫

R
x2y dA, where R is bounded by y = 3

√
x and y = x3.

13.
∫∫

R
x2 − y2 dA, where R is the rectangle with corners

(−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R
yex dA, where R is bounded by x = 0, x = y2 and

y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, where R is bounded by x = 0, y = 0

and 3x+ 2y = 6.

16.
∫∫

R
ey dA, where R is bounded by y = ln x and

y = 1
e− 1

(x− 1).

17.
∫∫

R

(
x3y−x

)
dA, whereR is the half of the circle x2+y2 = 9

in the first and second quadrants.

18.
∫∫

R

(
4 − 3y

)
dA, where R is bounded by y = 0, y = x/e

and y = ln x.

In Exercises 19 – 22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integra on.
Change the order of integra on and evaluate the new iter-
ated integral.

19.
∫ 4

0

∫ 2

y/2
ex

2
dx dy

20.
∫ √

π/2

0

∫ √
π/2

x
cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y
x2 + y2

dx dy

22.
∫ 1

−1

∫ 2

1

x tan2 y
1+ ln y

dy dx

In Exercises 23 – 26, find the average value of f over the re-
gion R. No ce how these func ons and regions are related to
the iterated integrals given in Exercises 5 – 8.

23. f(x, y) = x
y
+ 3; R is the rectangle with opposite corners

(−1, 1) and (1, 2).

24. f(x, y) = sin x cos y; R is bounded by x = 0, x = π,
y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2; R is bounded by the lines y = 0,
y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2; R is bounded by y = x, y = 1 and
x = 3.
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Figure 13.3.1: Approxima ng a region R
with por ons of sectors of circles.
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13.3 Double Integra on with Polar Coordinates
We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates – that is,
with equa ons of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equa ons of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
∫∫

R f(x, y) dA. We interpret this in-
tegral as follows: over the region R, sum up lots of products of heights (given by
f(xi, yi)) and areas (given by∆Ai). That is, dA represents “a li le bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx – the area of a rectangle is simply length×width – a small change in x
mes a small change in y. Thus we replace dA in the double integral with dx dy

or dy dx.
Now consider represen ng a region R with polar coordinates. Consider Fig-

ure 13.3.1(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
por ons of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2 r
2θ, we can find the area of the shaded region. The whole sector has area

1
2 r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2 r
2
1∆θ. The area of the

shaded region is the difference of these areas:

∆Ai =
1
2
r22∆θ − 1

2
r21∆θ =

1
2
(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the region R, we usemany such subregions; doing so shrinks

the difference r2− r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respec vely. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus, when
dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.

So to evaluate
∫∫

R f(x, y) dA, replace dA with r dr dθ. Convert the func on
z = f(x, y) to a func onwith polar coordinateswith the subs tu ons x = r cos θ,
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Figure 13.3.2: Evalua ng a double inte-
gral with polar coordinates in Example
13.3.1.

13.3 Double Integra on with Polar Coordinates

y = r sin θ. Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this sec on, so we restate it here as a Key Idea.

Key Idea 13.3.1 Evalua ng Double Integrals with Polar Coordinates

Let z = f(x, y) be a con nuous func on defined over a closed, bounded
region R in the x-y plane, where R is bounded by the polar equa ons
α ≤ θ ≤ β and g1(θ) ≤ r ≤ g2(θ). Then∫∫

R
f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.

Examples will help us understand this Key Idea.

Example 13.3.1 Evalua ng a double integral with polar coordinates
Find the signed volume under the plane z = 4 − x − 2y over the disk bounded
by the circle with equa on x2 + y2 = 1.

S The bounds of the integral are determined solely by the re-
gion R over which we are integra ng. In this case, it is a disk with boundary
x2+ y2 = 1. We need to find polar bounds for this region. It may help to review
Sec on 9.4; bounds for this disk are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
subs tu ons:

4− x− 2y ⇒ 4− r cos θ − 2r sin θ.
Finally, we replace dA in the double integral with r dr dθ. This gives the final
iterated integral, which we evaluate:∫∫

R
f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos θ − 2r sin θ

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r− r2(cos θ − 2 sin θ)

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos θ − 2 sin θ)

)∣∣∣∣1
0
dθ

=

∫ 2π

0

(
2− 1

3
(
cos θ − 2 sin θ

))
dθ

=

(
2θ − 1

3
(
sin θ + 2 cos θ

))∣∣∣∣2π
0

= 4π ≈ 12.566.

The surface and region R are shown in Figure 13.3.2.
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Figure 13.3.3: Showing the region R and
surface used in Example 13.3.2.
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Example 13.3.2 Evalua ng a double integral with polar coordinates
Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the region
bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.

S At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 13.3.3(a)) has a hole in it, cu ng out a
strange por on of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equa ons, the volume is not very difficult to com-
pute. It is straigh orward to show that the circle (x − 1)2 + y2 = 1 has polar
equa on r = 2 cos θ, and that the circle (x − 2)2 + y2 = 4 has polar equa on
r = 4 cos θ. Each of these circles is traced out on the interval 0 ≤ θ ≤ π. The
bounds on r are 2 cos θ ≤ r ≤ 4 cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

∫∫
R f(x, y) dA:∫∫

R
f(x, y) dA =

∫ π

0

∫ 4 cos θ

2 cos θ

(
4−

(
r cos θ − 2

)2 − (r sin θ)2)r dr dθ
=

∫ π

0

∫ 4 cos θ

2 cos θ

(
− r3 + 4r2 cos θ

)
dr dθ

=

∫ π

0

(
−1
4
r4 +

4
3
r3 cos θ

)∣∣∣∣4 cos θ
2 cos θ

dθ

=

∫ π

0

([
−1
4
(256 cos4 θ) +

4
3
(64 cos4 θ)

]
−[

−1
4
(16 cos4 θ) +

4
3
(8 cos4 θ)

])
dθ

=

∫ π

0

44
3

cos4 θ dθ.

To integrate cos4 θ, rewrite it as cos2 θ cos2 θ and employ the power-reducing
formula twice:

cos4 θ = cos2 θ cos2 θ

=
1
2
(
1+ cos(2θ)

)1
2
(
1+ cos(2θ)

)
=

1
4
(
1+ 2 cos(2θ) + cos2(2θ)

)
=

1
4

(
1+ 2 cos(2θ) +

1
2
(
1+ cos(4θ)

))
=

3
8
+

1
2
cos(2θ) +

1
8
cos(4θ).
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Figure 13.3.4: The surface and region R
used in Example 13.3.3.

Note: Previous work has shown that
there is finite area under 1

x2+1 over the
en re x-axis. However, Example 13.3.3
shows that there is infinite volume under

1
x2+y2+1 over the en re x-y plane.

13.3 Double Integra on with Polar Coordinates

Picking up from where we le off above, we have

=

∫ π

0

44
3

cos4 θ dθ

=

∫ π

0

44
3

(
3
8
+

1
2
cos(2θ) +

1
8
cos(4θ)

)
dθ

=
44
3

(
3
8
θ +

1
4
sin(2θ) +

1
32

sin(4θ)
)∣∣∣∣π

0

=
11
2
π ≈ 17.279.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates.

Example 13.3.3 Evalua ng a double integral with polar coordinates
Find the volume under the surface f(x, y) =

1
x2 + y2 + 1

over the sector of the
circlewith radius a centered at the origin in the first quadrant, as shown in Figure
13.3.4.

S The region R we are integra ng over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are 0 ≤ r ≤ a,
0 ≤ θ ≤ π/2. The integrand is rewri en in polar as

1
x2 + y2 + 1

⇒ 1
r2 cos2 θ + r2 sin2 θ + 1

=
1

r2 + 1
.

We find the volume as follows:∫∫
R
f(x, y) dA =

∫ π/2

0

∫ a

0

r
r2 + 1

dr dθ

=

∫ π/2

0

1
2
(
ln |r2 + 1|

)∣∣∣a
0
dθ

=

∫ π/2

0

1
2
ln(a2 + 1) dθ

=

(
1
2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Figure 13.3.4 shows that f shrinks to near 0 very quickly. Regardless, as a grows,
so does the volume, without bound.

Notes:
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Figure 13.3.5: Visualizing the solid used in
Example 13.3.5.

Chapter 13 Mul ple Integra on

Example 13.3.4 Finding the volume of a sphere
Find the volume of a sphere with radius a.

S The sphere of radius a, centered at the origin, has equa on
x2+y2+z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This gives the upper

half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the disk of radius a, centered at the
origin. Polar bounds for this equa on are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

All together, the volume of a sphere with radius a is:

2
∫∫

R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos θ)2 − (r sin θ)2r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2 − r2 dr dθ.

We can evaluate this inner integral with subs tu on. With u = a2 − r2, du =
−2r dr. The new bounds of integra on are u(0) = a2 to u(a) = 0. Thus we
have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2
3
u3/2

)∣∣∣∣0
a2
dθ

=

∫ 2π

0

(
2
3
a3
)

dθ

=

(
2
3
a3θ
)∣∣∣∣2π

0

=
4
3
πa3.

Generally, the formula for the volumeof a spherewith radius r is given as 4/3πr3;
we have jus fied this formula with our calcula on.

Example 13.3.5 Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure 13.3.5,
where the base of the solid has boundary, in polar coordinates, r = cos(3θ),
and the top is defined by the plane z = 1 − x + 0.1y. Find the volume of the
solid.

S From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute

Notes:
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13.3 Double Integra on with Polar Coordinates

the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integra ng over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval [0, π], not
[0, 2π]). This gives us our bounds of integra on. The integrand is z = 1−x+0.1y;
conver ng to polar, we have that the volume V is:

V =

∫∫
R
f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ.

Distribu ng the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1
2
cos2(3θ)− 1

3
cos3(3θ) cos θ +

0.1
3

cos3(3θ) sin θ
)

dθ.

This integral takes me to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(3θ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

We rewrite 1
2 cos

2(3θ) as 1
4 (1+cos(6θ)). We can also rewrite 1

3 cos
3(3θ) cos θ

as:

1
3
cos3(3θ) cos θ =

1
3
cos2(3θ) cos(3θ) cos θ =

1
3
1+ cos(6θ)

2
(
cos(4θ)+cos(2θ)

)
.

This last expression s ll needs simplifica on, but eventually all terms can be re-
duced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cubic units
(meters, feet, etc.) Should the ar st want to scale the piece uniformly, so that
each rose petal had a length other than 1, she should keep in mind that scaling
by a factor of k scales the volume by a factor of k3.

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two sec ons show two, among many,
applica ons of iterated integrals.

Notes:
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Exercises 13.3
Terms and Concepts

1. When evalua ng
∫∫

R f(x, y) dA using polar coordinates,
f(x, y) is replaced with and dA is replaced with

.

2. Why would one be interested in evalua ng a double inte-
gral with polar coordinates?

Problems

In Exercises 3 – 10, a func on f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

∫∫
R f(x, y) dA

using polar coordinates.

3. f(x, y) = 3x − y + 4; R is the region enclosed by the circle
x2 + y2 = 1.

4. f(x, y) = 4x + 4y; R is the region enclosed by the circle
x2 + y2 = 4.

5. f(x, y) = 8− y; R is the region enclosed by the circles with
polar equa ons r = cos θ and r = 3 cos θ.

6. f(x, y) = 4; R is the region enclosed by the petal of the rose
curve r = sin(2θ) in the first quadrant.

7. f(x, y) = ln
(
x2 + y2); R is the annulus enclosed by the cir-

cles x2 + y2 = 1 and x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2; R is the region enclosed by the circle
x2 + y2 = 1.

9. f(x, y) = x2 − y2; R is the region enclosed by the circle
x2 + y2 = 36 in the first and fourth quadrants.

10. f(x, y) = (x − y)/(x + y); R is the region enclosed by the
lines y = x, y = 0 and the circle x2 + y2 = 1 in the first
quadrant.

In Exercises 11 – 14, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates
and evaluate the new double integral.

11.
∫ 5

0

∫ √
25−x2

−
√

25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y− x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+5

)
dy dx+∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how
they all connect.

In Exercises 15 – 16, special double integrals are presented
that are especially well suited for evalua on in polar coordi-
nates.

15. Consider
∫∫

R
e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(x2+y2) over the en re x-y plane?

16. The surface of a right circular cone with height h and
base radius a can be described by the equa on f(x, y) =

h− h
√

x2
a2

+
y2
a2

, where the p of the cone lies at (0, 0, h)
and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

1
3
πa2h by evalua ng∫∫

R
f(x, y) dA in polar coordinates.
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Figure 13.4.1: Illustra ng the concept of
a lamina.

Note: Mass and weight are different
measures. Since they are scalar mul -
ples of each other, it is o en easy to
treat them as the same measure. In this
sec on we effec vely treat them as the
same, as our technique for findingmass is
the same as for finding weight. The den-
sity func ons used will simply have differ-
ent units.

13.4 Center of Mass

13.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this sec on as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R dA.
That is, summing up the areas of lots of li le subregions of R gave us the total
area. Informally, we think of

∫∫
R dA as meaning “sum up lots of li le areas over

R.”
To find the signed volume under a surface, we evaluated the double integral∫∫

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is mul plied by f(x, y). We regard f(x, y) as giving a height, and
dA s ll giving an area: f(x, y) dA gives a volume. Thus, informally,

∫∫
R f(x, y) dA

means “sum up lots of li le volumes over R.”
We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
Mathema cians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure 13.4.1(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

∫∫
R dm, where “dm” means “a li le mass.” That is, the double integral

states the total mass of the lamina can be found by “summing up lots of li le
masses over R.”

To evaluate this double integral, par on R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by mul plying a small amount of area by the density.

If density is variable, with density func on δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by mul plying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1
∆mi =

n∑
i=1

δ(xi, yi)∆Ai.

Notes:

787



..... 0.5. 1.

0.5

.

1

.
x

.

y

Figure 13.4.2: A region R represen ng a
lamina in Example 13.4.1.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integra ng δ(x, y) over R gives the mass of the lamina.

Defini on 13.4.1 Mass of a Lamina with Vairable Density

Let δ(x, y) be a con nuous density func on of a lamina corresponding to
a closed, bounded plane region R. The massM of the lamina is

massM =

∫∫
R
dm =

∫∫
R
δ(x, y) dA.

Example 13.4.1 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of δ =
3gm/cm2.

S We represent the lamina with a square region in the plane
as shown in Figure 13.4.2. As the density is constant, it does not ma er where
we place the square.

Following Defini on 13.4.1, the massM of the lamina is

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3

∫ 1

0

∫ 1

0
dx dy = 3gm.

This is all very straigh orward; note that all we really did was find the area
of the lamina and mul ply it by the constant density of 3gm/cm2.

Example 13.4.2 Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
le hand corner at the origin (see Figure 13.4.2), with variable density δ(x, y) =
(x+ y+ 2)gm/cm2.

S The variable density δ, in this example, is very uniform, giv-
ing a density of 3 in the center of the square and changing linearly. A graph of
δ(x, y) can be seen in Figure 13.4.3; no ce how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integra ng δ(x, y) over R. The order of integra on

Notes:
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Figure 13.4.3: Graphing the density func-
ons in Examples 13.4.1 and 13.4.2.

13.4 Center of Mass

is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy

=

∫ 1

0

(
1
2
x2 + x(y+ 2)

)∣∣∣∣1
0
dy

=

∫ 1

0

(
5
2
+ y
)

dy

=

(
5
2
y+

1
2
y2
)∣∣∣∣1

0

= 3gm.

It turns out that since the density of the lamina is so uniformly distributed
“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3. The density func ons in Examples 13.4.1 and 13.4.2 are
graphed in Figure 13.4.3, which illustrates this concept.

Example 13.4.3 Finding the weight of a lamina with variable density
Find theweight of the lamina represented by the diskwith radius 2 , centered at
the origin, with density func on δ(x, y) = (x2+y2+1)lb/ 2. Compare this to the
weight of the lamina with the same shape and density δ(x, y) = (2

√
x2 + y2 +

1)lb/ 2.

S Adirect applica onofDefini on 13.4.1 states that theweight
of the lamina is

∫∫
R δ(x, y) dA. Since our lamina is in the shape of a circle, it

makes sense to approach the double integral using polar coordinates.
The density func on δ(x, y) = x2 + y2 + 1 becomes δ(r, θ) = (r cos θ)2 +

(r sin θ)2 + 1 = r2 + 1. The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.
Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ

=

∫ 2π

0

(
1
4
r4 +

1
2
r2
)∣∣∣∣2

0
dθ

=

∫ 2π

0
(6) dθ

= 12π ≈ 37.70lb.

Now compare this with the density func on δ(x, y) = 2
√

x2 + y2 + 1. Con-
ver ng this to polar coordinates gives δ(r, θ) = 2

√
(r cos θ)2 + (r sin θ)2 + 1 =

Notes:
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2r+ 1. Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(2r+ 1)r dr dθ

=

∫ 2π

0
(
2
3
r3 +

1
2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22
3

)
dθ

=
44
3
π ≈ 46.08lb.

One would expect different density func ons to return different weights, as we
have here. The density func ons were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 13.4.4.

(a) (b)

Figure 13.4.4: Graphing the density func ons in Example 13.4.3. In (a) is the density
func on δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) = 2

√
x2 + y2 + 1.

No ce how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results in less
weight.

Plo ng the density func ons can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R f(x, y) dA as giving the volume under f over R; we can understand∫∫

R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass;

Notes:
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13.4 Center of Mass

by compressing the “volume” under δ onto the x-y plane, we get “more mass”
in some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

Center of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the center of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should s ll be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the center of mass, or center of
gravity. It is though all the mass is “centered” there. In fact, if the disk has a
mass of 3kg, the disk will behave physically as though it were a point-mass of
3kg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
res of your car: if they are “out of balance”, their center of mass will be outside

of the axle and it will shake terribly).
We find the center of mass based on the principle of a weighted average.

Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+ 0.73+ 0.85
3

≈ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is mul plied by a weight.
In general, given values x1, x2, . . . , xn andweightsw1,w2, . . . ,wn, theweighted

average of the n values is
n∑

i=1
wixi

/
n∑

i=1
wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Notes:
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Figure 13.4.5: Illustra ng point masses
along a thin rod and the center of mass.
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Theorem 13.4.1 Center of Mass of Discrete Linear System

Let point massesm1,m2, . . . ,mn be distributed along the x-axis at loca-
ons x1, x2, . . . , xn, respec vely. The center of mass x of the system is

located at

x =
n∑

i=1
mixi

/
n∑

i=1
mi.

Example 13.4.4 Finding the center of mass of a discrete linear system

1. Point masses of 2gm are located at x = −1, x = 2 and x = 3 are con-
nected by a thin rod of negligible weight. Find the center of mass of the
system.

2. Point masses of 10gm, 2gm and 1gm are located at x = −1, x = 2 and
x = 3, respec vely, are connected by a thin rod of negligible weight. Find
the center of mass of the system.

S

1. Following Theorem 13.4.1, we compute the center of mass as:

x =
2(−1) + 2(2) + 2(3)

2+ 2+ 2
=

4
3
= 1.3.

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 13.4.5(a).

2. Again following Theorem 13.4.1, we find:

x =
10(−1) + 2(2) + 1(3)

10+ 2+ 1
=

−3
13

≈ −0.23.

Placing a large weight at the le hand side of the systemmoves the center
of mass le , as shown in Figure 13.4.5(b).

In a discrete system (i.e., mass is located at individual points, not along a
con nuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
cular point or line. In the case described by Theorem 13.4.1, we are finding a

weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Le ng M be the total mass of the
system, we have x = My/M.

Notes:
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Figure 13.4.6: Illustra ng the center of
mass of a discrete planar system in Exam-
ple 13.4.5.

13.4 Center of Mass

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

Defini on 13.4.2 Moments about the x- and y- Axes.

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),
(x2, y2) . . . , (xn, yn), respec vely, in the x-y plane.

1. Themoment about the y-axis,My, isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =

n∑
i=1

miyi.

One can think that these defini ons are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.

Theorem 13.4.2 Center of Mass of Discrete Planar System

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),

(x2, y2) . . . , (xn, yn), respec vely, in the x-y plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example 13.4.5 Finding the center of mass of a discrete planar system
Let pointmasses of 1kg, 2kg and 5kg be located at points (2, 0), (1, 1) and (3, 1),
respec vely, and are connected by thin rods of negligibleweight. Find the center
of mass of the system.

S We follow Theorem 13.4.2 and Defini on 13.4.2 to find M,
Mx andMy:

M = 1+ 2+ 5 = 8kg.

Notes:
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Mx =

n∑
i=1

miyi

= 1(0) + 2(1) + 5(1)
= 7.

My =

n∑
i=1

mixi

= 1(2) + 2(1) + 5(3)
= 19.

Thus the center ofmass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
8
,
7
8

)
= (2.375, 0.875),

illustrated in Figure 13.4.6.

We finally arrive at our true goal of this sec on: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interes ng, it does not directly answermore realis c situa onswhereweneed
to find the center of mass of a con guous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approxima on to an exact value.

We begin by represen ng a planar lamina with a region R in the x-y plane
with density func on δ(x, y). Par on R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by mul plying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1
δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1
yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1
xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to 0 in both the x and
y direc ons, we arrive at the double integrals given in the following theorem.

Notes:
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Figure 13.4.7: A region R represen ng a
lamina in Example 13.4.1.

13.4 Center of Mass

Theorem 13.4.3 Center of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a closed, bounded region R in the
x-y plane with density func on δ(x, y).

1. mass: M =

∫∫
R
δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R
yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R
xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)
.

We start our prac ce of finding centers of mass by revisi ng some of the
lamina used previously in this sec on when finding mass. Wewill just set up the
integrals needed to computeM,Mx andMy and leave the details of the integra-
on to the reader.

Example 13.4.6 Finding the center of mass of a lamina
Find the center mass of a square lamina, with side length 1, with a density of
δ = 3gm/cm2. (Note: this is the lamina from Example 13.4.1.)

S We represent the lamina with a square region in the plane
as shown in Figure 13.4.7 as done previously.

Following Theorem 13.4.3, we findM,Mx andMy:

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3gm.

Mx =

∫∫
R
3y dA =

∫ 1

0

∫ 1

0
3y dx dy = 3/2 = 1.5.

My =

∫∫
R
3x dA =

∫ 1

0

∫ 1

0
3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) = (0.5, 0.5).

This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square.

Notes:
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Example 13.4.7 Finding the center of mass of a lamina
Find the center of mass of a square lamina, represented by the unit square with
lower le hand corner at the origin (see Figure 13.4.7), with variable density
δ(x, y) = (x+ y+ 2)gm/cm2. (Note: this is the lamina from Example 13.4.2.)

S We follow Theorem 13.4.3, to findM,Mx andMy:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy = 3gm.

Mx =

∫∫
R
y(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
y(x+ y+ 2) dx dy =

19
12

.

My =

∫∫
R
x(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
x(x+ y+ 2) dx dy =

19
12

.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
36

,
19
36

)
≈ (0.528, 0.528).

While themass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the center of mass
from the center slightly towards the upper righthand corner.

Example 13.4.8 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the circle with radius 2 ,
centered at the origin, with density func on δ(x, y) = (x2+y2+1)lb/ 2. (Note:
this is one of the lamina used in Example 13.4.3.)

S As done in Example 13.4.3, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(x2+
y2 + 1), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
r2 + 1

)
. We compute

M,Mx andMy:

M =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ = 12π ≈ 37.7lb.

Mx =

∫ 2π

0

∫ 2

0
(r sin θ)(r2 + 1)r dr dθ = 0.

My =

∫ 2π

0

∫ 2

0
(r cos θ)(r2 + 1)r dr dθ = 0.

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the center
of mass is (x, y) = (0, 0).

Notes:
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Figure 13.4.8: Illustra ng the region R in
Example 13.4.9.

13.4 Center of Mass

Example 13.4.9 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the region R shown in Fig-
ure 13.4.8, half an annulus with outer radius 6 and inner radius 5, with constant
density 2lb/ 2.

S Once again it will be useful to represent R in polar coor-
dinates. Using the descrip on of R and/or the illustra on, we see that R is
bounded by 5 ≤ r ≤ 6 and 0 ≤ θ ≤ π. As the lamina is symmetric about
the y-axis, we should expectMy = 0. We computeM,Mx andMy:

M =

∫ π

0

∫ 6

5
(2)r dr dθ = 11πlb.

Mx =

∫ π

0

∫ 6

5
(r sin θ)(2)r dr dθ =

364
3

≈ 121.33.

My =

∫ π

0

∫ 6

5
(r cos θ)(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π
)
≈ (0, 3.51). The center of mass is

indicated in Figure 13.4.8; note how it lies outside of R!

This sec on has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more applica on in the following sec on: compu ng sur-
face area.

Notes:
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Exercises 13.4
Terms and Concepts

1. Why is it easy to use “mass” and “weight” interchangeably,
even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance
from the -axis.

3. We can think of
∫∫

R dm as meaning “sum up lots of
”

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R yδ(x, y) dA instead of
∫∫

R xδ(x, y) dA;
that is, why do we use “y” and not “x”?

6. Describe a situa on where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems
In Exercises 7 – 10, point masses are given along a line or in
the plane. Find the center of mass x or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1; m2 = 3 at x = 3; m3 = 5 at x = 10

8. m1 = 2 at x = −3; m2 = 2 at x = −1;
m3 = 3 at x = 0; m4 = 3 at x = 7

9. m1 = 2 at (−2,−2); m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1); m2 = 2 at (−1, 1);
m3 = 2 at (1, 1); m4 = 1 at (1,−1)

In Exercises 11 – 18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density func on
δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

12. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

13. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

15. R is the disk centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

16. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

17. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/ 2

18. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/ 2

In Exercises 19 – 26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density func on
δ(x, y).
Note: these are the same lamina as in Exercises 11 – 18.

19. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

20. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

21. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

23. R is the disk centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

24. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

25. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/ 2

26. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/ 2

Themoment of iner a I is ameasure of the tendency of a lam-
ina to resist rota ng about an axis or con nue to rotate about
an axis. Ix is the moment of iner a about the x-axis, Iy is the
moment of iner a about the x-axis, and IO is the moment of
iner a about the origin. These are computed as follows:

• Ix =
∫∫

R
y2 dm

• Iy =
∫∫

R
x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In Exercises 27 – 30, a lamina corresponding to a planar re-
gion R is given with a mass of 16 units. For each, compute Ix,
Iy and IO.

27. R is the 4 × 4 square with corners at (−2,−2) and (2, 2)
with density δ(x, y) = 1.

28. R is the 8×2 rectangle with corners at (−4,−1) and (4, 1)
with density δ(x, y) = 1.

29. R is the 4×2 rectangle with corners at (−2,−1) and (2, 1)
with density δ(x, y) = 2.

30. R is the diskwith radius 2 centered at the originwith density
δ(x, y) = 4/π.
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(a)

(b)

Figure 13.5.1: Developing a method of
compu ng surface area.

13.5 Surface Area

13.5 Surface Area
In Sec on 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equa ons.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure 13.5.1(a). Because of the domed shape of the surface, the surface area
will be greater than that of the area of the region R. We can find this area using
the same basic technique we have used over and over: we’ll make an approxi-
ma on, then using limits, we’ll refine the approxima on to the exact value.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this por on of the surface. When∆xi
and∆yi are small, the func on is approximated well by the tangent plane at any
point (xi, yi) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the func on so well that in this figure, it is virtually indis-
nguishable from the surface itself! Therefore we can approximate the surface

area Si of this region of the surface with the area Ti of the corresponding por on
of the tangent plane.

This por on of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applica ons of the cross product from Sec on 10.4 is
that the area of this parallelogram is || u⃗× v⃗ ||. Once we can determine u⃗ and v⃗,
we can determine the area.

u⃗ is tangent to the surface in the direc on of x, therefore, from Sec on 12.7,
u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. The x-displacement of u⃗ is∆xi, so we know that
u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩. Thus:

surface area Si ≈ area of Ti
= || u⃗× v⃗ ||
=
∣∣∣∣∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩

∣∣∣∣
=
√

1+ fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.

Note that∆xi∆yi = ∆Ai, the area of the i th subregion.
Summing up all n of the approxima ons to the surface area gives

surface area over R ≈
n∑

i=1

√
1+ fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Notes:
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Note: as done before, we think of
“
∫∫

R dS” as meaning “sum up lots of
li le surface areas over R.”

The concept of surface area is defined
here, for while we already have a no on
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.

Figure 13.5.2: Finding the area of a trian-
gle in space in Example 13.5.1.

Chapter 13 Mul ple Integra on

Once again take a limit as all of the ∆xi and ∆yi shrink to 0; this leads to a
double integral.

Defini on 13.5.1 Surface Area

Let z = f(x, y) where fx and fy are con nuous over a closed, bounded
region R. The surface area S over R is

S =
∫∫

R
dS

=

∫∫
R

√
1+ fx(x, y)2 + fy(x, y)2 dA.

We test this defini on by using it to compute surface areas of known sur-
faces. We start with a triangle.

Example 13.5.1 Finding the surface area of a plane over a triangle
Let f(x, y) = 4− x− 2y, and let R be the region in the plane bounded by x = 0,
y = 0 and y = 2−x/2, as shown in Figure 13.5.2. Find the surface area of f over
R.

S We followDefini on 13.5.1. We start by no ng that fx(x, y) =
−1 and fy(x, y) = −2. To define R, we use bounds 0 ≤ y ≤ 2 − x/2 and
0 ≤ x ≤ 4. Therefore

S =
∫∫

R
dS

=

∫ 4

0

∫ 2−x/2

0

√
1+ (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
20. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then || u⃗ − proj v⃗ u⃗ || = 4

√
6/5. Geometry states that the area is

thus
1
2
· 4
√

6/5 ·
√
20 = 4

√
6.

We affirm the validity of our formula.

Notes:
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Note: The inner integral in Equa on
(13.1) is an improper integral, as the

integrand of
∫ a

0
r
√

a2
a2 − r2

dr is not de-

fined at r = a. To properly evaluate this
integral, one must use the techniques of
Sec on 6.8.

The reason this need arises is that
the func on f(x, y) =

√
a2 − x2 − y2

fails the requirements of Defini on
13.5.1, as fx and fy are not con nuous
on the boundary of the circle x2+y2 = a2.

The computa on of the surface area is
s ll valid. The defini on makes stronger
requirements than necessary in part to
avoid the use of improper integra on, as
when fx and/or fy are not con nuous, the
resul ng improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.

13.5 Surface Area

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

Example 13.5.2 The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose
top hemisphere has equa on f(x, y) =

√
a2 − x2 − y2.

S We start by compu ng par al deriva ves and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our func on f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

S = 2
∫∫

R

√
1+ fx(x, y)2 + fy(x, y)2 dA

= 2
∫∫

R

√
1+

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integra ng over is bounded by the circle, centered at
the origin, with radius a: x2 + y2 = a2. Because of this region, we are likely
to have greater success with our integra on by conver ng to polar coordinates.
Using the subs tu ons x = r cos θ, y = r sin θ, dA = r dr dθ and bounds 0 ≤
θ ≤ 2π and 0 ≤ r ≤ a, we have:

S = 2
∫ 2π

0

∫ a

0

√
1+

r2 cos2 θ + r2 sin2 θ
a2 − r2 cos2 θ − r2 sin2 θ

r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

1+
r2

a2 − r2
dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2

a2 − r2
dr dθ. (13.1)

Apply subs tu on u = a2 − r2 and integrate the inner integral, giving

= 2
∫ 2π

0
a2 dθ

= 4πa2.

Our work confirms our previous formula.

Notes:
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Figure 13.5.3: Finding the surface area of
a cone in Example 13.5.3.

Note: Once again fx and fy are not con-
nuous on the domain of f, as both are

undefined at (0, 0). (A similar problem
occurred in the previous example.) Once
again the resul ng improper integral con-
verges and the computa on of the sur-
face area is valid.

Figure 13.5.4: Graphing the surface in Ex-
ample 13.5.4.

Chapter 13 Mul ple Integra on

Example 13.5.3 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

f(x, y) = h− h
a
√

x2 + y2,

shown in Figure 13.5.3. Find the surface area of this cone.

S We begin by compu ng par al deriva ves.

fx(x, y) = − xh
a
√

x2 + y2
and fy(x, y) = − yh

a
√

x2 + y2
.

Since we are integra ng over the disk bounded by x2 + y2 = a2, we again
use polar coordinates. Using the standard subs tu ons, our integrand becomes√

1+
(
hr cos θ
a
√
r2

)2

+

(
hr sin θ
a
√
r2

)2

.

This may look in mida ng at first, but there are lots of simple simplifica ons to
be done. It amazingly reduces to just√

1+
h2

a2
=

1
a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =
∫ 2π

0

∫ a

0
r
1
a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1
2
r2
1
a

√
a2 + h2

)∣∣∣∣a
0
dθ

=

∫ 2π

0

1
2
a
√

a2 + h2 dθ

= πa
√

a2 + h2.

This matches the formula found in the back of this text.

Example 13.5.4 Finding surface area over a region
Find the area of the surface f(x, y) = x2 − 3y+ 3 over the region R bounded by
−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 13.5.4.

S It is straigh orward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1+ (2x)2 + (−3)2 dA =

∫∫
R

√
10+ 4x2 dA.

Notes:
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13.5 Surface Area

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This par c-
ular integral can be easily evaluated, though, with judicious choice of our order
of integra on.

Integra ngwith order dx dy requires us to evaluate
∫ √

10+ 4x2 dx. This can
be done, though it involves Integra on By Parts and sinh−1 x. Integra ng with
order dy dx has as its first integral

∫ √
10+ 4x2 dy, which is easy to evaluate: it

is simply y
√
10+ 4x2 + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.∫∫
R

√
10+ 4x2 dA =

∫ 4

0

∫ x

−x

√
10+ 4x2 dy dx

=

∫ 4

0

(
y
√

10+ 4x2
)∣∣∣x

−x
dx

=

∫ 4

0

(
2x
√

10+ 4x2
)
dx.

Apply subs tu on with u = 10+ 4x2:

=

(
1
6
(
10+ 4x2

)3/2)∣∣∣∣4
0

=
1
3
(
37

√
74− 5

√
10
)
≈ 100.825u2.

So while the region R over which we integrate has an area of 16u2, the surface
has a much greater area as its z-values change drama cally over R.

In prac ce, technology helps greatly in the evalua on of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least me consuming, by hand, and can at the least produce very accurate ap-
proxima ons with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next sec on, we learn how to integrate double in-
tegrals – that is, we learn to evaluate triple integrals, along with learning some
uses for this opera on.

Notes:
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Exercises 13.5
Terms and Concepts

1. “Surface area” is analogous to what previously studied con-
cept?

2. To approximate the area of a small por on of a surface, we
computed the area of its plane.

3. We interpret
∫∫

R
dS as “sum up lots of li le

.”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resul ng integral
is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

6. Let z = f(x, y) and z = g(x, y) = 2f(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises 7 – 10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x, y) = sin x cos y; R is the rectangle with bounds 0 ≤
x ≤ 2π, 0 ≤ y ≤ 2π.

8. f(x, y) =
1

x2 + y2 + 1
; R is bounded by the circle x2 +

y2 = 9.

9. f(x, y) = x2− y2; R is the rectangle with opposite corners
(−1,−1) and (1, 1).

10. f(x, y) = 1
ex2 + 1

; R is the rectangle bounded by

−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.

In Exercises 11 – 19, find the area of the given surface over
the region R.

11. f(x, y) = 3x− 7y+ 2; R is the rectangle with opposite cor-
ners (−1, 0) and (1, 3).

12. f(x, y) = 2x+ 2y+ 2; R is the triangle with corners (0, 0),
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(1, 0) and (0, 1).

13. f(x, y) = x2 + y2 + 10; R is bounded by the circle x2 + y2 =
16.

14. f(x, y) = −2x + 4y2 + 7 over R, the triangle bounded by
y = −x, y = x, 0 ≤ y ≤ 1.

15. f(x, y) = x2 + y over R, the triangle bounded by y = 2x,
y = 0 and x = 2.

16. f(x, y) = 2
3 x

3/2 + 2y3/2 over R, the rectangle with opposite
corners (0, 0) and (1, 1).

17. f(x, y) = 10 − 2
√
x2 + y2 over R, bounded by the circle

x2 + y2 = 25. (This is the cone with height 10 and base
radius 5; be sure to compare your result with the known
formula.)

18. Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x, y) =

√
25− x2 − y2 over R,

bounded by the circle x2 + y2 = 25. (Be sure to compare
your result with the known formula.)

19. Find the surface area of the ellipse formed by restric ng the
plane f(x, y) = cx+dy+h to the region R, bounded by the
circle x2 + y2 = 1, where c, d and h are some constants.
Your answer should be given in terms of c and d; why does
the value of h not ma er?
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(a)

(b)

Figure 13.6.1: Finding the volume be-
tween the planes given in Example 13.6.1.

Chapter 13 Mul ple Integra on

13.6 VolumeBetweenSurfaces andTriple Integra on
We learned in Sec on 13.2 how to compute the signed volume V under a surface
z = f(x, y) over a region R: V =

∫∫
R f(x, y) dA. It follows naturally that if f(x, y) ≥

g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

∫∫
R
f(x, y) dA−

∫∫
R
g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Theorem 13.6.1 Volume Between Surfaces

Let f and g be con nuous func ons on a closed, bounded region R, where
f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g over R
is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Example 13.6.1 Finding volume between surfaces
Find the volume of the space region bounded by the planes z = 3x + y − 4,
z = 8 − 3x − 2y, x = 0 and y = 0. In Figure 13.6.1(a) the planes are drawn; in
(b), only the defined region is given.

S We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x+ y− 4 = 8− 3x− 2y. Applying a li le algebra, we
have:

3x+ y− 4 = 8− 3x− 2y
6x+ 3y = 12
2x+ y = 4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
by x = 0, y = 0, and y = 4 − 2x; we can convert these bounds to integra on
bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y− (3x+ y− 4)

)
dA

=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16u3.

The volume between the surfaces is 16 cubic units.

Notes:
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(a)

(b)

Figure 13.6.2: Approxima ng the volume
of a region D in space.

13.6 Volume Between Surfaces and Triple Integra on

In the preceding example, we found the volume by evalua ng the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y− (3x+ y− 4)

)
dy dx.

Note howwe can rewrite the integrand as an integral, much as we did in Sec on
13.1:

8− 3x− 2y− (3x+ y− 4) =
∫ 8−3x−2y

3x+y−4
dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4
dz
)

dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introduc on to double integrals was in the context of finding the
area of a plane region, our introduc on into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 13.6.2(a), we start with an approxima on. Break D into
n rectangular solids; the solids near the boundary of Dmay possibly not include
por ons of D and/or include extra space. In Figure 13.6.2(b), we zoom in on a
por on of the boundary of D to show a rectangular solid that contains space not
in D; as this is an approxima on of the volume, this is acceptable and this error
will be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z direc ons,
respec vely. By summing up the volumes of all n solids, we get an approxima on
of the volume V of D:

V ≈
n∑

i=1
∆Vi =

n∑
i=1

∆xi∆yi∆zi.

Let ||∆D|| represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As ||∆D|| → 0, the volume of each solid goes to 0, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as ||∆D|| → 0 turns our approxima on of V into an exact calcula on of
V. Before we state this result in a theorem, we use a defini on to define some
terms.

Notes:
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Defini on 13.6.1 Triple Integrals, Iterated Integra on (Part I)

Let D be a closed, bounded region in space. Let a and b be real numbers, let g1(x) and g2(x) be
con nuous func ons of x, and let f1(x, y) and f2(x, y) be con nuous func ons of x and y.

1. The volume V of D is denoted by a triple integral,

V =

∫∫∫
D
dV.

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
dz

)
dy dx.

Evalua ng the above iterated integral is triple integra on.

Our informal understanding of the nota on
∫∫∫

D dV is “sum up lots of li le
volumes over D,” analogous to our understanding of

∫∫
R dA and

∫∫
R dm.

We now state the major theorem of this sec on.

Theorem 13.6.2 Triple Integra on (Part I)

Let D be a closed, bounded region in space and let∆D be any subdivision of D into n rectangular
solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V of D is

V =

∫∫∫
D
dV = lim

||∆D||→0

n∑
i=1

∆Vi = lim
||∆D||→0

n∑
i=1

∆xi∆yi∆zi.

2. IfD is defined as the region bounded by the planes x = a and x = b, the cylinders y = g1(x)
and y = g2(x), and the surfaces z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x)
and f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx.

3. V can be determined using iterated integra on with other orders of integra on (there are 6
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.

Notes:
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Note: Example 13.6.2 uses the term “first
octant.” Recall how the x-, y- and z-axes
divide space into eight octants; the octant
in which x, y and z are all posi ve is called
the first octant.

(a)

(b)

Figure 13.6.3: The region D used in Exam-
ple 13.6.2 in (a); in (b), the region found
by collapsing D onto the x-y plane.

13.6 Volume Between Surfaces and Triple Integra on

We evaluated the area of a plane region R by iterated integra on, where the
bounds were “from curve to curve, then from point to point.” Theorem 13.6.2
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the x-y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The combina on
of these 6 surfaces enclose, and define, D.

Examples will help us understand triple integra on, including integra ng
with various orders of integra on.

Example 13.6.2 Finding the volumeof a space regionwith triple integra on
Find the volume of the space region in the first octant bounded by the plane
z = 2 − y/3 − 2x/3, shown in Figure 13.6.3(a), using the order of integra on
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integra on.

S Star ng with the order of integra on dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 − y/3 − 2x/3;
0 ≤ z ≤ 2− y/3− 2x/3.

To find the bounds on y and x, we “collapse” the region onto the x-y plane,
giving the triangle shown in Figure 13.6.3(b). (We know the equa on of the line
y = 6− 2x in two ways. First, by se ng z = 0, we have 0 = 2− y/3− 2x/3 ⇒
y = 6 − 2x. Secondly, we know this is going to be a straight line between the
points (3, 0) and (0, 6) in the x-y plane.)

We define that region R, in the integra on order of dy dx, with bounds 0 ≤
y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the region D is:

V =

∫∫∫
D
dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3 y−

2
3 x

0
dz dy dx

Notes:
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(a)

(b)

Figure 13.6.4: The region D in Example
13.6.2 is collapsed onto the y-z plane in
(a); in (b), the region is collapsed onto the
x-z plane.

Chapter 13 Mul ple Integra on

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3 y−

2
3 x

0
dz

)
dy dx

=

∫ 3

0

∫ 6−2x

0
z
∣∣∣2− 1

3 y−
2
3 x

0
dy dx

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y− 2

3
x
)

dy dx.

From this step on, we are evalua ng a double integral as done many mes be-
fore. We skip these steps and give the final volume,

= 6u3.

The order dz dx dy:

Now consider the volumeusing the order of integra on dz dx dy. The bounds
on z are the same as before, 0 ≤ z ≤ 2−y/3−2x/3. Collapsing the space region
on the x-y plane as shown in Figure 13.6.3(b), we now describe this triangle with
the order of integra on dx dy. This gives bounds 0 ≤ x ≤ 3−y/2 and 0 ≤ y ≤ 6.
Thus the volume is given by the triple integral

V =

∫ 6

0

∫ 3− 1
2 y

0

∫ 2− 1
3 y−

2
3 x

0
dz dx dy.

The order dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direc on of increasing x. The first surface we hit as we enter the
region is the y-z plane, defined by x = 0. We come out of the region at the plane
z = 2− y/3−2x/3; solving for x, we have x = 3− y/2−3z/2. Thus the bounds
on x are: 0 ≤ x ≤ 3− y/2− 3z/2.

Nowcollapse the space regiononto the y-zplane, as shown in Figure 13.6.4(a).
(Again, we find the equa on of the line z = 2−y/3 by se ng x = 0 in the equa-
on x = 3− y/2− 3z/2.) We need to find bounds on this region with the order

dy dz. The curves that bound y are y = 0 and y = 6− 3z; the points that bound
z are 0 and 2. Thus the triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0
dx dy dz.

Notes:
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13.6 Volume Between Surfaces and Triple Integra on

The order dx dz dy:

The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure 13.6.4(a) and describe it with the order dz dy: 0 ≤ z ≤ 2 − y/3 and
0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6
⇒

∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0
dx dz dy.

The order dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direc on of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2− y/3− 2x/3. Solving for y, this plane has equa on y = 6− 2x− 3z. Thus y
has bounds 0 ≤ y ≤ 6− 2x− 3z.

Now collapse the region onto the x-z plane, as shown in Figure 13.6.4(b).
The curves bounding this triangle are z = 0 and z = 2− 2x/3; x is bounded by
the points x = 0 to x = 3. Thus the triple integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3
⇒

∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0
dy dz dx.

The order dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 13.6.4(b) using the order dy dx dz. x is bounded
by x = 0 and x = 3 − 3z/2; z is bounded between z = 0 and z = 2. This leads
to the triple integral:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ x ≤ 3− 3z/2

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 3−3z/2

0

∫ 6−2x−3z

0
dy dx dz.

This problem was long, but hopefully useful, demonstra ng how to deter-
mine bounds with every order of integra on to describe the region D. In prac-
ce, we only need 1, but being able to do them all gives us flexibility to choose

the order that suits us best.

Notes:
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(a)

(b)

Figure 13.6.5: Finding the projec ons
of the curve of intersec on in Example
13.6.3.

Chapter 13 Mul ple Integra on

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of inte-
gra on. Since the surface was a triangular por on of a plane, this collapsing, or
projec ng, was simple: the projec on of a straight line in space onto a coordi-
nate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example 13.6.3 Finding the projec on of a curve in space onto the
coordinate planes

Consider the surfaces z = 3− x2 − y2 and z = 2y, as shown in Figure 13.6.5(a).
The curve of their intersec on is shown, along with the projec on of this curve
into the coordinate planes, shown dashed. Find the equa ons of the projec ons
into the coordinate planes.

S The two surfaces are z = 3 − x2 − y2 and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3− x2−y2 =
2y. This is an implicit func on of x and y that gives all points (x, y) in the x-y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit func on by comple ng the square:

3− x2 − y2 = 2y ⇒ y2 + 2y+ x2 = 3 ⇒ (y+ 1)2 + x2 = 4.

Thus in the x-y plane the projec on of the intersec on is a circle with radius 2,
centered at (0,−1).

To project onto the x-z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equa on of each surface for y. In this par cular case, it works well to actually
solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.

Thus we have (a er again comple ng the square):

3− x2 − z = z2/4 ⇒ (z+ 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in the x-z plane with a major axis of length 8 and
a minor axis of length 4.

Finally, to project the curve of intersec on into the y-z plane, we solve equa-
on for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our

equa on of the projec on in the y-z plane.
All three projec ons are shown in Figure 13.6.5(b).

Notes:
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(a)

(b)

Figure 13.6.6: The region D in Example
13.6.4 is shown in (a); in (b), it is collapsed
onto the x-y plane.

13.6 Volume Between Surfaces and Triple Integra on

Example 13.6.4 Finding the volumeof a space regionwith triple integra on
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in Figure 13.6.6(a),
with the orders of integra on dz dy dx, dy dx dz and dx dz dy.

S The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = −y. The cylinder x2 + y2 = 1 does not offer any bounds in the z-direc on,
as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.

Collapsing the region into the x-y plane, we get part of the disk bounded by
the circle with equa on x2 + y2 = 1 as shown in Figure 13.6.6(b). As a func on
of x, this half circle has equa on y = −

√
1− x2. Thus y is bounded below by

−
√
1− x2 and above by y = 0: −

√
1− x2 ≤ y ≤ 0. The x bounds of the half

circle are−1 ≤ x ≤ 1. All together, the bounds of integra on and triple integral
are as follows:

0 ≤ z ≤ −y
−
√
1− x2 ≤ y ≤ 0
−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx.

We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1
2
(
1− x2

)
dx

=

(
1
2

(
x− 1

3
x3
))∣∣∣∣1

−1

=
2
3
units3.

With the order dy dx dz:

The region is bounded “below” in the y-direc on by the surface x2 + y2 =
1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus the y bounds are

−
√
1− x2 ≤ y ≤ −z.
Collapsing the region onto the x-z plane gives the region shown in Figure

13.6.7(a); this half disk is bounded by z = 0 and x2+ z2 = 1. (We find this curve

Notes:
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(a)

(b)

Figure 13.6.7: The region D in Example
13.6.4 is shown collapsed onto the x-z
plane in (a); in (b), it is collapsed onto the
y-z plane.
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by solving each surface for y2, then se ng them equal to each other. We have
y2 = 1− x2 and y = −z ⇒ y2 = z2. Thus x2 + z2 = 1.) It is bounded below by
x = −

√
1− z2 and above by x =

√
1− z2, where z is bounded by 0 ≤ z ≤ 1.

All together, we have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1
⇒

∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√

1− y2 and above by
√

1− y2.
We then collapse the region onto the y-z plane and get the triangle shown in
Figure 13.6.7(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z
is bounded by 0 ≤ z ≤ −y and y is bounded by−1 ≤ y ≤ 0. This gives:

−
√

1− y2 ≤ x ≤
√

1− y2
0 ≤ z ≤ −y
−1 ≤ y ≤ 0

⇒
∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2
dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a posi ve number; we are compu ng volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Theorem 13.6.3 Proper es of Triple Integrals

Let D be a closed, bounded region in space, and let D1 and D2 be non-
overlapping regions such that D = D1

∪
D2.

1.
∫∫∫

D
dV ≥ 0

2.
∫∫∫

D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV.

Notes:

814





(a)

(b)

Figure 13.6.8: The region D in Example
13.6.5 is shown in (a); in (b), it is collapsed
onto the x-y plane.

13.6 Volume Between Surfaces and Triple Integra on

We use this la er property in the next example.

Example 13.6.5 Finding the volumeof a space regionwith triple integra on
Find the volume of the space region D bounded by the coordinate planes, z =
1− x/2 and z = 1− y/4, as shown in Figure 13.6.8(a). Set up the triple integrals
that find the volume of D in all 6 orders of integra on.

S Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integra on are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direc on. So we start
by no ng that we have

0 ≤ z ≤ 1− 1
2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the x-y axis, as shown in Figure 13.6.8(b).
The boundary of D, the line from (0, 0, 1) to (2, 4, 0), is shown in part (b) of the
figure as a dashed line; it has equa on y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0, 0, 1) to (2, 4, 0) onto the x-y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4:
thus 1− x/2 = 1− y/4 ⇒ y = 2x.)

We use the second property of Theorem 13.6.3 to state that∫∫∫
D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV,

where D1 and D2 are the space regions above the plane regions R1 and R2, re-
spec vely. Thus we can say∫∫∫

D
dV =

∫∫
R1

(∫ 1−x/2

0
dz

)
dA+

∫∫
R2

(∫ 1−y/4

0
dz

)
dA.

All that is le is to determine bounds of R1 and R2, depending on whether we
are integra ngwith order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:

0 ≤ z ≤ 1− x/2
0 ≤ y ≤ 2x
0 ≤ x ≤ 2

0 ≤ z ≤ 1− y/4
2x ≤ y ≤ 4
0 ≤ x ≤ 2∫∫∫

D
dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0
dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0
dz dy dx

Notes:
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(a)

(b)

Figure 13.6.9: The region D in Example
13.6.5 is shown collapsed onto the x-z
plane in (a); in (b), it is collapsed onto the
y-z plane.
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dz dx dy:

0 ≤ z ≤ 1− x/2
y/2 ≤ x ≤ 2
0 ≤ y ≤ 4

0 ≤ z ≤ 1− y/4
0 ≤ x ≤ y/2
0 ≤ y ≤ 4∫∫∫

D
dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0
dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0
dz dx dy

The remaining four orders of integra on do not require a sum of triple in-
tegrals. In Figure 13.6.9 we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integra on here, again
leaving it to the reader to confirm these results.

dy dx dz:

0 ≤ y ≤ 4− 4z
0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 2−2z

0

∫ 4−4z

0
dy dx dz

dy dz dx:

0 ≤ y ≤ 4− 4z
0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2
⇒
∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0
dy dx dz

dx dy dz:

0 ≤ x ≤ 2− 2z
0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 4−4z

0

∫ 2−2z

0
dx dy dz

dx dz dy:

0 ≤ x ≤ 2− 2z
0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4
⇒
∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0
dx dz dy

Notes:
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(a)

(b)

(c)

Figure 13.6.10: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).

13.6 Volume Between Surfaces and Triple Integra on

We give one more example of finding the volume of a space region.

Example 13.6.6 Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = 2x2+2 and z = 6−2x2−y2. These surfaces are plo ed in Figure 13.6.10(a)
and (b), respec vely; the region D is shown in part (c) of the figure.

S The main point of this example is this: integra ng with re-
spect to z first is rather straigh orward; integra ng with respect to x first is not.

The order dz dy dx:

The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6− 2x2 − y2. Collapsing D onto
the x-y plane gives the ellipse shown in Figure 13.6.10(c). The equa on of this
ellipse is found by se ng the two surfaces equal to each other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√

4− 4x2 ≤ y ≤
√

4− 4x2 and − 1 ≤ x ≤ 1.

Thus we find volume as
2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2
dz dy dx .

The order dy dz dx:

Integra ng with respect to y is not too difficult. Since the surface z = 2x2+2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6− 2x2 − y2 does; solving for y, we get the bounds

−
√

6− 2x2 − z ≤ y ≤
√

6− 2x2 − z.

Collapsing D onto the x-z axes gives the region shown in Figure 13.6.11(a); the
lower curve is from the cylinder, with equa on z = 2x2 + 2. The upper curve is
from the paraboloid; with y = 0, the curve is z = 6− 2x2. Thus bounds on z are
2x2 + 2 ≤ z ≤ 6− 2x2; the bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

Notes:
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(a)

(b)

Figure 13.6.11: The region D in Exam-
ple 13.6.6 is collapsed onto the x-z plane
in (a); in (b), it is collapsed onto the y-z
plane.
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The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for region D1 and the paraboloid creates bounds

−
√

3− y2/2− z2/2 ≤ x ≤
√

3− y2/2− z2/2

for region D2.
Collapsing D onto the y-z axes gives the regions shown in Figure 13.6.11(b).

We find the equa on of the curve z = 4 − y2/2 by no ng that the equa on of
the ellipse seen in Figure 13.6.10(c) has equa on

x2 + y2/4 = 1 ⇒ x =
√

1− y2/4.

Subs tute this expression for x in either surface equa on, z = 6 − 2x2 − y2 or
z = 2x2 + 2. In both cases, we find

z = 4− 1
2
y2.

Region R1, corresponding to D1, has bounds

2 ≤ z ≤ 4− y2/2, −2 ≤ y ≤ 2

and region R2, corresponding to D2, has bounds

4− y2/2 ≤ z ≤ 6− y2, −2 ≤ y ≤ 2.

Thus the volume of D is given by:∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1
dx dz dy +

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2
dx dz dy.

If all one wanted to do in Example 13.6.6 was find the volume of the re-
gion D, one would have likely stopped at the first integra on setup (with order
dz dy dx) and computed the volume from there. However, we included the other
two methods 1) to show that it could be done, “messy” or not, and 2) because

Notes:
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some mes we “have” to use a less desirable order of integra on in order to ac-
tually integrate.

Triple Integra on and Func ons of Three Variables
There are uses for triple integra on beyond merely finding volume, just as

there are uses for integra on beyond “area under the curve.” These uses start
with understanding how to integrate func ons of three variables, which is effec-
vely no different than integra ng func ons of two variables. This leads us to a

defini on, followed by an example.

Defini on 13.6.2 Iterated Integra on, (Part II)

Let D be a closed, bounded region in space, over which g1(x), g2(x),
f1(x, y), f2(x, y) and h(x, y, z) are all con nuous, and let a and b be real
numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx is evaluated as∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z)dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
h(x, y, z) dz

)
dy dx.

Example 13.6.7 Evalua ng a triple integral of a func on of three variables

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx.

S We evaluate this integral according to Defini on 13.6.2.

∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz
)

dy dx

=

∫ 1

0

∫ x

x2

((
xyz+ xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y+ 4x3 + 14x2y+ 12xy2

)
dy dx.

Notes:
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We con nue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281
336

≈ 0.836.

We now know how to evaluate a triple integral of a func on of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integra on and double inte-
gra on.

Let h(x, y, z) be a con nuous func on of three variables, defined over some
space region D. We can par on D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
func on value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object, for then h× volume = mass.

We can sum up all n products over D. Again le ng ||∆D|| represent the
length of the longest diagonal of the n rectangular solids in the par on, we can
take the limit of the sums of products as ||∆D|| → 0. That is, we can find

S = lim
||∆D||→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
||∆D||→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpreta ons depending on the func on h, in
the case where h describes density, S is the total mass of the object described
by the region D.

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated itera on, followed by the applica on of triple
integrals to find the centers of mass of solid objects.

Defini on 13.6.3 Triple Integral

Let w = h(x, y, z) be a con nuous func on over a closed, bounded re-
gion D in space, and let∆D be any par on of D into n rectangular solids
with volume∆Vi. The triple integral of h over D is∫∫∫

D
h(x, y, z) dV = lim

||∆D||→0

n∑
i=1

h(xi, yi, zi)∆Vi.

Notes:
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The following theorem assures us that the above limit exists for con nuous
func ons h and gives us a method of evalua ng the limit.

Theorem 13.6.4 Triple Integra on (Part II)

Let w = h(x, y, z) be a con nuous func on over a closed, bounded re-
gion D in space, and let∆D be any par on of D into n rectangular solids
with volume Vi.

1. The limit lim
||∆D||→0

n∑
i=1

h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx.

Note: In the marginal note on page 770, we showed how the summa on of
rectangles over a region R in the plane could be viewed as a double sum, leading
to the double integral. Likewise, we can view the sum

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi

as a triple sum,
p∑

k=1

n∑
j=1

m∑
i=1

h(xi, yj, zk)∆xi∆yj∆zk,

which we evaluate as
p∑

k=1

(
n∑

j=1

(
m∑
i=1

h(xi, yj, zk)∆xi

)
∆yj

)
∆zk.

Here we fix a k value, which establishes the z-height of the rectangular solids on
one “level” of all the rectangular solids in the space region D. The inner double
summa on adds up all the volumes of the rectangular solids on this level, while
the outer summa on adds up the volumes of each level.

This triple summa on understanding leads to the
∫∫∫

D nota on of the triple
integral, as well as the method of evalua on shown in Theorem 13.6.4.

Notes:
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Figure 13.6.12: Finding the center ofmass
of this solid in Example 13.6.8.

Chapter 13 Mul ple Integra on

We now apply triple integra on to find the centers of mass of solid objects.

Mass and Center of Mass

One may wish to review Sec on 13.4 for a reminder of the relevant terms
and concepts.

Defini on 13.6.4 Mass, Center of Mass of Solids

Let a solid be represented by a closed, bounded region D in space with
variable density func on δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D
dm =

∫∫∫
D
δ(x, y, z) dV.

2. Themoment about the y-z plane isMyz =

∫∫∫
D
xδ(x, y, z) dV.

3. Themoment about the x-z plane isMxz =

∫∫∫
D
yδ(x, y, z) dV.

4. Themoment about the x-y plane isMxy =

∫∫∫
D
zδ(x, y, z) dV.

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 13.6.8 Finding the center of mass of a solid
Find the mass and center of mass of the solid represented by the space region
bounded by the coordinate planes and z = 2 − y/3 − 2x/3, shown in Figure
13.6.12, with constant density δ(x, y, z) = 3gm/cm3. (Note: this space region
was used in Example 13.6.2.)

S We apply Defini on 13.6.4. In Example 13.6.2, we found
bounds for the order of integra on dz dy dx to be 0 ≤ z ≤ 2 − y/3 − 2x/3,

Notes:
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Figure 13.6.13: Finding the center ofmass
of this solid in Example 13.6.9.

13.6 Volume Between Surfaces and Triple Integra on

0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D
δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3
∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0
dz dy dx

= 3(6) = 18gm.

The evalua on of the triple integral is done in Example 13.6.2, so we skipped
those steps above. Note how the mass of an object with constant density is
simply “density×volume.”

We now find the moments about the planes.

Mxy =

∫∫∫
D
3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

3
2
(
2− y/3− 2x/3

)2 dy dx
=

∫ 3

0
−4
9
(
x− 3

)3 dx
= 9.

We omit the steps of integra ng to find the other moments.

Myz =

∫∫∫
D
3x dV

=
27
2
.

Mxz =

∫∫∫
D
3y dV

= 27.

The center of mass is(
x, y, z

)
=

(
27/2
18

,
27
18

,
9
18

)
=
(
0.75, 1.5, 0.5

)
.

Notes:
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Example 13.6.9 Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown in Figure 13.6.13,
with density func on δ(x, y, z) = 10 + x2 + 5y − 5z. (Note: this space region
was used in Example 13.6.4.)

S As we start, consider the density func on. It is symmetric
about the y-z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z direc ons, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
par cularly hard, they do require a number of steps. We emphasize here the
importance of knowing how to set up the proper integrals; in complex situa ons
we can appeal to technology for a good approxima on, if not the exact answer.
We use the order of integra on dz dy dx, using the bounds found in Example
13.6.4. (As these are the same for all four triple integrals, we explicitly show the
bounds only forM.)

M =

∫∫∫
D

(
10+ x2 + 5y− 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10+ x2 + 5y− 5z

)
dV

=
64
5

− 15π
16

≈ 3.855.

Myz =

∫∫∫
D
x
(
10+ x2 + 5y− 5z

)
dV

= 0.

Mxz =

∫∫∫
D
y
(
10+ x2 + 5y− 5z

)
dV

= 2− 61π
48

≈ −1.99.

Mxy =

∫∫∫
D
z
(
10+ x2 + 5y− 5z

)
dV

=
61π
96

− 10
9

≈ 0.885.

Note howMyz = 0, as expected. The center of mass is(
x, y, z

)
=

(
0,

−1.99
3.855

,
0.885
3.855

)
≈
(
0,−0.516, 0.230

)
.

Notes:
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As stated before, there are many uses for triple integra on beyond finding
volume. When h(x, y, z) describes a rate of change func on over some space

region D, then
∫∫∫

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was compu ngmass; a density func on is simply a “rate ofmass
change per volume” func on. Integra ng density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quan ty; modern technology is very useful in evalua ng these
formulas quickly and accurately.

In the next sec on, we learn about two new coordinate systems (each re-
lated to polar coordinates) that allow us to integrate over closed regions in space
more easily than when using rectangular coordinates.

Notes:
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Exercises 13.6
Terms and Concepts
1. The strategy for establishing bounds for triple integrals

is “ to , to and
to .”

2. Give an informal interpreta on of what “
∫∫∫

D
dV”

means.

3. Give two uses of triple integra on.

4. If an object has a constant density δ and a volume V, what
is its mass?

Problems
In Exercises 5 – 8, two surfaces f1(x, y) and f2(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and (1, 1).

6. f1(x, y) = x2 + y2, f2(x, y) = −x2 − y2;
R is the square with corners (0, 0) and (2, 3).

7. f1(x, y) = sin x cos y, f2(x, y) = cos x sin y+ 2;
R is the triangle with corners (0, 0), (π, 0) and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3, f2(x, y) = 6− x2 − y2;
R is the disk bounded by x2 + y2 = 1.

In Exercises 9 – 16, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all 6 orders of integra on, and find
the volume of D by evalua ng the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.

Evaluate the triple integral with order dz dy dx.

10. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2.

Evaluate the triple integral with order dx dy dz.

11. D is bounded by the planes x = 0, x = 2, z = −y and by
z = y2/2.

Evaluate the triple integral with the order dy dz dx.

12. D is bounded by the planes z = 0, y = 9, x = 0 and by
z =

√
y2 − 9x2.

Do not evaluate any triple integral.
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13. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4.

Evaluate the triple integral with the order dx dy dz.

14. D is bounded by the plane z = 2y and by y = 4− x2.

Evaluate the triple integral with the order dz dy dx.

15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.
Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.

Evaluate the triple integral with order dx dy dz.

In Exercises 17 – 20, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos x sin y sin z

)
dz dy dx

18.
∫ 1

0

∫ x

0

∫ x+y

0

(
x+ y+ z

)
dz dy dx

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20.
∫ π2

π

∫ x3

x

∫ y2

−y2

(
z x

2y+ y2x
ex2+y2

)
dz dy dx

In Exercises 21 – 24, find the center ofmass of the solid repre-
sented by the indicated space region Dwith density func on
δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10gm/cm3.
(Note: this is the same region as used in Exercise 9.)

22. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2; δ(x, y, z) = 2gm/cm3.
(Note: this is the same region as used in Exercise 10.)

23. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4; δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in Exercise 13.)

24. D is bounded by the plane z = 2y and by y = 4− x2.
δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in Exercise 14.)
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Figure 13.7.1: Illustra ng the principles
behind cylindrical coordinates.

Note: Our rectangular to polar conver-
sion formulas used r2 = x2 + y2, allow-
ing for nega ve r values. Since we now
restrict r ≥ 0, we can use r =

√
x2 + y2.
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13.7 Triple Integra on with Cylindrical and Spherical
Coordinates

Just as polar coordinates gave us a new way of describing curves in the plane,
in this sec on we will see how cylindrical and spherical coordinates give us new
ways of desribing surfaces and regions in space.

Cylindrical Coordinates

In short, cylindrical coordinates can be thought of as a combina on of the
polar and rectangular coordinate systems. One can iden fy a point (x0, y0, z0),
given in rectangular coordinates, with the point (r0, θ0, z0), given in cylindri-
cal coordinates, where the z-value in both systems is the same, and the point
(x0, y0) in the x-y plane is iden fied with the polar point P(r0, θ0); see Figure
13.7.1. So that each point in space that does not lie on the z-axis is defined
uniquely, we will restrict r ≥ 0 and 0 ≤ θ ≤ 2π.

We use the iden ty z = z along with the iden es found in Key Idea 9.4.1
to convert between the rectangular coordinate (x, y, z) and the cylindrical coor-
dinate (r, θ, z), namely:

From rectangular to cylindrical: r =
√

x2 + y2, tan θ = y/x and z = z;
From cylindrical to rectangular: x = r cos θ y = r sin θ and z = z.

These iden es, along with conversions related to spherical coordinates, are
given later in Key Idea 13.7.1.

Example 13.7.1 Conver ngbetween rectangular and cylindrical coordinates
Convert the rectangular point (2,−2, 1) to cylindrical coordinates, and convert
the cylindrical point (4, 3π/4, 5) to rectangular.

S Following the iden es given above (and, later in Key Idea
13.7.1), we have r =

√
22 + (−2)2 = 2

√
2. Using tan θ = y/x, we find θ =

tan−1(−2/2) = −π/4. As we restrict θ to being between 0 and 2π, we set
θ = 7π/4. Finally, z = 1, giving the cylindrical point (2

√
2, 7π/4, 1).

In conver ng the cylindrical point (4, 3π/4, 5) to rectangular, we have x =
4 cos

(
3π/4

)
= −2

√
2, y = 4 sin

(
3π/4

)
= 2

√
2 and z = 5, giving the rectan-

gular point (−2
√
2, 2

√
2, 5).

Se ng each of r, θ and z equal to a constant defines a surface in space, as
illustrated in the following example.

Notes:
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Figure 13.7.2: Graphing the canoncial sur-
faces in cylindrical coordinates from Ex-
ample 13.7.2.
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Example 13.7.2 Canonical surfaces in cylindrical coordinates
Describe the surfaces r = 1, θ = π/3 and z = 2, given in cylindrical coordinates.

S The equa on r = 1 describes all points in space that are
1 unit away from the z-axis. This surface is a “tube” or “cylinder” of radius 1,
centered on the z-axis, as graphed in Figure 10.1.8 (which describes the cylinder
x2 + y2 = 1 in space).

The equa on θ = π/3 describes the plane formed by extending the line
θ = π/3, as given by polar coordinates in the x-y plane, parallel to the z-axis.

The equa on z = 2 describes the plane of all points in space that are 2 units
above the x-y plane. This plane is the same as the plane described by z = 2 in
rectangular coordinates.

All three surfaces are graphed in Figure 13.7.2. Note how their intersec on
uniquely defines the point P = (1, π/3, 2).

Cylindrical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates.

Theorem 13.6.4 shows how to evaluate
∫∫∫

D h(x, y, z) dV using rectangular
coordinates. In that evalua on, we use dV = dz dy dx (or one of the other five
orders of integra on). Recall how, in this order of integra on, the bounds on
y are “curve to curve” and the bounds on x are “point to point”: these bounds
describe a region R in the x-y plane. We could describe R using polar coordinates
as done in Sec on 13.3. In that sec on, we saw how we used dA = r dr dθ
instead of dA = dy dx.

Considering the above thoughts, we have dV = dz
(
r dr dθ

)
= r dz dr dθ. We

set bounds on z as “surface to surface” as done in the previous sec on, and then
use “curve to curve” and “point to point” bounds on r and θ, respec vely. Finally,
using the iden es given above, we change the integrand h(x, y, z) to h(r, θ, z).

This process should sound plausible; the following theorem states it is truly
a way of evalua ng a triple integral.

Theorem 13.7.1 Triple Integra on in Cylindrical Coordinates

Let w = h(r, θ, z) be a con nuous func on on a closed, bounded region
D in space, bounded in cylindrical coordinates by α ≤ θ ≤ β, g1(θ) ≤
r ≤ g2(θ) and f1(r, θ) ≤ z ≤ f2(r, θ). Then∫∫∫

D
h(r, θ, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ f2(r,θ)

f1(r,θ)
h(r, θ, z)r dz dr dθ.

Notes:
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Figure 13.7.3: Visualizing the solid used in
Example 13.7.3.

Figure 13.7.4: Visualizing the solid used in
Example 13.7.4.
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Example 13.7.3 Evalua ng a triple integral with cylindrical coordinates
Find the mass of the solid represented by the region in space bounded by z = 0,
z =

√
4− x2 − y2 + 3 and the cylinder x2 + y2 = 4 (as shown in Figure 13.7.3),

with density func on δ(x, y, z) = x2 + y2 + z + 1, using a triple integral in
cylindrical coordinates. Distances are measured in cen meters and density is
measured in grams/cm3.

S We begin by describing this region of space with cylindrical
coordinates. The plane z = 0 is le unchanged; with the iden ty r =

√
x2 + y2,

we convert the hemisphere of radius 2 to the equa on z =
√
4− r2; the cylinder

x2 + y2 = 4 is converted to r2 = 4, or, more simply, r = 2. We also convert the
density func on: δ(r, θ, z) = r2 + z+ 1.

To describe this solid with the bounds of a triple integral, we bound z with
0 ≤ z ≤

√
4− r2+3; we bound rwith 0 ≤ r ≤ 2; we bound θwith 0 ≤ θ ≤ 2π.

Using Defini on 13.6.4 and Theorem 13.7.1, we have the mass of the solid
is

M =

∫∫∫
D
δ(x, y, z) dV =

∫ 2π

0

∫ 2

0

∫ √
4−r2+3

0

(
r2 + z+ 1

)
r dz dr dθ

=

∫ 2π

0

∫ 2

0

(
(r3 + 4r)

√
4− r2 +

5
2
r3 +

19
2
r
)
dr dθ

=
1318π
15

≈ 276.04 gm,

where we leave the details of the remaining double integral to the reader.

Example 13.7.4 Finding the center of mass using cylindrical coordinates
Find the center of mass of the solid with constant density whose base can be
described by the polar curve r = cos(3θ) and whose top is defined by the plane
z = 1−x+0.1y, where distances are measured in feet, as seen in Figure 13.7.4.
(The volume of this solid was found in Example 13.3.5.)

S We convert the equa on of the plane to use cylindrical co-
ordinates: z = 1 − r cos θ + 0.1r sin θ. Thus the region is space is bounded by
0 ≤ z ≤ 1 − r cos θ + 0.1r sin θ, 0 ≤ r ≤ cos(3θ), 0 ≤ θ ≤ π (recall that the
rose curve r = cos(3θ) is traced out once on [0, π].

Since density is constant, we set δ = 1 and finding the mass is equivalent to
finding the volume of the solid. We set up the triple integral to compute this but
do not evaluate it; we leave it to the reader to confirm it evaluates to the same

Notes:
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Note: The symbol ρ is the Greek le er
“rho.” Tradi onally it is used in the spher-
ical coordinate system, while r is used in
the polar and cylindrical coordinate sys-
tems.

Figure 13.7.5: Illustra ng the principles
behind spherical coordinates.
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result found in Example 13.3.5.

M =

∫∫∫
D
δ dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
r dz dr dθ ≈ 0.785.

From Defini on 13.6.4 we set up the triple integrals to compute the mo-
ments about the three coordinate planes. The computa on of each is le to the
reader (using technology is recommended):

Myz =

∫∫∫
D
x dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(r cos θ)r dz dr dθ

= −0.147.

Mxz =

∫∫∫
D
y dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(r sin θ)r dz dr dθ

= 0.015.

Mxy =

∫∫∫
D
z dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(z)r dz dr dθ

= 0.467.

The center ofmass, in rectangular coordinates, is located at (−0.147, 0.015, 0.467),
which lies outside the bounds of the solid.

Spherical Coordinates
In short, spherical coordinates can be thought of as a “double applica on”

of the polar coordinate system. In spherical coordinates, a point P is iden fied
with (ρ, θ,φ), where ρ is the distance from the origin to P, θ is the same angle
as would be used to describe P in the cylindrical coordinate system, and φ is the
angle between the posi ve z-axis and the ray from the origin to P; see Figure
13.7.5. So that each point in space that does not lie on the z-axis is defined
uniquely, we will restrict ρ ≥ 0, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.

The following Key Idea gives conversions to/from our three spa al coordi-
nate systems.

Notes:
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Note: The role of θ and φ in spheri-
cal coordinates differs between mathe-
ma cians and physicists. When reading
about physics in spherical coordinates, be
careful to note how that par cular au-
thor uses these variables and recognize
that these iden eswill may no longer be
valid.
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Key Idea 13.7.1 Conver ng Between Rectangular, Cylindrical and
Spherical Coordinates

Rectangular and Cylindrical

r2 = x2 + y2, tan θ = y/x, z = z
x = r cos θ, y = r sin θ, z = z

Rectangular and Spherical

ρ =
√

x2 + y2 + z2, tan θ = y/x, cosφ = z/
√

x2 + y2 + z2
x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

Cylindrical and Spherical

ρ =
√
r2 + z2, θ = θ, tanφ = r/z

r = ρ sinφ, θ = θ, z = ρ cosφ

Example 13.7.5 Conver ng between rectangular and spherical coordinates
Convert the rectangular point (2,−2, 1) to spherical coordinates, and convert
the spherical point (6, π/3, π/2) to rectangular and cylindrical coordinates.

S This rectangular point is the same as used in Example 13.7.1.
Using Key Idea 13.7.1, we find ρ =

√
22 + (−1)2 + 12 = 3. Using the same

logic as in Example 13.7.1, we find θ = 7π/4. Finally, cosφ = 1/3, giving
φ = cos−1(1/3) ≈ 1.23, or about 70.53◦. Thus the spherical coordinates are
approximately (3, 7π/4, 1.23).

Conver ng the spherical point (6, π/3, π/2) to rectangular, we have x =
6 sin(π/2) cos(π/3) = 3, y = 6 sin(π/2) sin(π/3) = 3

√
3 and z = 6 cos(π/2) =

0. Thus the rectangular coordinates are (3, 3
√
3, 0).

To convert this spherical point to cylindrical, we have r = 6 sin(π/2) = 6,
θ = π/3 and z = 6 cos(π/2) = 0, giving the cylindrical point (6, π/3, 0).

Example 13.7.6 Canonical surfaces in spherical coordinates
Describe the surfaces ρ = 1, θ = π/3 and φ = π/6, given in spherical coordi-
nates.

S The equa on ρ = 1 describes all points in space that are 1
unit away from the origin: this is the sphere of radius 1, centered at the origin.

The equa on θ = π/3 describes the same surface in spherical coordinates
as it does in cylindrical coordinates: beginning with the line θ = π/3 in the x-y
plane as given by polar coordinates, extend the line parallel to the z-axis, forming

Notes:
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Figure 13.7.6: Graphing the canonical sur-
faces in spherical coordinates from Exam-
ple 13.7.6.

Figure 13.7.7: Approxima ng the volume
of a standard region in space using spher-
ical coordinates.

Note: It is generallymost intui ve to eval-
uate the triple integral in Theorem 13.7.2
by integra ng with respect to ρ first; it of-
ten does not ma er whether we next in-
tegrate with respect to θ or φ. Different
texts present different standard orders,
some preferring dφ dθ instead of dθ dφ.
As the bounds for these variables are usu-
ally constants in prac ce, it generally is a
ma er of preference.
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a plane.
The equa on φ = π/6 describes all points P in space where the ray from

the origin to P makes an angle of π/6 with the posi ve z-axis. This describes a
cone, with the posi ve z-axis its axis of symmetry, with point at the origin.

All three surfaces are graphed in Figure 13.7.6. Note how their intersec on
uniquely defines the point P = (1, π/3, π/6).

Spherical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates or cylindrical coordinates. The crux of se ng
up a triple integral in spherical coordinates is appropriately describing the “small
amount of volume,” dV, used in the integral.

Considering Figure 13.7.7, we canmake a small “spherical wedge” by varying
ρ, θ and φ each a small amount, ∆ρ, ∆θ and ∆φ, respec vely. This wedge is
approximately a rectangular solid when the change in each coordinate is small,
giving a volume of about

∆V ≈ ∆ρ × ρ∆φ × ρ sin(φ)∆θ.

Given a region D in space, we can approximate the volume of D with many
such wedges. As the size of each of ∆ρ, ∆θ and ∆φ goes to zero, the number
of wedges increases to infinity and the volume of D is more accurately approxi-
mated, giving

dV = dρ × ρ dφ × ρ sin(φ)dθ = ρ2 sin(φ) dρ dθ dφ.

Again, this development of dV should sound reasonable, and the following
theorem states it is the appropriate manner by which triple integrals are to be
evaluated in spherical coordinates.

Theorem 13.7.2 Triple Integra on in Spherical Coordinates

Letw = h(ρ, θ,φ) be a con nuous func on on a closed, bounded region
D in space, bounded in spherical coordinates by α1 ≤ φ ≤ α2, β1 ≤ θ ≤
β2 and f1(θ,φ) ≤ ρ ≤ f2(θ,φ). Then∫∫∫

D
h(ρ, θ,φ) dV =

∫ α2

α1

∫ β2

β1

∫ f2(θ,φ)

f1(θ,φ)
h(ρ, θ,φ)ρ2 sin(φ) dρ dθ dφ.

Example 13.7.7 Establishing the volume of a sphere
Let D be the region in space bounded by the sphere, centered at the origin, of
radius r. Use a triple integral in spherical coordinates to find the volume V of D.

Notes:
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Figure 13.7.8: Graphing the solid, and its
center of mass, from Example 13.7.8.
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S The sphere of radius r, centered at the origin, has equa on
ρ = r. To obtain the full sphere, the bounds on θ and φ are 0 ≤ θ ≤ 2π and
0 ≤ φ ≤ π. This leads us to:

V =

∫∫∫
D
dV

=

∫ π

0

∫ 2π

0

∫ r

0

(
ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π

0

∫ 2π

0

(
1
3
ρ3 sin(φ)

∣∣∣r
0

)
dθ dφ

=

∫ π

0

∫ 2π

0

(
1
3
r3 sin(φ)

)
dθ dφ

=

∫ π

0

(
2π
3
r3 sin(φ)

)
dφ

=

(
−2π

3
r3 cos(φ)

)∣∣∣∣π
0

=
4π
3
r3,

the familiar formula for the volume of a sphere. Note how the integra on steps
were easy, not using square–roots nor integra on steps such as Subs tu on.

Example 13.7.8 Finding the center of mass using spherical coordinates
Find the center of mass of the solid with constant density enclosed above by
ρ = 4 and below by φ = π/6, as illustrated in Figure 13.7.8.

S We will set up the four triple integrals needed to find the
center of mass (i.e., to computeM,Myz,Mxz andMxy) and leave it to the reader
to evaluate each integral. Because of symmetry, we expect the x- and y- coordi-
nates of the center of mass to be 0.

While the surfaces describing the solid are given in the statement of the
problem, to describe the full solid D, we use the following bounds: 0 ≤ ρ ≤ 4,
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/6. Since density δ is constant, we assume δ = 1.

The mass of the solid:

M =

∫∫∫
D
dm =

∫∫∫
D
dV

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ2 sin(φ)

)
dρ dθ dφ

=
64
3
(
2−

√
3
)
π ≈ 17.958.

Notes:
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To compute Myz, the integrand is x; using Key Idea 13.7.1, we have x =
ρ sinφ cos θ. This gives:

Myz =

∫∫∫
D
x dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ) cos(θ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 sin2(φ) cos(θ)

)
dρ dθ dφ

= 0,

which we expected as we expect x = 0.
To compute Mxz, the integrand is y; using Key Idea 13.7.1, we have y =

ρ sinφ sin θ. This gives:

Mxz =

∫∫∫
D
y dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ) sin(θ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 sin2(φ) sin(θ)

)
dρ dθ dφ

= 0,

which we also expected as we expect y = 0.
To compute Mxy, the integrand is z; using Key Idea 13.7.1, we have z =

ρ cosφ. This gives:

Mxy =

∫∫∫
D
z dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 cos(φ) sin(φ)

)
dρ dθ dφ

= 16π ≈ 50.266.

Thus the center of mass is (0, 0,Mxy/M) ≈ (0, 0, 2.799), as indicated in Fig-
ure 13.7.8.

This sec on has provided a brief introduc on into two new coordinate sys-
tems useful for iden fying points in space. Each can be used to define a variety

Notes:
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of surfaces in space beyond the canonical surfaces graphed as each system was
introduced.

However, the usefulness of these coordinate systems does not lie in the vari-
ety of surfaces that they candescribe nor the regions in space these surfacesmay
enclose. Rather, cylindrical coordinates are mostly used to describe cylinders
and spherical coordinates are mostly used to describe spheres. These shapes
are of special interest in the sciences, especially in physics, and computa ons
on/inside these shapes is difficult using rectangular coordinates. For instance,
in the study of electricity and magne sm, one o en studies the effects of an
electrical current passing through a wire; that wire is essen ally a cylinder, de-
scribed well by cylindrical coordinates.

This chapter inves gated the natural follow–on to par al deriva ves: iter-
ated integra on. We learned how to use the bounds of a double integral to
describe a region in the plane using both rectangular and polar coordinates,
then later expanded to use the bounds of a triple integral to describe a region in
space. We used double integrals to find volumes under surfaces, surface area,
and the center ofmass of lamina; we used triple integrals as an alternatemethod
of finding volumes of space regions and also to find the center of mass of a re-
gion in space.

Integra on does not stop here. We could con nue to iterate our integrals,
next inves ga ng “quadruple integrals” whose bounds describe a region in 4–
dimensional space (which are very hard to visualize). We can also look back to
“regular” integra on where we found the area under a curve in the plane. A
natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integra on.”

Notes:
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Exercises 13.7
Terms and Concepts
1. Explain the difference between the roles r, in cylindrical co-

ordinates, and ρ, in spherical coordinates, play in determin-
ing the loca on of a point.

2. Why are points on the z-axis not determined uniquelywhen
using cylindrical and spherical coordinates?

3. What surfaces are naturally defined using cylindrical coor-
dinates?

4. What surfaces are naturally defined using spherical coordi-
nates?

Problems
In Exercises 5 – 6, points are given in either the rectangular,
cylindrical or spherical coordinate systems. Find the coordi-
nates of the points in the other systems.

5. (a) Points in rectangular coordinates:
(2, 2, 1) and (−

√
3, 1, 0)

(b) Points in cylindrical coordinates:
(2, π/4, 2) and (3, 3π/2,−4)

(c) Points in spherical coordinates:
(2, π/4, π/4) and (1, 0, 0)

6. (a) Points in rectangular coordinates:
(0, 1, 1) and (−1, 0, 1)

(b) Points in cylindrical coordinates:
(0, π, 1) and (2, 4π/3, 0)

(c) Points in spherical coordinates:
(2, π/6, π/2) and (3, π, π)

In Exercises 7 – 8, describe the curve, surface or region in
space determined by the given bounds.

7. Bounds in cylindrical coordinates:

(a) r = 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1
(b) 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ z ≤ 1

Bounds in spherical coordinates:

(c) ρ = 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2
(d) 2 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

8. Bounds in cylindrical coordinates:

(a) 1 ≤ r ≤ 2, θ = π/2, 0 ≤ z ≤ 1
(b) r = 2, 0 ≤ θ ≤ 2π, z = 5

Bounds in spherical coordinates:

(c) 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π, φ = π/4
(d) ρ = 2, 0 ≤ θ ≤ 2π, φ = π/6

In Exercises 9 – 10, standard regions in space, as defined
by cylindrical and spherical coordinates, are shown. Set up
the triple integral that integrates the given func on over the
graphed region.

9. Cylindrical coordinates, integra ng h(r, θ, z):

10. Cylindrical coordinates, integra ng h(ρ, θ,φ):

In Exercises 11 – 16, a triple integral in cylindrical coordinates
is given. Describe the region in space defined by the bounds
of the integral.

11.
∫ π/2

0

∫ 2

0

∫ 2

0
r dz dr dθ

12.
∫ 2π

0

∫ 4

3

∫ 5

0
r dz dr dθ

13.
∫ 2π

0

∫ 1

0

∫ 1−r

0
r dz dr dθ

14.
∫ π

0

∫ 1

0

∫ 2−r

0
r dz dr dθ

15.
∫ π

0

∫ 3

0

∫ √
9−r2

0
r dz dr dθ
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16.
∫ 2π

0

∫ a

0

∫ √
a2−r2+b

0
r dz dr dθ

In Exercises 17 – 22, a triple integral in spherical coordinates
is given. Describe the region in space defined by the bounds
of the integral.

17.
∫ π/2

0

∫ π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ

18.
∫ π

0

∫ π

0

∫ 1.1

1
ρ2 sin(φ) dρ dθ dφ

19.
∫ 2π

0

∫ π/4

0

∫ 2

0
ρ2 sin(φ) dρ dθ dφ

20.
∫ 2π

0

∫ π/4

π/6

∫ 2

0
ρ2 sin(φ) dρ dθ dφ

21.
∫ 2π

0

∫ π/6

0

∫ sec φ

0
ρ2 sin(φ) dρ dθ dφ

22.
∫ 2π

0

∫ π/6

0

∫ a sec φ

0
ρ2 sin(φ) dρ dθ dφ

In Exercises 23 – 26, a solid is described along with its density
func on. Find the mass of the solid using cylindrical coordi-
nates.

23. Bounded by the cylinder x2 + y2 = 4 and the planes z = 0
and z = 4 with density func on δ(x, y, z) =

√
x2 + y2 + 1.

24. Bounded by the cylinders x2 + y2 = 4 and x2 + y2 = 9, be-
tween the planes z = 0 and z = 10 with density func on
δ(x, y, z) = z.

25. Bounded by y ≥ 0, the cylinder x2 + y2 = 1, and between
the planes z = 0 and z = 4 − y with density func on
δ(x, y, z) = 1.

26. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density func on δ(x, y, z) = 1.

In Exercises 27 – 30, a solid is described along with its density
func on. Find the center of mass of the solid using cylindri-
cal coordinates. (Note: these are the same solids and density
func ons as found in Exercises 23 through 26.)

27. Bounded by the cylinder x2 + y2 = 4 and the planes z = 0
and z = 4 with density func on δ(x, y, z) =

√
x2 + y2+1.

28. Bounded by the cylinders x2 + y2 = 4 and x2 + y2 = 9, be-
tween the planes z = 0 and z = 10 with density func on
δ(x, y, z) = z.

29. Bounded by y ≥ 0, the cylinder x2 + y2 = 1, and between
the planes z = 0 and z = 4 − y with density func on
δ(x, y, z) = 1.

30. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density func on δ(x, y, z) = 1.

In Exercises 31 – 34, a solid is described along with its density
func on. Find the mass of the solid using spherical coordi-
nates.

31. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density func on δ(x, y, z) = 1.

32. The spherical shell bounded between x2 + y2 + z2 = 16
and x2 + y2 + z2 = 25 with density func on δ(x, y, z) =√
x2 + y2 + z2.

33. The conical region bounded above z =
√
x2 + y2 and be-

low the sphere x2 + y2 + z2 = 1 with density func on
δ(x, y, z) = z.

34. The cone bounded above z =
√
x2 + y2 and below the

plane z = 1 with density func on δ(x, y, z) = z.

In Exercises 35 – 38, a solid is described along with its density
func on. Find the center of mass of the solid using spheri-
cal coordinates. (Note: these are the same solids and density
func ons as found in Exercises 31 through 34.)

35. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density func on δ(x, y, z) = 1.

36. The spherical shell bounded between x2 + y2 + z2 = 16
and x2 + y2 + z2 = 25 with density func on δ(x, y, z) =√
x2 + y2 + z2.

37. The conical region bounded above z =
√
x2 + y2 and be-

low the sphere x2 + y2 + z2 = 1 with density func on
δ(x, y, z) = z.

38. The cone bounded above z =
√
x2 + y2 and below the

plane z = 1 with density func on δ(x, y, z) = z.

In Exercises 39 – 42, a region is space is described. Set up the
triple integrals that find the volume of this region using rect-
angular, cylindrical and spherical coordinates, then comment
on which of the three appears easiest to evaluate.

39. The region enclosed by the unit sphere, x2 + y2 + z2 = 1.

40. The region enclosed by the cylinder x2+ y2 = 1 and planes
z = 0 and z = 1.

41. The region enclosed by the cone z =
√
x2 + y2 and plane

z = 1.

42. The cube enclosed by the planes x = 0, x = 1, y = 0,
y = 1, z = 0 and z = 1. (Hint: in spherical, use order of
integra on dρ dφ dθ.)
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14: V A
In previous chapters we have explored a rela onship between vectors and inte-
gra on. Our most tangible result: if v⃗(t) is the vector–valued velocity func on
of a moving object, then integra ng v⃗(t) from t = a to t = b gives the displace-
ment of that object over that me interval.

This chapter explores completely different rela onships between vectors
and integra on. These rela onships will enable us to compute thework done by
a magne c field in moving an object along a path and find how much air moves
through an oddly–shaped screen in space, among other things.

Our upcoming work with integra on will benefit from a review. We are
not concerned here with techniques of integra on, but rather what an integral
“does” and how that relates to the nota on we use to describe it.

Integra on Review

Recall from Sec on 13.1 that when R is a region in the x-y plane,
∫∫

R dA
gives the area of the region R. The integral symbols are “elongated esses”mean-
ing “sum” and dA represents “a small amount of area.” Taken together,

∫∫
R dA

means “sum up, over R, small amounts of area.” This sum then gives the total
area of R. We use two integral symbols since R is a two–dimensional region.

Now let z = f(x, y) represent a surface. The double integral
∫∫

R f(x, y) dA
means “sum up, over R, func on values (heights) given by f mes small amounts
of area.” Since “height × area = volume,” we are summing small amounts of
volume over R, giving the total signed volume under the surface z = f(x, y) and
above the x-y plane.

This nota on does not directly inform us how to evaluate the double inte-
grals to find an area or a volume. With addi onal work, we recognize that a
small amount of area dA can be measured as the area of a small rectangle, with
one side length a small change in x and the other side length a small change in
y. That is, dA = dx dy or dA = dy dx. We could also compute a small amount
of area by thinking in terms of polar coordinates, where dA = r dr dθ. These
understandings lead us to the iterated integrals we used in Chapter 13.

Let us back our review up farther. Note that
∫ 3
1 dx = x

∣∣3
1 = 3 − 1 = 2.

We have simply measured the length of the interval [1, 3]. We could rewrite the
above integral using syntax similar to the double integral syntax above:∫ 3

1
dx =

∫
I
dx, where I = [1, 3].

We interpret “
∫
I dx” as meaning “sum up, over the interval I, small changes

in x.” A change in x is a length along the x-axis, so we are adding up along I small



(a)

(b)

(c)

Figure 14.1.1: Finding area under a curve
in space.
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lengths, giving the total length of I.
We could also write

∫ 3
1 f(x) dx as

∫
I f(x) dx, interpreted as “sum up, over

I, heights given by y = f(x) mes small changes in x.” Since “height×length
= area,” we are summing up areas and finding the total signed area between
y = f(x) and the x-axis.

This method of referring to the process of integra on can be very powerful.
It is the core of our no on of the Riemann Sum. When faced with a quan ty
to compute, if one can think of a way to approximate its value through a sum,
the one is well on their way to construc ng an integral (or, double or triple in-
tegral) that computes the desired quan ty. We will demonstrate this process
throughout this chapter, star ng with the next sec on.

14.1 Introduc on to Line Integrals
We first used integra on to find “area under a curve.” In this sec on, we learn
to do this (again), but in a different context.

Consider the surface and curve shown in Figure 14.1.1(a). The surface is
given by f(x, y) = 1− cos(x) sin(y). The dashed curve lies in the x-y plane and is
the familiar y = x2 parabola from−1 ≤ x ≤ 1; we’ll call this curve C. The curve
drawn with a solid line in the graph is the curve in space that lies on our surface
with x and y values that lie on C.

The ques on we want to answer is this: what is the area that lies below the
curve drawn with the solid line? In other words, what is the area of the region
above C and under the the surface f? This region is shown in Figure 14.1.1(b).

We suspect the answer can be found using an integral, but before trying to
figure out what that integral is, let us first try to approximate its value.

In Figure 14.1.1(c), four rectangles have been drawn over the curve C. The
bo om corners of each rectangle lie on C, and each rectangle has a height given
by the func on f(x, y) for some (x, y) pair along C between the rectangle’s bot-
tom corners.

As we know how to find the area of each rectangle, we are able to approx-
imate the area above C and under f. Clearly, our approxima on will be an ap-
proxima on. The heights of the rectangles do notmatch exactlywith the surface
f, nor does the base of each rectangle follow perfectly the path of C.

In typical calculus fashion, our approxima on can be improvedby usingmore
rectangles. The sum of the areas of these rectangles gives an approximate value
of the true area above C and under f. As the area of each rectangle is “height×
width”, we assert that the

area above C ≈
∑

(heights× widths).

When first learning of the integral, and approxima ng areas with “heights×

Notes:
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Note: Defini on 14.1.1 uses the term
scalar field which has not yet been de-
fined. Its meaning is discussed in the
paragraph preceding Defini on 14.3.1
when it is compared to a vector field.

14.1 Introduc on to Line Integrals

widths”, the width was a small change in x: dx. That will not suffice in this con-
text. Rather, each width of a rectangle is actually approxima ng the arc length
of a small por on of C. In Sec on 11.5, we used s to represent the arc–length
parameter of a curve. A small amount of arc length will thus be represented by
ds.

The height of each rectangle will be determined in some way by the surface
f. If we parametrize C by s, an s-value corresponds to an (x, y) pair that lies on
the parabola C. Since f is a func on of x and y, and x and y are func ons of s, we
can say that f is a func on of s. Given a value s, we can compute f(s) and find a
height. Thus

area under f and above C ≈
∑

(heights× widths);

area under f and above C = lim
||∆s||→0

∑
f(ci)∆si

=

∫
C
f(s) ds. (14.1)

Here we have introduce a new nota on, the integral symbol with a subscript
of C. It is reminiscent of our usage of

∫∫
R. Using the train of thought found in the

Integra on Review preceding this sec on, we interpret “
∫
C f(s) ds” as meaning

“sum up, along a curve C, func on values f(s)×small arc lengths.” It is under-
stood here that s represents the arc–length parameter.

All this leads us to a defini on. The integral found in Equa on 14.1 is called
a line integral. We formally define it below, but note that the defini on is very
abstract. On one hand, one is apt to say “the defin on makes sense,” while on
the other, one is equally apt to say “but I don’t know what I’m supposed to do
with this defini on.” We’ll address that a er the defini on, and actually find an
answer to the area problem we posed at the beginning of this sec on.

Defini on 14.1.1 Line Integral Over A Scalar Field

Let C be a smooth curve parametrized by s, the arc–length parameter,
and let f be a con nuous func on of s. A line integral is an integral of
the form ∫

C
f(s) ds = lim

||∆s||→0

n∑
i=1

f(ci)∆si,

where s1 < s2 < . . . < sn is any par on of the s-interval over which
C is defined, ci is any value in the i th subinterval,∆si is the width of the
i th subinterval, and ||∆s|| is the length of the longest subinterval in the
par on.

Notes:
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When C is a closed curve, i.e., a curve that ends at the same point at which
it starts, we use ∮

C
f(s) ds instead of

∫
C
f(s) ds.

The defini on of the line integral does not specify whether C is a curve in
the plane or space (or hyperspace), as the defini on holds regardless. For now,
we’ll assume C lies in the x-y plane.

This defini on of the line integral doesn’t really say anything new. If C is a
curve and s is the arc–length parameter of C on a ≤ s ≤ b, then

∫
C
f(s) ds =

∫ b

a
f(s) ds.

The real difference with this integral from the standard “
∫ b
a f(x) dx” we used in

the past is that of context. Our previous integrals naturally summed up values
over an interval on the x-axis, whereas now we are summing up values over a
curve. If we can parametrize the curve with the arc–length parameter, we can
evaluate the line integral just as before. Unfortunately, parametrizing a curve in
terms of the arc–length parameter is usually very difficult, so we must develop
a method of evalua ng line integrals using a different parametriza on.

Given a curve C, find any parametriza on of C: x = g(t) and y = h(t),
for con nuous func ons g and h, where a ≤ t ≤ b. We can represent this
parametriza on with a vector–valued func on, r⃗(t) = ⟨g(t), h(t)⟩.

In Sec on 11.5, we defined the arc–length parameter in Equa on 11.1 as

s(t) =
∫ t

0
|| r⃗ ′(u) || du.

By the Fundamental Theorem of Calculus, ds = || r⃗ ′(t) || dt. We can subs tute
the right hand side of this equa on for ds in the line integral defini on.

We can view f as being a func on of x and y since it is a func on of s. Thus
f(s) = f(x, y) = f

(
g(t), h(t)

)
. This gives us a concrete way to evaluate a line

integral: ∫
C
f(s) ds =

∫ b

a
f
(
g(t), h(t)

)
|| r⃗ ′(t) || dt.

We restate this as a theorem, along with its three–dimensional analogue,
followed by an example where we finally evaluate an integral and find an area.

Notes:

842



(a)

(b)

Figure 14.1.2: Finding area under a curve
in Example 14.1.1.

14.1 Introduc on to Line Integrals

Theorem 14.1.1 Evalua ng a Line Integral Over A Scalar Field

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t)⟩, a ≤ t ≤ b,
where g and h are con nuously differen able, and let z = f(x, y),
where f is con nuous over C. Then∫

C
f(s) ds =

∫ b

a
f
(
g(t), h(t)

)
|| r⃗ ′(t) || dt.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t), k(t)⟩, a ≤
t ≤ b, where g, h and k are con nuously differen able, and let
w = f(x, y, z), where f is con nuous over C. Then∫

C
f(s) ds =

∫ b

a
f
(
g(t), h(t), k(t)

)
|| r⃗ ′(t) || dt.

To be clear, the first point of Theorem 14.1.1 can be used to find the area un-
der a surface z = f(x, y) and above a curve C. Wewill later give an understanding
of the line integral when C is a curve in space.

Let’s do an example where we actually compute an area.

Example 14.1.1 Evalua ng a line integral: areaunder a surfaceover a curve.
Find the area under the surface f(x, y) = cos(x) + sin(y) + 2 over the curve C,
which is the segment of the line y = 2x+ 1 on−1 ≤ x ≤ 1, as shown in Figure
14.1.2.

S Our first step is to representCwith a vector–valued func on.
Since C is a simple line, and we have a explicit rela onship between y and x
(namely, that y is 2x+1), we can let x = t, y = 2t+1, andwrite r⃗(t) = ⟨t, 2t+1⟩
for−1 ≤ t ≤ 1.

Wefind the values of foverC as f(x, y) = f(t, 2t+1) = cos(t)+sin(2t+1)+2.
We also need || r⃗ ′(t) ||; with r⃗ ′(t) = ⟨1, 2⟩, we have || r⃗ ′(t) || =

√
5. Thus

ds =
√
5 dt.

The area we seek is∫
C
f(s) ds =

∫ 1

−1

(
cos(t) + sin(2t+ 1) + 2

)√
5 dt

=
√
5
(
sin(t)− 1

2
cos(2t+ 1) + 2t

)∣∣∣∣1
−1

≈ 14.418 units2.

Notes:
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Figure 14.1.3: Finding area under a curve
in Example 14.1.2.
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Wewill prac ce se ng up and evalua ng a line integral in another example,
then find the area described at the beginning of this sec on.

Example 14.1.2 Evalua ng a line integral: areaunder a surfaceover a curve.
Find the area over the unit circle in the x-y plane and under the surface f(x, y) =
x2 − y2 + 3, shown in Figure 14.1.3.

S The curve C is the unit circle, whichwewill describe with the
parametriza on r⃗(t) = ⟨cos t, sin t⟩ for 0 ≤ t ≤ 2π. We find || r⃗ ′(t) || = 1, so
ds = 1dt.

We find the values of f over C as f(x, y) = f(cos t, sin t) = cos2 t− sin2 t+ 3.
Thus the area we seek is (note the use of the

∮
f(s)ds nota on):∮

C
f(s) ds =

∫ 2π

0

(
cos2 t− sin2 t+ 3

)
dt

= 6π.

(Note: we may have approximated this answer from the start. The unit circle
has a circumference of 2π, and we may have guessed that due to the apparent
symmetry of our surface, the average height of the surface is 3.)

We now consider the example that introduced this sec on.

Example 14.1.3 Evalua ng a line integral: areaunder a surfaceover a curve.
Find the area under f(x, y) = 1 − cos(x) sin(y) and over the parabola y = x2,
from−1 ≤ x ≤ 1.

S Weparametrize our curve C as r⃗(t) = ⟨t, t2⟩ for−1 ≤ t ≤ 1;
we find || r⃗ ′(t) || =

√
1+ 4t2, so ds =

√
1+ 4t2 dt.

Replacing x and y with their respec ve func ons of t, we have f(x, y) =
f(t, t2) = 1− cos(t) sin(t2). Thus the area under f and over C is found to be∫

C
f(s) ds =

∫ 1

−1

(
1− cos(t) sin

(
t2
))√

1+ t2 dt.

This integral is impossible to evaluate using the techniques developed in this
text. We resort to a numerical approxima on; accurate to two places a er the
decimal, we find the area is

= 2.17.

Notes:
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Figure 14.1.4: Finding area under a curve
in Example 14.1.4.
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(b)

Figure 14.1.5: Illustra ng proper es of
line integrals.

14.1 Introduc on to Line Integrals

We give one more example of finding area.

Example 14.1.4 Evalua ng a line integral: area under a curve in space.
Find the area above the x-y plane and below the helix parametrized by r⃗(t) =
⟨cos t, 2 sin t, t/π⟩, for 0 ≤ t ≤ 2π, as shown in Figure 14.1.4.

S Note how this is problem is different than the previous ex-
amples: here, the height is not given by a surface, but by the curve itself.

We use the given vector-valued func on r⃗(t) to determine the curve C in the
x-y plane by simply using the first two components of r⃗(t): c⃗(t) = ⟨cos t, 2 sin t⟩.
Thus ds = || c⃗ ′(t) || dt =

√
sin2 t+ 4 cos2 t dt.

The height is not found by evalua ng a surface over C, but rather it is given
directly by the third component of r⃗(t): t/π. Thus

∮
C
f(s) ds =

∫ 2π

0

t
π

√
sin2 t+ 4 cos2 t dt ≈ 9.69,

where the approxima on was obtained using numerical methods.

Note how in each of the previous examples we are effec vely finding “area
under a curve”, just as we did when first learning of integra on. We have used
the phrase “area over a curve C and under a surface,” but that is because of the
important role C plays in the integral. The figures show how the curve C defines
another curve on the surface z = f(x, y), and we are finding the area under that
curve.

Proper es of Line Integrals

Many proper es of line integrals can be inferred from general integra on
proper es. For instance, if k is a scalar, then

∫
C k f(s)ds = k

∫
C f(s)ds.

One property in par cular of line integrals is worth no ng. If C is a curve
composed of subcurves C1 and C2, where they share only one point in common
(see Figure 14.1.5(a)), then the line integral over C is the sum of the line integrals
over C1 and C2: ∫

C
f(s) ds =

∫
C1
f(s) ds+

∫
C2
f(s) ds.

This property allows us to evaluate line integrals over some curves C that are
not smooth. Note how in Figure 14.1.5(b) the curve is not smooth at D, so by
our defini on of the line integralwe cannot evaluate

∫
C f(s)ds. However, one can

evaluate line integrals over C1 and C2 and their sum will be the desired quan ty.

Notes:
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A curve C that is composed of two ormore smooth curves is said to be piece-
wise smooth. In this chapter, any statement that is made about smooth curves
also holds for piecewise smooth curves.

We state these proper es as a theorem.

Theorem 14.1.2 Proper es of Line Integrals Over Scalar Fields

1. LetCbe a smooth curve parametrized by the arc–length parameter
s, let f and g be con nuous func ons of s, and let k1 and k2 be
scalars. Then∫

C

(
k1f(s) + k2g(s)

)
ds = k1

∫
C
f(s) ds+ k2

∫
C
g(s) ds.

2. Let C be piecewise smooth, composed of smooth components C1
and C2. Then ∫

C
f(s) ds =

∫
C1
f(s) ds+

∫
C2
f(s) ds.

Mass and Center of Mass

We first learned integra on as a method to find area under a curve, then
later used integra on to compute a variety of other quan es, such as arc length,
volume, force, etc. In this sec on, we also introduced line integrals as a method
to find area under a curve, and now we explore one more applica on.

Let a curve C (either in the plane or in space) represent a thin wire with
variable density δ(s). We can approximate the mass of the wire by dividing the
wire (i.e., the curve) into small segments of length∆si and assume the density
is constant across these small segments. Themass of each segment is density of
the segment× its length; by summing up the approximatemass of each segment
we can approximate the total mass:

Total Mass of Wire =
∑

δ(si)∆si.

By taking the limit as the length of the segments approaches 0, we have the
defini on of the line integral as seen in Defini on 14.1.1. When learning of the
line integral, we let f(s) represent a height; now we let f(s) = δ(s) represent a
density.

We can extend this understanding of compu ng mass to also compute the
center of mass of a thin wire. (As a reminder, the center of mass can be a useful

Notes:
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Figure 14.1.6: Finding the mass of a thin
wire in Example 14.1.5.

14.1 Introduc on to Line Integrals

piece of informa on as objects rotate about that center.) We give the relevant
formulas in the next defini on, followed by an example. Note the similari es
between this defini on and Defini on 13.6.4, which gives similar proper es of
solids in space.

Defini on 14.1.2 Mass, Center of Mass of Thin Wire

Let a thin wire lie along a smooth curve C with con nuous density func-
on δ(s), where s is the arc length parameter.

1. Themass of the thin wire isM =

∫
C
δ(s) ds.

2. Themoment about the y-z plane isMyz =

∫
C
xδ(s) ds.

3. Themoment about the x-z plane isMxz =

∫
C
yδ(s) ds.

4. Themoment about the x-y plane isMxy =

∫
C
zδ(s) ds.

5. The center of mass of the wire is

(x, y, z) =
(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 14.1.5 Evalua ng a line integral: calcula ng mass.
A thin wire follows the path r⃗(t) = ⟨1+ cos t, 1+ sin t, 1+ sin(2t)⟩, 0 ≤ t ≤ 2π.
The density of the wire is determined by its posi on in space: δ(x, y, z) = y+ z
gm/cm. The wire is shown in Figure 14.1.6, where a light color indicates low
density and a dark color represents high density. Find the mass and center of
mass of the wire.

S We compute the density of the wire as

δ(x, y, z) = δ
(
1+ cos t, 1+ sin t, 1+ sin(2t)

)
= 2+ sin t+ sin(2t).

We compute ds as

ds = || r⃗ ′(t) || dt =
√

sin2 t+ cos2 t+ 4 cos2(2t) dt =
√

1+ 4 cos2(2t) dt.

Thus the mass is

M =

∮
C
δ(s) ds =

∫ 2π

0

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 21.08gm.

Notes:
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We compute the moments about the coordinate planes:

Myz =

∮
C
xδ(s) ds =

∫ 2π

0
(1+ cos t)

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 21.08.

Mxz =

∮
C
yδ(s) ds =

∫ 2π

0
(1+ sin t)

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 26.35

Mxy =

∮
C
zδ(s) ds =

∫ 2π

0

(
1+ sin(2t)

)(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 25.40

Thus the center of mass of the wire is located at

(x, y, z) =
(
Myz

M
,
Mxz

M
,
Mxy

M

)
≈ (1, 1.25, 1.20),

as indicated by the dot in Figure 14.1.6. Note how in this example, the curve C
is “centered” about the point (1, 1, 1), though the variable density of the wire
pulls the center of mass out along the y and z axes.

We end this sec on with a callback to the Integra on Review that preceded
this sec on. A line integral looks like:

∫
C f(s) ds. As stated before the defini on

of the line integral, this means “sum up, along a curve C, func on values f(s)×
small arc lengths.” When f(s) represents a height, we have “height × length =
area.” When f(s) is a density (and we use δ(s) by conven on), we have “density
(mass per unit length)× length = mass.”

In the next sec on, we inves gate a new mathema cal object, the vector
field. The remaining sec ons of this chapter are devoted to understanding inte-
gra on in the context of vector fields.

Notes:
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Exercises 14.1
Terms and Concepts
1. Explain how a line integral can be used to find the area un-

der a curve.

2. How does the evalua on of a line integral given as
∫
C f(s) ds

differ from a line integral given as
∮
C f(s) ds?

3. Why aremost line integrals evaluated using Key Idea 14.1.1
instead of “directly” as

∫
C f(s) ds?

4. Sketch a closed, piecewise smooth curve composed of
three subcurves.

Problems
In Exercises 5 – 10, a planar curve C is given along with a
surface f that is defined over C. Evaluate the line integral∫
C
f(s) ds.

5. C is the line segment joining the points (−2,−1) and (1, 2);
the surface is f(x, y) = x2 + y2 + 2.

6. C is the segment of y = 3x + 2 on [1, 2]; the surface is
f(x, y) = 5x+ 2y.

7. C is the circle with radius 2 centered at the point (4, 2); the
surface is f(x, y) = 3x− y.

8. C is the curve given by r⃗(t) = ⟨cos t+ t sin t, sin t− t cos t⟩
on [0, 2π]; the surface is f(x, y) = 5.

9. C is the piecewise curve composed of the line segments
that connect (0, 1) to (1, 1), then connect (1, 1) to (1, 0);
the surface is f(x, y) = x+ y2.

10. C is the piecewise curve composed of the line segment join-
ing the points (0, 0) and (1, 1), along with the quarter–
circle parametrized by ⟨cos t,− sin t+1⟩ on [0, π/2](which

starts at the point (1, 1) and ends at (0, 0); the surface is
f(x, y) = x2 + y2.

In Exercises 11 – 14, a planar curve C is given along with a sur-
face f that is defined over C. Set up the line integral

∫
C
f(s) ds,

then approximate its value using technology.

11. C is the por on of the parabola y = 2x2 + x + 1 on [0, 1];
the surface is f(x, y) = x2 + 2y.

12. C is the por on of the curve y = sin x on [0, π]; the surface
is f(x, y) = x.

13. C is the ellipse given by r⃗(t) = ⟨2 cos t, sin t⟩ on [0, 2π]; the
surface is f(x, y) = 10− x2 − y2.

14. C is the por on of y = x3 on [−1, 1]; the surface is f(x, y) =
2x+ 3y+ 5.

In Exercises 15 – 18, a parametrized curve C in space is given.
Find the area above the x-y plane that is under C.

15. C: r⃗(t) = ⟨5t, t, t2⟩ for 1 ≤ t ≤ 2.

16. C: r⃗(t) = ⟨cos t, sin t, sin(2t) + 1⟩ for 0 ≤ t ≤ 2π.

17. C: r⃗(t) = ⟨3 cos t, 3 sin t, t2⟩ for 0 ≤ t ≤ 2π.

18. C: r⃗(t) = ⟨3t, 4t, t⟩ for 0 ≤ t ≤ 1.

In Exercises 19 – 20, a parametrized curve C is given that rep-
resents a thin wire with density δ. Find the mass and center
of mass of the thin wire.

19. C: r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π; δ(x, y, z) = z.

20. C: r⃗(t) = ⟨t − t2, t2 − t3, t3 − t4⟩ for 0 ≤ t ≤ 1;
δ(x, y, z) = x + 2y + 2z. Use technology to approximate
the value of each integral.
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Figure 14.2.1: Demonstra ng methods of
graphing vector fields.

Chapter 14 Vector Analysis

14.2 Vector Fields
We have studied func ons of two and three variables, where the input of such
func ons is a point (either a point in the plane or in space) and the output is a
number.

We could also create func ons where the input is a point (again, either in
the plane or in space), but the output is a vector. For instance, we could create
the following func on: F⃗(x, y) = ⟨x + y, x − y⟩, where F⃗(2, 3) = ⟨5,−1⟩. We
are to think of F⃗ assigning the vector ⟨5,−1⟩ to the point (2, 3); in some sense,
the vector ⟨5,−1⟩ lies at the point (2, 3).

Such func ons are extremely useful in any context where magnitude and di-
rec on are important. For instance, we could create a func on F⃗ that represents
the electromagne c force exerted at a point by a electromagne c field, or the
velocity of air as it moves across an airfoil.

Because these func ons are so important, we need to formally define them.

Defini on 14.2.1 Vector Field

1. A vector field in the plane is a func on F⃗(x, y) whose domain is a
subset of R2 and whose output is a two–dimensional vector:

F⃗(x, y) = ⟨M(x, y),N(x, y)⟩.

2. A vector field in space is a func on F⃗(x, y, z) whose domain is a
subset of R3 and whose output is a three–dimensional vector:

F⃗(x, y, z) = ⟨M(x, y, z),N(x, y, z), P(x, y, z)⟩.

This defini on may seem odd at first, as a special type of func on is called a
“field.” However, as the func on determines a “field of vectors”, we can say the
field is defined by the func on, and thus the field is a func on.

Visualizing vector fields helps cement this connec on. When graphing a vec-
tor field in the plane, the general idea is to draw the vector F⃗(x, y) at the point
(x, y). For instance, using F⃗(x, y) = ⟨x + y, x − y⟩ as before, at (1, 1) we would
draw ⟨2, 0⟩.

In Figure 14.2.1(a), one can see that the vector ⟨2, 0⟩ is drawn star ng from
the point (1, 1). A total of 8 vectors are drawn, with the x- and y-values of
−1, 0, 1. In many ways, the resul ng graph is a mess; it is hard to tell what
this field “looks like.”

In Figure 14.2.1(b), the same field is redrawn with each vector F⃗(x, y) drawn
centered on the point (x, y). This makes for a be er looking image, though the

Notes:
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Figure 14.2.2: Demonstra ng methods of
graphing vector fields.

Figure 14.2.3: Graphing a vector field in
space.

14.2 Vector Fields

long vectors can cause confusion: whenone vector intersects another, the image
looks clu ered.

A commonway to address this problem is limit the length of each arrow, and
represent long vectors with thick arrows, as done in Figure 14.2.2(a). Usually
we do not use a graph of a vector field to determine exactly the magnitude of a
par cular vector. Rather, we are more concerned with the rela ve magnitudes
of vectors: which are bigger than others? Thus limi ng the length of the vectors
is not problema c.

Drawing arrows with variable thickness is best done with technology; search
thedocumenta onof your favorite graphing program for terms like “vector fields”
or “slope fields” to learn how. Technology obviously allows us to plot many vec-
tors in a vector field nicely; in Figure 14.2.2(b), we see the same vector field
drawn with many vectors, and finally get a clear picture of how this vector field
behaves. (If this vector field represented the velocity of air moving across a flat
surface, we could see that the air tends to move either to the upper–right or
lower–le , and moves very slowly near the origin.)

We can similarly plot vector fields in space, as shown in Figure 14.2.3, though
it is not o en done. The plots get very busy very quickly, as there are lots of
arrows drawn in a small amount of space. In Figure 14.2.3 the field F⃗ = ⟨−y, x, z⟩
is graphed. If one could view the graph from above, one could see the arrows
point in a cirlce about the z-axis. One should also note how the arrows far from
the origin are larger than those close to the origin.

It is good prac ce to try to visualize certain vector fields in one’s head. For
instance, consider a point mass at the origin and the vector field that represents
the gravita onal force exerted by the mass at any point in the room. The field
would consist of arrows poin ng toward the origin, increasing in size as they
near the origin (as the gravita onal pull is strongest near the point mass).

Vector Field Nota on and Del Operator

Defini on 14.2.1 defines a vector field F⃗ using the nota on

F⃗(x, y) = ⟨M(x, y),N(x, y)⟩ and F⃗(x, y, z) = ⟨M(x, y, z),N(x, y, z), P(x, y, z)⟩.

That is, the components of F⃗ are each func ons of x and y (and also z in space).
As done in other contexts, wewill drop the “of x, y and z” por ons of the nota on
and refer to vector fields in the plane and in space as

F⃗ = ⟨M,N⟩ and F⃗ = ⟨M,N, P⟩,

respec vely, as this shorthand is quite convenient.
Another item of nota on will become useful: the “del operator.” Recall in

Sec on 12.6 how we used the symbol ∇ (pronounced “del”) to represent the

Notes:
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Chapter 14 Vector Analysis

gradient of a func on of two variables. That is, if z = f(x, y), then “del f ” =
∇f = ⟨fx, fy⟩.

We now define∇ to be the “del operator.” It is a vector whose components
are par al deriva ve opera ons.

In the plane,∇ =

⟨
∂

∂x
,
∂

∂y

⟩
; in space,∇ =

⟨
∂

∂x
,
∂

∂y
,
∂

∂z

⟩
.

With this defini on of ∇, we can be er understand the gradient ∇f. As f
returns a scalar, the proper es of scalar and vector mul plica on gives

∇f =
⟨

∂

∂x
,
∂

∂y

⟩
f =

⟨
∂

∂x
f,

∂

∂y
f
⟩

= ⟨fx, fy⟩.

Now apply the del operator∇ to vector fields. Let F⃗ = ⟨x+ sin y, y2+ z, x2⟩.
We can use vector opera ons and find the dot product of∇ and F⃗:

∇ · F⃗ =
⟨

∂

∂x
,
∂

∂y
,
∂

∂z

⟩
· ⟨x+ sin y, y2 + z, x2⟩

=
∂

∂x
(x+ sin y) +

∂

∂y
(y2 + z) +

∂

∂z
(x2)

= 1+ 2y.

We can also compute their cross products:

∇× F⃗ =
⟨

∂

∂y
(
x2
)
− ∂

∂z
(
y2 + z

)
,
∂

∂z
(
x+ sin y

)
− ∂

∂x
(
x2
)
,
∂

∂x
(
y2 + z

)
− ∂

∂y
(
x+ sin y

)⟩
= ⟨−1,−2x,− cos y⟩.

We do not yet know why we would want to compute the above. However,
as we next learn about proper es of vector fields, wewill see how these dot and
cross products with the del operator are quite useful.

Divergence and Curl

Two proper es of vector fields will prove themselves to be very important:
divergence and curl. Each is a special “deriva ve” of a vector field; that is, each
measures an instantaneous rate of change of a vector field.

If the vector field represents the velocity of a fluid or gas, then the diver-
gence of the field is a measure of the “compressibility” of the fluid. If the diver-
gence is nega ve at a point, it means that the fluid is compressing: more fluid is
going into the point than is going out. If the divergence is posi ve, it means the
fluid is expanding: more fluid is going out at that point than going in. A diver-
gence of zero means the same amount of fluid is going in as is going out. If the
divergence is zero at all points, we say the field is incompressible.

Notes:
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14.2 Vector Fields

It turns out that the proper measure of divergence is simply∇ · F⃗, as stated
in the following defini on.

Defini on 14.2.2 Divergence of a Vector Field

The divergence of a vector field F⃗ is

div F⃗ = ∇ · F⃗.

• In the plane, with F⃗ = ⟨M,N⟩, div F⃗ = Mx + Ny.

• In space, with F⃗ = ⟨M,N, P⟩, div F⃗ = Mx + Ny + Pz.

Curl is a measure of the spinning ac on of the field. Let F⃗ represent the flow
of water over a flat surface. If a small round cork were held in place at a point
in the water, would the water cause the cork to spin? No spin corresponds to
zero curl; counterclockwise spin corresponds to posi ve curl and clockwise spin
corresponds to nega ve curl.

In space, things are a bit more complicated. Again let F⃗ represent the flow
of water, and imagine suspending a tennis ball in one loca on in this flow. The
water may cause the ball to spin along an axis. If so, the curl of the vector field
is a vector (not a scalar, as before), parallel to the axis of rota on, following a
right hand rule: when the thumb of one’s right hand points in the direc on of
the curl, the ball will spin in the direc on of the curling fingers of the hand.

In space, it turns out the proper measure of curl is ∇ × F⃗, as stated in the
following defini on. To find the curl of a planar vector field F⃗ = ⟨M,N⟩, embed
it into space as F⃗ = ⟨M,N, 0⟩ and apply the cross product defini on. Since M
andN are func ons of just x and y (and not z), all par al deriva ves with respect
to z become 0 and the result is simply ⟨0, 0,Nx −My⟩. The third component is
the measure of curl of a planar vector field.

Defini on 14.2.3 Curl of a Vector Field

• Let F⃗ = ⟨M,N⟩ be a vector field in the plane. The curl of F⃗ is
curl F⃗ = Nx −My.

• Let F⃗ = ⟨M,N, P⟩ be a vector field in space. The curl of F⃗ is curl F⃗ =
∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩.

We adopt the conven on of referring to curl as∇× F⃗, regardless of whether

Notes:
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Figure 14.2.4: The vector fields in parts (a)
and (b) in Example 14.2.1.

Chapter 14 Vector Analysis

F⃗ is a vector field in two or three dimensions.
We now prac ce compu ng these quan es.

Example 14.2.1 Compu ng divergence and curl of planar vector fields
For each of the planar vector fields given below, view its graph and try to visually
determine if its divergence and curl are 0. Then compute the divergence and
curl.

1. F⃗ = ⟨y, 0⟩ (see Figure 14.2.4(a))

2. F⃗ = ⟨−y, x⟩ (see Figure 14.2.4(b))

3. F⃗ = ⟨x, y⟩ (see Figure 14.2.5(a))

4. F⃗ = ⟨cos y, sin x⟩ (see Figure 14.2.5(b))

S

1. The arrow sizes are constant along any horizontal line, so if one were to
draw a small box anywhere on the graph, it would seem that the same
amount of fluid would enter the box as exit. Therefore it seems the diver-
gence is zero; it is, as

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(y) +

∂

∂y
(0) = 0.

At any point on the x-axis, arrows above it move to the right and arrows
below it move to the le , indica ng that a cork placed on the axis would
spin clockwise. A cork placed anywhere above the x-axiswould havewater
above it moving to the right faster than the water below it, also crea ng
a clockwise spin. A clockwise spin also appears to be created at points
below the x-axis. Thus it seems the curl should be nega ve (and not zero).
Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(0)− ∂

∂y
(y) = −1.

2. It appears that all vectors that lie on a circle of radius r, centered at the
origin, have the same length (and indeed this is true). That implies that
the divergence should be zero: draw any box on the graph, and any fluid
coming in will lie along a circle that takes the same amount of fluid out.
Indeed, the divergence is zero, as

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(−y) +

∂

∂y
(x) = 0.
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Figure 14.2.5: The vector fields in parts (c)
and (d) in Example 14.2.1.

14.2 Vector Fields

Clearly this field moves objects in a circle, but would it induce a cork to
spin? It appears that yes, it would: place a cork anywhere in the flow, and
the point of the cork closest to the origin would feel less flow than the
point on the cork farthest from the origin, which would induce a counter-
clockwise flow. Indeed, the curl is posi ve:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(x)− ∂

∂y
(−y) = 1− (−1) = 2.

Since the curl is constant, we conclude the induced spin is the same no
ma er where one is in this field.

3. At the origin, there are many arrows poin ng out but no arrows poin ng
in. We conclude that at the origin, the divergence must be posi ve (and
not zero). If one were to draw a box anywhere in the field, the edges
farther from the origin would have larger arrows passing through them
than the edges close to the origin, indica ng that more is going from a
point than going in. This indicates a posi ve (and not zero) divergence.
This is correct:

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(x) +

∂

∂y
(y) = 1+ 1 = 2.

One may find this curl to be harder to determine visually than previous
examples. One might note that any arrow that induces a clockwise spin
on a cork will have an equally sized arrow inducing a counterclockwise
spin on the other side, indica ng no spin and no curl. This is correct, as

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(y)− ∂

∂y
(x) = 0.

4. One might find this divergence hard to determine visually as large arrows
appear in close proximity to small arrows, each poin ng in different direc-
ons. Instead of trying to ra onalize a guess, we compute the divergence:

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(cos y) +

∂

∂y
(sin x) = 0.

Perhaps surprisingly, the divergence is 0.
Will all the loops of different direc ons in the field, one is apt to reason
the curl is variable. Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(sin x)− ∂

∂y
(cos y) = cos x+ sin y.

Depending on the values of x and y, the curl may be posi ve, nega ve, or
zero.
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Example 14.2.2 Compu ng divergence and curl of vector fields in space
Compute the divergence and curl of each of the following vector fields.

1. F⃗ = ⟨x2 + y+ z,−x− z, x+ y⟩

2. F⃗ = ⟨exy, sin(x+ z), x2 + y⟩

S We compute the divergence and curl of each field following the
defini ons.

1. div F⃗ = ∇ · F⃗ = Mx + Ny + Pz = 2x+ 0+ 0 = 2x.

curl F⃗ = ∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩
= ⟨1− (−1), 1− 1,−1− (1)⟩ = ⟨2, 0,−2⟩.

For this par cular field, no ma er the loca on in space, a spin is induced
with axis parallel to ⟨2, 0,−2⟩.

2. div F⃗ = ∇ · F⃗ = Mx + Ny + Pz = yexy + 0+ 0 = yexy.

curl F⃗ = ∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩
= ⟨1− cos(x+ z),−2x, cos(x+ z)− xexy⟩.

Example 14.2.3 Crea ng a field represen ng gravita onal force
The force of gravity between two objects is inversely propor onal to the square
of the distance between the objects. Locate a point mass at the origin. Create a
vector field F⃗ that represents the gravita onal pull of the point mass at any point
(x, y, z). Find the divergence and curl of this field.

S The point mass pulls toward the origin, so at (x, y, z), the
force will pull in the direc on of ⟨−x,−y,−z⟩. To get the proper magnitude, it
will be useful to find the unit vector in this direc on. Dividing by its magnitude,
we have

u⃗ =

⟨
−x√

x2 + y2 + z2
,

−y√
x2 + y2 + z2

,
−z√

x2 + y2 + z2

⟩
.

Themagnitude of the force is inversely propor onal to the square of the distance
between the two points. Le ng k be the constant of propor onality, we have
the magnitude as

k
x2 + y2 + z2

. Mul plying this magnitude by the unit vector
above, we have the desired vector field:

F⃗ =
⟨

−kx
(x2 + y2 + z2)3/2

,
−ky

(x2 + y2 + z2)3/2
,

−kz
(x2 + y2 + z2)3/2

⟩
.
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Figure 14.2.7: A graph of a func on z =
f(x, y) and the vector field F⃗ = ∇f in Ex-
ample 14.2.4.

14.2 Vector Fields

We leave it to the reader to confirm that div F⃗ = 0 and curl F⃗ = 0⃗.
The analogous planar vector field is given in Figure 14.2.6. Note how all ar-

rows point to the origin, and the magnitude gets very small when “far” from the
origin.

A func on z = f(x, y) naturally induces a vector field, F⃗ = ∇f = ⟨fx, fy⟩.
Given what we learned of the gradient in Sec on 12.6, we know that the vec-
tors of F⃗ point in the direc on of greatest increase of f. Because of this, f is said
to be the poten al func on of F⃗. Vector fields that are the gradient of poten al
func ons will play an important role in the next sec on.

Example 14.2.4 A vector field that is the gradient of a poten al func on
Let f(x, y) = 3− x2 − 2y2 and let F⃗ = ∇f. Graph F⃗, and find the divergence and
curl of F⃗.

S Given f, we find F⃗ = ∇f = ⟨−2x,−4y⟩. A graph of F⃗ is
given in Figure 14.2.7(a). In part (b) of the figure, the vector field is given along
with a graph of the surface itself; one can see how each vector is poin ng in the
direc on of “steepest uphill”, which, in this case, is not simply just “toward the
origin.”

We leave it to the reader to confirm that div F⃗ = −6 and curl F⃗ = 0.

There are some important concepts visited in this sec on that will be revis-
ited in subsequent sec ons and again at the very end of this chapter. One is:
given a vector field F⃗, both div F⃗ and curl F⃗ are measures of rates of change of F⃗.
The divergence measures how much the field spreads (diverges) at a point, and
the curl measures how much the field twists (curls) at a point. Another impor-
tant concept is this: given z = f(x, y), the gradient∇f is also a measure of a rate
of change of f. We will see how the integrals of these rates of change produce
meaningful results.

This sec on introduces the concept of a vector field. The next sec on “ap-
plies calculus” to vector fields. A common applica on is this: let F⃗ be a vector
field represen ng a force (hence it is called a “force field,” though this name has
a decidedly comic-book feel) and let a par cle move along a curve C under the
influence of this force. What work is performed by the field on this par cle? The
solu on lies in correctly applying the concepts of line integrals in the context of
vector fields.
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Exercises 14.2
Terms and Concepts
1. Give two quan es that can be represented by a vector

field in the plane or in space.

2. In your ownwords, describewhat itmeans for a vector field
to have a nega ve divergence at a point.

3. In your ownwords, describewhat itmeans for a vector field
to have a nega ve curl at a point.

4. The divergence of a vector field F⃗ at a par cular point is 0.
Does this mean that F⃗ is incompressible? Why/why not?

Problems
In Exercises 5 – 8, sketch the given vector field over the rect-
angle with opposite corners (−2,−2) and (2, 2), sketching
one vector for every point with integer coordinates (i.e., at
(0, 0), (1, 2), etc.).

5. F⃗ = ⟨x, 0⟩

6. F⃗ = ⟨0, x⟩

7. F⃗ = ⟨1,−1⟩

8. F⃗ = ⟨y2, 1⟩

In Exercises 9 – 18, find the divergence and curl of the given
vector field.

9. F⃗ = ⟨x, y2⟩

10. F⃗ = ⟨−y2, x⟩

11. F⃗ = ⟨cos(xy), sin(xy)⟩

12. F⃗ =
⟨

−2x
(x2 + y2)2

,
−2y

(x2 + y2)2

⟩

13. F⃗ = ⟨x+ y, y+ z, x+ z⟩

14. F⃗ =
⟨
x2 + z2, x2 + y2, y2 + z2

⟩
15. F⃗ = ∇f, where f(x, y) = 1

2 x
2 + 1

3y
3.

16. F⃗ = ∇f, where f(x, y) = x2y.

17. F⃗ = ∇f, where f(x, y, z) = x2y+ sin z.

18. F⃗ = ∇f, where f(x, y, z) = 1
x2 + y2 + z2

.
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14.3 Line Integrals over Vector Fields
Suppose a par cle moves along a curve C under the influence of an electromag-
ne c force described by a vector field F⃗. Since a force is inducing mo on, work
is performed. How can we calculate how much work is performed?

Recall thatwhenmoving in a straight line, if F⃗ represents a constant force and
d⃗ represents the direc on and length of travel, then work is simply W = F⃗ · d⃗.
However, we generally want to be able to calculate work even if F⃗ is not constant
and C is not a straight line.

As we have prac ced many mes before, we can calculate work by first ap-
proxima ng, then refining our approxima on through a limit that leads to inte-
gra on.

Assumeaswedid in Sec on 14.1 thatC canbeparametrizedby the arc length
parameter s. Over a short piece of the curve with length ds, the curve is ap-
proximately straight and our force is approximately constant. The straight–line
direc on of this short length of curve is given by T⃗, the unit tangent vector; let
d⃗ = T⃗ ds, which gives the direc on and magnitude of a small sec on of C. Thus
work over this small sec on of C is F⃗ · d⃗ = F⃗ · T⃗ ds.

Summing up all the work over these small segments gives an approxima-
on of the work performed. By taking the limit as ds goes to zero, and hence

the number of segments approaches infinity, we can obtain the exact amount
of work. Following the logic presented at the beginning of this chapter in the
Integra on Review, we see that

W =

∫
C
F⃗ · T⃗ ds,

a line integral.
This line integral is beau ful in its simplicity, yet is not so useful in making

actual computa ons (largely because the arc length parameter is so difficult to
work with). To compute actual work, we need to parametrize C with another
parameter t via a vector–valued func on r⃗(t). As stated in Sec on 14.1, ds =
|| r⃗ ′(t) || dt, and recall that T⃗ = r⃗ ′(t)/|| r⃗ ′(t) ||. Thus

W =

∫
C
F⃗ · T⃗ ds =

∫
C
F⃗ · r⃗ ′(t)

|| r⃗ ′(t) ||
|| r⃗ ′(t) || dt =

∫
C
F⃗ · r⃗ ′(t) dt =

∫
C
F⃗ · d⃗r, (14.2)

where the final integral uses the differen al d⃗r for r⃗ ′(t) dt.
These integrals are known as line integrals over vector fields. By contrast,

the line integrals we dealt with in Sec on 14.1 are some mes referred to as
line integrals over scalar fields. Just as a vector field is defined by a func on
that returns a vector, a scalar field is a func on that returns a scalar, such as
z = f(x, y). We waited un l now to introduce this terminology so we could
contrast the concept with vector fields.
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We formally define this line integral, then give examples and applica ons.

Defini on 14.3.1 Line Integral Over A Vector Field

Let F⃗ be a vector field with con nuous components defined on a smooth
curve C, parametrized by r⃗(t), and let T⃗ be the unit tangent vector of r⃗(t).
The line integral over F⃗ along C is∫

C
F⃗ · d⃗r =

∫
C
F⃗ · T⃗ ds.

In Defini on 14.3.1, note how the dot product F⃗ · T⃗ is just a scalar. Therefore,
this new line integral is really just a special kind of line integral found in Sec on
14.1; le ng f(s) = F⃗(s)·T⃗(s), the right–hand side simply becomes

∫
C f(s) ds, and

we can use the techniques of that sec on to evaluate the integral. We combine
those techniques, along with parts of Equa on (14.2), to clearly state how to
evaluate a line integral over a vector field in the following Key Idea.

Key Idea 14.3.1 Evalua ng a Line Integral Over A Vector Field

Let F⃗ be a vector field with con nuous components defined on a smooth
curve C, parametrized by r⃗(t), a ≤ t ≤ b, where r⃗ is con nuously differ-
en able. Then∫

C
F⃗ · T⃗ ds =

∫
C
F⃗ · d⃗r =

∫ b

a
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt.

An important concept implicit in this Key Idea: we can use any con nuously
differen able parametriza on r⃗(t) of C that preserves the orienta on of C: there
isn’t a “right” one. In prac ce, choose one that seems easy to work with.

Nota on note: the above Defini on and Key Idea implicitly evaluate F⃗ along
the curve C, which is parametrized by r⃗(t). For instance, if F⃗ = ⟨x + y, x − y⟩
and r⃗(t) = ⟨t2, cos t⟩, then evalua ng F⃗ along C means subs tu ng the x- and
y-components of r⃗(t) in for x and y, respec vely, in F⃗. Therefore, along C, F⃗ =
⟨x+ y, x− y⟩ =

⟨
t2 + cos t, t2 − cos t

⟩
. Since we are subs tu ng the output of

r⃗(t) for the input of F⃗, we write this as F⃗
(⃗
r(t)
)
. This is a slight abuse of nota on

as technically the input of F⃗ is to be a point, not a vector, but this shorthand is
useful.

We use an example to prac ce evalua ng line integrals over vector fields.
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y = x

y = x4

Figure 14.3.1: Paths through a vector field
in Example 14.3.1.

14.3 Line Integrals over Vector Fields

Example 14.3.1 Evalua ng a line integral over a vector field:
compu ng work

Two par cles move from (0, 0) to (1, 1) under the influence of the force field
F⃗ = ⟨x, x + y⟩. One par cle follows C1, the line y = x; the other follows C2,
the curve y = x4, as shown in Figure 14.3.1. Force is measured in newtons and
distance is measured in meters. Find the work performed by each par cle.

S To compute work, we need to parametrize each path. We
use r⃗1(t) = ⟨t, t⟩ to parametrize y = x, and let r⃗2(t) = ⟨t, t4⟩ parametrize
y = x4; for each, 0 ≤ t ≤ 1.

Along the straight–line path, F⃗
(⃗
r1(t)

)
= ⟨x, x+ y⟩ = ⟨t, t+ t⟩ = ⟨t, 2t⟩. We

find r⃗ ′1(t) = ⟨1, 2⟩. The integral that computes work is:∫
C1
F⃗ · d⃗r =

∫ 1

0
⟨t, 2t⟩ · ⟨1, 1⟩ dt

=

∫ 1

0
3t dt

=
3
2
t2
∣∣∣1
0
= 1.5 joules.

Along the curve y = x4, F⃗
(⃗
r2(t)

)
= ⟨x, x+ y⟩ =

⟨
t, t+ t4

⟩
. We find r⃗ ′2(t) =⟨

1, 4t3
⟩
. The work performed along this path is∫

C2
F⃗ · d⃗r =

∫ 1

0

⟨
t, t+ t4

⟩
·
⟨
1, 4t3

⟩
dt

=

∫ 1

0

(
t+ 4t4 + 4t7

)
dt

=
(1
2
t2 +

4
5
t5 +

1
2
t8
)∣∣∣1

0
= 1.8 joules.

Notehowdiffering amounts ofwork are performedalong thedifferent paths.
This should not be too surprising: the force is variable, one path is longer than
the other, etc.

Example 14.3.2 Evalua ng a line integral over a vector field:
compu ng work

Two par cles move from (−1, 1) to (1, 1) under the influence of a force field
F⃗ = ⟨y, x⟩. One moves along the curve C1, the parabola defined by y = 2x2 − 1.
The other par clemoves along the curveC2, the bo omhalf of the circle defined
by x2 + (y − 1)2 = 1, as shown in Figure 14.3.2. Force is measured in pounds

Notes:
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Figure 14.3.2: Paths through a vector field
in Example 14.3.2.

Chapter 14 Vector Analysis

and distances are measured in feet. Find the work performed by moving each
par cle along its path.

S We start by parametrizing C1: the parametriza on r⃗1(t) =⟨
t, 2t2 − 1

⟩
is straigh orward, giving r⃗ ′1 = ⟨1, 4t⟩. On C1, F⃗

(⃗
r1(t)

)
= ⟨y, x⟩ =⟨

2t2 − 1, t
⟩
.

Compu ng the work along C1, we have:∫
C1
F⃗ · d⃗r1 =

∫ 1

−1

⟨
2t2 − 1, t

⟩
· ⟨1, 4t⟩ dt

=

∫ 1

−1

(
2t2 − 1+ 4t2

)
dt = 2 -lbs.

For C2, it is probably simplest to parametrize the half circle using sine and
cosine. Recall that r⃗(t) = ⟨cos t, sin t⟩ is a parametriza on of the unit circle on
0 ≤ t ≤ 2π; we add 1 to the second component to shi the circle up one unit,
then restrict the domain to π ≤ t ≤ 2π to obtain only the lower half, giving
r⃗2(t) = ⟨cos t, sin t+ 1⟩, π ≤ t ≤ 2π, and hence r⃗ ′2(t) = ⟨− sin t, cos t⟩ and
F⃗
(⃗
r2(t)

)
= ⟨y, x⟩ = ⟨sin t+ 1, cos t⟩.

Compu ng the work along C2, we have:∫
C2
F⃗ · d⃗r2 =

∫ 2π

π

⟨sin t+ 1, cos t⟩ · ⟨− sin t, cos t⟩ dt

=

∫ 2π

π

(
− sin2 t− sin t+ cos2 t

)
dt = 2 -lbs.

Note how the work along C1 and C2 in this example is the same. We’ll address
why later in this sec on when conserva ve fields and path independence are
discussed.

Proper es of Line Integrals Over Vector Fields

Line integrals over vector fields share the same proper es as line integrals
over scalar fields, with one important dis nc on. The orienta on of the curve C
ma ers with line integrals over vector fields, whereas it did not ma er with line
integrals over scalar fields.

It is rela vely easy to see why. Let C be the unit circle. The area under a
surface over C is the samewhether we traverse the circle in a clockwise or coun-
terclockwise fashion, hence the line integral over a scalar field on C is the same
irrespec ve of orienta on. On the other hand, if we are compu ng work done
by a force field, direc on of travel definitely ma ers. Opposite direc ons create
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Figure 14.3.3: The vector field and curve
in Example 14.3.3.

14.3 Line Integrals over Vector Fields

opposite signswhen compu ng dot products, so traversing the circle in opposite
direc ons will create line integrals that differ by a factor of−1.

Theorem 14.3.1 Proper es of Line Integrals Over Vector Fields

1. Let F⃗ and G⃗ be vector fields with con nuous components defined
on a smooth curve C, parametrized by r⃗(t), and let k1 and k2 be
scalars. Then∫

C

(
k1F⃗+ k2G⃗

)
· d⃗r = k1

∫
C
F⃗ · d⃗r+ k2

∫
C
G⃗ · d⃗r.

2. Let C be piecewise smooth, composed of smooth components C1
and C2. Then ∫

C
F⃗ · d⃗r =

∫
C1
F⃗ · d⃗r+

∫
C2
F⃗ · d⃗r.

3. Let C∗ be the curve C with opposite orienta on, parametrized by
r⃗ ∗. Then ∫

C
F⃗ · d⃗r = −

∫
C∗

F⃗ · d⃗r ∗.

We demonstrate using these proper es in the following example.

Example 14.3.3 Using proper es of line integrals over vector fields
Let F⃗ = ⟨3(y− 1/2), 1⟩ and let C be the path that starts at (0, 0), goes to (1, 1)
along the curve y = x3, then returns to (0, 0) along the line y = x, as shown in
Figure 14.3.3. Evaluate

∮
C F⃗ · d⃗r.

S As C is piecewise smooth, we break it into two components
C1 and C2, where C1 follows the curve y = x3 and C2 follows the curve y = x.

We parametrize C1 with r⃗1(t) =
⟨
t, t3
⟩
on 0 ≤ t ≤ 1, with r⃗ ′1(t) =

⟨
1, 3t2

⟩
.

We will use F⃗
(⃗
r1(t)

)
=
⟨
3(t3 − 1/2), 1

⟩
.

While we always have unlimited ways in which to parametrize a curve, there
are 2 “direct”methods to choose fromwhen parametrizing C2. The parametriza-
on r⃗2(t) = ⟨t, t⟩, 0 ≤ t ≤ 1 traces the correct line segment but with the wrong

orienta on. Using Property 3 of Theorem 14.3.1, we can use this parametriza-
on and negate the result.
Another choice is to use the techniques of Sec on 10.5 to create the line

with the orienta on we desire. We wish to start at (1, 1) and travel in the
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Figure 14.3.4: The graph of r⃗(t) in Exam-
ple 14.3.4.

Chapter 14 Vector Analysis

d⃗ = ⟨−1,−1⟩ direc on for one length of d⃗, giving equa on ℓ⃗(t) = ⟨1, 1⟩ +
t ⟨−1,−1⟩ = ⟨1− t, 1− t⟩ on 0 ≤ t ≤ 1.

Either choice is fine; we choose r⃗2(t) to prac ce using line integral proper-
es. We find r⃗ ′2(t) = ⟨1, 1⟩ and F⃗

(⃗
r2(t)

)
= ⟨3(t− 1/2), 1⟩.

Evalua ng the line integral (note howwe subtract the integral over C2 as the
orienta on of r⃗2(t) is opposite):∮

C
F⃗ · d⃗r =

∫
C1
F⃗ · d⃗r1 −

∫
C2
F⃗ · d⃗r2

=

∫ 1

0

⟨
3(t3 − 1/2), 1

⟩
·
⟨
1, 3t2

⟩
dt−

∫ 1

0
⟨3(t− 1/2), 1⟩ · ⟨1, 1⟩ dt

=

∫ 1

0

(
3t3 + 3t2 − 3/2

)
dt−

∫ 1

0

(
3t− 1/2

)
dt

=
(
1/4
)
−
(
1
)

= −3/4.

If we interpret this integral as compu ng work, the nega ve work implies that
the mo on is mostly against the direc on of the force, which seems plausible
when we look at Figure 14.3.3.

Example 14.3.4 Evalua ng a line integral over a vector field in space
Let F⃗ = ⟨−y, x, 1⟩, and letCbe thepor onof the helix givenby r⃗(t) = ⟨cos t, sin t, t/(2π)⟩
on [0, 2π], as shown in Figure 14.3.4. Evaluate

∫
C F⃗ · d⃗r.

S A parametriza on is already given for C, so we just need to
find F⃗

(⃗
r(t)
)
and r⃗ ′(t).

We have F⃗
(⃗
r(t)
)

= ⟨− sin t, cos t, 1⟩ and r⃗ ′(t) = ⟨− sin t, cos t, 1/(2π)⟩.
Thus ∫

C
F⃗ · d⃗r =

∫ 2π

0
⟨− sin t, cos t, 1⟩ · ⟨− sin t, cos t, 1/(2π)⟩ dt

=

∫ 2π

0

(
sin2 t+ cos2 t+

1
2π
)
dt

= 2π + 1 ≈ 7.28.

The Fundamental Theorem of Line Integrals

We are preparing to make important statements about the value of certain
line integrals over special vector fields. Beforewe can do that, we need to define
some terms that describe the domains over which a vector field is defined.
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R1
R2

R3

Figure 14.3.5: R1 is simply connected; R2
is connected, but not simply connected;
R3 is not connected.

(a)

(b)

Figure 14.3.6: The domains in (a) are sim-
ply connected, while the domains in (b)
are not.

14.3 Line Integrals over Vector Fields

A region in the plane is connected if any two points in the region can be
joined by a piecewise smooth curve that lies en rely in the region. In Figure
14.3.5, sets R1 and R2 are connected; set R3 is not connected, though it is com-
posed of two connected subregions.

A region is simply connected if every simple closed curve that lies en rely
in the region can be con nuously deformed (shrunk) to a single point without
leaving the region. (A curve is simple if it does not cross itself.) In Figure 14.3.5,
only set R1 is simply connected. Region R2 is not simply connected as any closed
curve that goes around the “hole” in R2 cannot be con nously shrunk to a single
point. As R3 is not even connected, it cannot be simply connected, though again
it consists of two simply connected subregions.

We have applied these terms to regions of the plane, but they can be ex-
tended intui vely to domains in space (and hyperspace). In Figure 14.3.6(a),
the domain bounded by the sphere (at le ) and the domain with a subsphere
removed (at right) are both simply connected. Any simple closed path that lies
en rely within these domains can be con nuously deformed into a single point.
In Figure 14.3.6(b), neither domain is simply connected. A le , the ball has a
hole that extends its length and the pictured closed path cannot be deformed
to a point. At right, two paths are illustrated on the torus that cannot be shrunk
to a point.

We will use the terms connected and simply connected in subsequent defi-
ni ons and theorems.

Recall how in Example 14.3.2 par clesmoved fromA = (−1, 1) toB = (1, 1)
along two different paths, wherein the same amount of work was performed
along each path. It turns out that regardless of the choice of path from A to B,
the amount of work performed under the field F⃗ = ⟨y, x⟩ is the same. Since
our expecta on is that differing amounts of work are performed along different
paths, we give such special fields a name.

Defini on 14.3.2 Conserva ve Field, Path Independent

Let F⃗ be a vector field defined on an open, connected domain D in the
plane or in space containing points A and B. If the line integral

∫
C F⃗ · d⃗r

has the same value for all choices of paths C star ng at A and ending at
B, then

• F⃗ is a conserva ve field and

• The line integral
∫
C F⃗ · d⃗r is path independent and can be wri en

as ∫
C
F⃗ · d⃗r =

∫ B

A
F⃗ · d⃗r.
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When F⃗ is a conserva ve field, the line integral from points A to B is some-
mes wri en as

∫ B
A F⃗ · d⃗r to emphasize the independence of its value from the

choice of path; all that ma ers are the beginning and ending points of the path.
How can we tell if a field is conserva ve? To show a field F⃗ is conserva ve

using the defini on, we need to show that all line integrals from points A to B
have the same value. It is equivalent to show that all line integrals over closed
paths C are 0. Each of these tasks are generally nontrivial.

There is a simpler method. Consider the surface defined by z = f(x, y) = xy.
We can compute the gradient of this func on: ∇f = ⟨fx, fy⟩ = ⟨y, x⟩. Note that
this is the field from Example 14.3.2, which we have claimed is conserva ve. We
will soon give a theorem that states that a field F⃗ is conserva ve if, and only if,
it is the gradient of some scalar func on f. To show F⃗ is conserva ve, we need
to determine whether or not F⃗ = ∇f for some func on f. (We’ll later see that
there is a yet simpler method). To recognize the special rela onship between F⃗
and f in this situa on, f is given a name.

Defini on 14.3.3 Poten al Func on

Let f be a differen able func on defined on a domain D in the plane or
in space (i.e., z = f(x, y) or w = f(x, y, z)) and let F⃗ = ∇f, the gradient
of f. Then f is a poten al func on of F⃗.

We now state the Fundamental Theorem of Line Integrals, which connects
conserva ve fields and path independence to fields with poten al func ons.

Theorem 14.3.2 Fundamental Theorem of Line Integrals

Let F⃗ be a vector field whose components are con nuous on a connected
domain D in the plane or in space, let A and B be any points in D, and let
C be any path in D star ng at A and ending at B.

1. F⃗ is conserva ve if and only if there exists a differen able func on
f such that F⃗ = ∇f.

2. If F⃗ is conserva ve, then∫
C
F⃗ · d⃗r =

∫ B

A
F⃗ · d⃗r = f(B)− f(A).

Once again considering Example 14.3.2, we have A = (−1, 1), B = (1, 1)
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and F⃗ = ⟨y, x⟩. In that example, we evaluated two line integrals from A to B and
found the value of each was 2. Note that f(x, y) = xy is a poten al func on for
F⃗. Following the Fundamental Theorem of Line Integrals, consider f(B)− f(A):

f(B)− f(A) = f(1, 1)− f(−1, 1) = 1− (−1) = 2,

the same value given by the line integrals.
We prac ce using this theorem again in the next example.

Example 14.3.5 Using the Fundamental Theorem of Line Integrals
Let F⃗ =

⟨
3x2y+ 2x, x3 + 1

⟩
, A = (0, 1) and B = (1, 4). Use the first part of

the Fundamental Theorem of Line Integrals to show that F⃗ is conserva ve, then
choose any path from A to B and confirm the second part of the theorem.

S To show F⃗ is conserva ve, we need to find z = f(x, y) such
that F⃗ = ∇f = ⟨fx, fy⟩. That is, we need to find f such that fx = 3x2y + 2x and
fy = x3 + 1. As all we know about f are its par al deriva ves, we recover f by
integra on: ∫

∂f
∂x

dx = f(x, y) + C(y).

Note how the constant of integra on is more than “just a constant”: it is any-
thing that acts as a constant when taking a deriva ve with respect to x. Any
func on that is a func on of y (containing no x’s) acts as a constant when deriv-
ing with respect to x.

Integra ng fx in this example gives:∫
∂f
∂x

dx =
∫
(3x2y+ 2x) dx = x3y+ x2 + C(y).

Likewise, integra ng fy with respect to y gives:∫
∂f
∂y

dy =
∫
(x3 + 1) dy = x3y+ y+ C(x).

These two results should be equal with appropriate choices of C(x) and C(y):

x3y+ x2 + C(y) = x3y+ y+ C(x) ⇒ C(x) = x2 and C(y) = y.

We find f(x, y) = x3y + x2 + y, a poten al func on of F⃗. (If F⃗ were not
conserva ve, no choice of C(x) and C(y) would give equality.)

By the Fundamental Theorem of Line Integrals, regardless of the path from
A to B, ∫ B

A
F⃗ · d⃗r = f(B)− f(A)

= f(1, 4)− f(0, 1)
= 9− 1 = 8.
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To illustrate the validity of the Fundamental Theorem, we pick a path from A to
B. The line between these two points would be simple to construct; we choose
a slightly more complicated path by choosing the parabola y = x2+2x+1. This
leads to the parametriza on r⃗(t) =

⟨
t, t2 + 2t+ 1

⟩
, 0 ≤ t ≤ 1, with r⃗ ′(t) =

⟨t, 2t+ 2⟩. Thus∫
C
F⃗ · d⃗r =

∫
C
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt

=

∫ 1

0

⟨
3(t)(t2 + 2t+ 1) + 2t, t3 + 1

⟩
· ⟨t, 2t+ 2⟩ dt

=

∫ 1

0

(
5t4 + 8t3 + 3t2 + 4t+ 2

)
dt

=
(
t5 + 2t4 + t3 + 2t2 + 2t

)∣∣∣1
0

= 8,

which matches our previous result.

The Fundamental Theorem of Line Integrals states that we can determine
whether or not F⃗ is conserva ve by determining whether or not F⃗ has a poten al
func on. This can be difficult. A simpler method exists if the domain of F⃗ is
simply connected (not just connected as needed in the Fundamental Theoremof
Line Integrals), which is a reasonable requirement. We state this simplermethod
as a theorem.

Theorem 14.3.3 Curl of Conserva ve Fields

Let F⃗ be a vector field whose components are con nuous on a simply
connected domain D in the plane or in space. Then F⃗ is conserva ve if
and only if curl F⃗ = 0 or 0⃗, respec vely.

In Example 14.3.5, we showed that F⃗ = ⟨3x2y+2x, x3+1⟩ is conserva ve by
finding a poten al func on for F⃗. Using the above theorem, we can show that F⃗
is conserva ve much more easily by compu ng its curl:

curl F⃗ = Nx −My = 3x2 − 3x2 = 0.

Notes:
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Exercises 14.3
Terms and Concepts
1. T/F: In prac ce, the evalua on of line integrals over vector

fields involves compu ng themagnitude of a vector–valued
func on.

2. Let F⃗(x, y) be a vector field in the plane and let r⃗(t) be a
two–dimensional vector–valued func on. Why is “⃗F

(⃗
r(t)
)
”

an “abuse of nota on”?

3. T/F: The orienta on of a curve C ma ers when compu ng
a line integral over a vector field.

4. T/F: The orienta on of a curve C ma ers when compu ng
a line integral over a scalar field.

5. Under “reasonable condi ons,” if curl F⃗ = 0⃗, what can we
conclude about the vector field F⃗?

6. Let F⃗ be a conserva ve field and let C be a closed curve.
Why are we able to conclude that

∮
C F⃗ · d⃗r = 0?

Problems
In Exercises 7 – 12, a vector field F⃗ and a curve C are given.
Evaluate

∫
C
F⃗ · d⃗r.

7. F⃗ = ⟨y, y2⟩; C is the line segment from (0, 0) to (3, 1).

8. F⃗ = ⟨x, x+ y⟩; C is the por on of the parabola y = x2 from
(0, 0) to (1, 1).

9. F⃗ = ⟨y, x⟩; C is the top half of the unit circle, beginning at
(1, 0) and ending at (−1, 0).

10. F⃗ = ⟨xy, x⟩; C is the por on of the curve y = x3 on
−1 ≤ x ≤ 1.

11. F⃗ = ⟨z, x2, y⟩; C is the line segment from (1, 2, 3) to
(4, 3, 2).

12. F⃗ = ⟨y + z, x + z, x + y⟩; C is the helix r⃗(t) =
⟨cos t, sin t, t/(2π)⟩ on 0 ≤ t ≤ 2π.

In Exercises 13 – 16, find the work performed by the force
field F⃗moving a par cle along the path C.

13. F⃗ = ⟨y, x2⟩ N; C is the segment of the line y = x from (0, 0)
to (1, 1), where distances are measured in meters.

14. F⃗ = ⟨y, x2⟩ N; C is the por on of y =
√
x from (0, 0) to

(1, 1), where distances are measured in meters.

15. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0) to (2, 4, 8)
via r⃗(t) = ⟨t, t2, t3⟩ on 0 ≤ t ≤ 2, where distance are
measured in feet.

16. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0) to (2, 4, 8)
via r⃗(t) = ⟨t, 2t, 4t⟩ on 0 ≤ t ≤ 2, where distance are
measured in feet.

In Exercises 17 – 20, a conserva ve vector field F⃗ and a curve
C are given.

1. Find a poten al func on f for F⃗.

2. Compute curl F⃗.

3. Evaluate
∫
C
F⃗ · d⃗r directly, i.e., using Key Idea 14.3.1.

4. Evaluate
∫
C
F⃗ · d⃗r using the Fundamental Theorem of

Line Integrals.

17. F⃗ = ⟨y+ 1, x⟩, C is the line segment from (0, 1) to (1, 0).

18. F⃗ = ⟨2x + y, 2y + x⟩, C is curve parametrized by r⃗(t) =
⟨t2 − t, t3 − t⟩ on 0 ≤ t ≤ 1.

19. F⃗ = ⟨2xyz, x2z, x2y⟩, C is curve parametrized by r⃗(t) =
⟨2t+ 1, 3t− 1, t⟩ on 0 ≤ t ≤ 2.

20. F⃗ = ⟨2x, 2y, 2z⟩, C is curve parametrized by r⃗(t) =
⟨cos t, sin t, sin(2t)⟩ on 0 ≤ t ≤ 2π.

21. Prove part of Theorem 14.3.3: let F⃗ = ⟨M,N, P⟩ be a con-
serva ve vector field. Show that curl F⃗ = 0.
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Chapter 14 Vector Analysis

14.4 Flow, Flux, Green’s Theoremand theDivergence
Theorem

Flow and Flux

Line integrals over vector fields have the natural interpreta on of compu ng
work when F⃗ represents a force field. It is also common to use vector fields to
represent veloci es. In these cases, the line integral

∫
C F⃗ · d⃗r is said to represent

flow.
Let the vector field F⃗ = ⟨1, 0⟩ represent the velocity of water as it moves

across a smooth surface, depicted in Figure 14.4.1. A line integral over C will
compute “how much water is moving along the path C.”

In the figure, “all” of the water above C1 is moving along that curve, whereas
“none” of the water above C2 is moving along that curve (the curve and the flow
of water are at right angles to each other). Because C3 has nonzero horizontal
and ver cal components, “some” of the water above that curve is moving along
the curve.

When C is a closed curve, we call flow circula on, represented by
∮
C F⃗ · d⃗r.

The “opposite” of flow is flux, a measure of “how much water is moving
across the path C.” If a curve represents a filter in flowing water, flux measures
how much water will pass through the filter. Considering again Figure 14.4.1,
we see that a screen along C1 will not filter any water as no water passes across
that curve. Because of the nature of this field, C2 and C3 each filter the same
amount of water per second.

The terms “flow” and “flux” are used apart from velocity fields, too. Flow is
measured by

∫
C F⃗ · d⃗r, which is the same as

∫
C F⃗ · T⃗ ds by Defini on 14.3.1. That

is, flow is a summa on of the amount of F⃗ that is tangent to the curve C.
By contrast, flux is a summa on of the amount of F⃗ that is orthogonal to the

direc on of travel. To capture this orthogonal amount of F⃗, we use
∫
C F⃗ · n⃗ ds

to measure flux, where n⃗ is a unit vector orthogonal to the curve C. (Later, we’ll
measure flux across surfaces, too. For example, in physics it is useful tomeasure
the amount of a magne c field that passes through a surface.)

How is n⃗determined? We’ll later see that ifC is a closed curve, we’ll want n⃗ to
point to the outside of the curve (measuring howmuch is “going out”). We’ll also
adopt the conven on that closed curves should be traversed counterclockwise.

(If C is a complicated closed curve, it can be difficult to determine what
“counterclockwise”means. Consider Figure 14.4.2. Seeing the curve as a whole,
we know which way “counterclockwise” is. If we zoom in on point A, one might
incorrectly choose to traverse the path in the wrong direc on. So we offer this
defini on: a closed curve is being traversed counterclockwise if the outside is to
the right of the path and the inside is to the le .)

Notes:
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14.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

When a curve C is traversed counterclockwise by r⃗(t) = ⟨f(t), g(t)⟩, we ro-
tate T⃗ clockwise 90◦ to obtain n⃗:

T⃗ =
⟨f ′(t), g′(t)⟩
|| r⃗ ′(t) ||

⇒ n⃗ =
⟨g′(t),−f ′(t)⟩

|| r⃗ ′(t) ||
.

Le ng F⃗ = ⟨M,N⟩, we calculate flux as:

∫
C
F⃗ · n⃗ ds =

∫
C
F⃗ · ⟨g

′(t),−f ′(t)⟩
|| r⃗ ′(t) ||

|| r⃗ ′(t) || dt

=

∫
C
⟨M,N⟩ · ⟨g′(t),−f ′(t)⟩ dt

=

∫
C

(
Mg′(t)− N f ′(t)

)
dt

=

∫
C
Mg′(t) dt−

∫
C
N f ′(t) dt.

As the x and y components of r⃗(t) are f(t) and g(t) respec vely, the differen als
of x and y are dx = f ′(t)dt and dy = g′(t)dt. We can then write the above
integrals as:

=

∫
C
M dy−

∫
C
N dx.

This is o en wri en as one integral (not incorrectly, though somewhat confus-
ingly, as this one integral has two “d ’s”):

=

∫
C
M dy− N dx.

We summarize the above in the following defini on.

Notes:
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Figure 14.4.3: Illustra ng the curves and
vector fields in Example 14.4.1. In (a) the
vector field is F⃗1, and in (b) the vector field
is F⃗2.

Chapter 14 Vector Analysis

Defini on 14.4.1 Flow, Flux

Let F⃗ = ⟨M,N⟩ be a vector field with con nuous components defined on
a smooth curve C, parametrized by r⃗(t) = ⟨f(t), g(t)⟩, let T⃗ be the unit
tangent vector of r⃗(t), and let n⃗ be the clockwise 90◦degree rota on of
T⃗.

• The flow of F⃗ along C is∫
C
F⃗ · T⃗ ds =

∫
C
F⃗ · d⃗r.

• The flux of F⃗ across C is∫
C
F⃗ · n⃗ ds =

∫
C
M dy− N dx =

∫
C

(
Mg′(t)− N f ′(t)

)
dt.

This defini on of flow also holds for curves in space, though it does notmake
sense to measure “flux across a curve” in space.

Measuring flow is essen ally the same as finding work performed by a force
as done in the previous examples. Therefore we prac ce finding only flux in the
following example.

Example 14.4.1 Finding flux across curves in the plane
Curves C1 and C2 each start at (1, 0) and end at (0, 1), where C1 follows the line
y = 1− x and C2 follows the unit circle, as shown in Figure 14.4.3. Find the flux
across both curves for the vector fields F⃗1 = ⟨y,−x+ 1⟩ and F⃗2 = ⟨−x, 2y− x⟩.

S We begin by finding parametriza ons of C1 and C2. As done
in Example 14.3.3, parametrize C1 by crea ng the line that starts at (1, 0) and
moves in the ⟨−1, 1⟩ direc on: r⃗1(t) = ⟨1, 0⟩ + t ⟨−1, 1⟩ = ⟨1− t, t⟩, for 0 ≤
t ≤ 1. We parametrize C2 with the familiar r⃗2(t) = ⟨cos t, sin t⟩ on 0 ≤ t ≤ π/2.
For reference later, we give each func on and its deriva ve below:

r⃗1(t) = ⟨1− t, t⟩ , r⃗ ′1(t) = ⟨−1, 1⟩ .

r⃗2(t) = ⟨cos t, sin t⟩ , r⃗ ′2(t) = ⟨− sin t, cos t⟩ .

When F⃗ = F⃗1 = ⟨y,−x+ 1⟩ (as shown in Figure 14.4.3(a)), over C1 we have
M = y = t and N = −x + 1 = −(1 − t) + 1 = t. Using Defini on 14.4.1, we
compute the flux:

Notes:
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14.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

∫
C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ 1

0

(
t(1)− t(−1)

)
dt

=

∫ 1

0
2t dt

= 1.

Over C2, we have M = y = sin t and N = −x + 1 = 1 − cos t. Thus the flux
across C2 is:∫

C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ π/2

0

(
(sin t)(cos t)− (1− cos t)(− sin t)

)
dt

=

∫ π/2

0
sin t dt

= 1.

No ce how the fluxwas the same across both curves. This won’t hold truewhen
we change the vector field.

When F⃗ = F⃗2 = ⟨−x, 2y− x⟩ (as shown in Figure 14.4.3(b)), over C1 we have
M = −x = t− 1 and N = 2y− x = 2t− (1− t) = 3t− 1. Compu ng the flux
across C1: ∫

C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ 1

0

(
(t− 1)(1)− (3t− 1)(−1)

)
dt

=

∫ 1

0
(4t− 2) dt

= 0.

Over C2, we haveM = −x = − cos t and N = 2y− x = 2 sin t− cos t. Thus the
flux across C2 is:

Notes:
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∫
C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ π/2

0

(
(− cos t)(cos t)− (2 sin t− cos t)(− sin t)

)
dt

=

∫ π/2

0

(
2 sin2 t− sin t cos t− cos2 t

)
dt

= π/4− 1/2 ≈ 0.285.

We analyze the results of this example below.

In Example 14.4.1, we saw that the flux across the two curves was the same
when the vector field was F⃗1 = ⟨y,−x+ 1⟩. This is not a coincidence. We
show why they are equal in Example 14.4.6. In short, the reason is this: the
divergence of F⃗1 is 0, and when div F⃗ = 0, the flux across any two paths with
common beginning and ending points will be the same.

We also saw in the example that the flux across C1 was 0 when the field was
F⃗2 = ⟨−x, 2y− x⟩. Fluxmeasures “howmuch” of the field crosses the path from
le to right (following the conven ons established before). Posi ve flux means
most of the field is crossing from le to right; nega ve flux means most of the
field is crossing from right to le ; zero fluxmeans the same amount crosses from
each side. When we consider Figure 14.4.3(b), it seems plausible that the same
amount of F⃗2 was crossing C1 from le to right as from right to le .

Green’s Theorem

There is an important connec on between the circula on around a closed
region R and the curl of the vector field inside of R, as well as a connec on be-
tween the flux across the boundary of R and the divergence of the field inside
R. These connec ons are described by Green’s Theorem and the Divergence
Theorem, respec vely. We’ll explore each in turn.

Green’s Theorem states “the counterclockwise circula on around a closed
region R is equal to the sum of the curls over R.”

Theorem 14.4.1 Green’s Theorem

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametriza on of C, and let F⃗ = ⟨M,N⟩ where Nx and My are con nu-
ous over R. Then ∮

C
F⃗ · d⃗r =

∫∫
R
curl F⃗ dA.

Notes:
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Figure 14.4.5: The vector field and planar
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14.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

We’ll explore Green’s Theorem through an example.

Example 14.4.2 Confirming Green’s Theorem
Let F⃗ =

⟨
−y, x2 + 1

⟩
and letRbe the regionof the plane boundedby the triangle

with ver ces (−1, 0), (1, 0) and (0, 2), shown in Figure 14.4.4. Verify Green’s
Theorem; that is, find the circula on of F⃗ around the boundary of R and show
that is equal to the double integral of curl F⃗ over R.

S The curve C that bounds R is composed of 3 lines. While we
need to traverse the boundary of R in a counterclockwise fashion, we may start
anywhere we choose. We arbitrarily choose to start at (−1, 0), move to (1, 0),
etc., with each line parametrized by r⃗1(t), r⃗2(t) and r⃗3(t), respec vely.

We leave it to the reader to confirm that the following parametriza ons of
the three lines are accurate:

r⃗1(t) = ⟨2t− 1, 0⟩, for 0 ≤ t ≤ 1, with r⃗ ′1(t) = ⟨2, 0⟩,
r⃗2(t) = ⟨1− t, 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′2(t) = ⟨−1, 2⟩, and
r⃗3(t) = ⟨−t, 2− 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′3(t) = ⟨−1,−2⟩.

The circula on around C is found by summing the flow along each of the
sides of the triangle. We again leave it to the reader to confirm the following
computa ons:∫

C1
F⃗ · d⃗r1 =

∫ 1

0

⟨
0, (2t− 1)2 + 1

⟩
· ⟨2, 0⟩ dt = 0,∫

C2
F⃗ · d⃗r2 =

∫ 1

0

⟨
−2t, (1− t)2 + 1

⟩
· ⟨−1, 2⟩ dt = 11/3, and∫

C3
F⃗ · d⃗r3 =

∫ 1

0

⟨
2t− 2, t2 + 1

⟩
· ⟨−1,−2⟩ dt = −5/3.

The circula on is the sum of the flows: 2.
We confirm Green’s Theorem by compu ng

∫∫
R curl F⃗ dA. We find curl F⃗ =

2x+1. The region R is bounded by the lines y = 2x+2, y = −2x+2 and y = 0.
Integra ng with the order dx dy is most straigh orward, leading to∫ 2

0

∫ 1−y/2

y/2−1
(2x+ 1) dx dy =

∫ 2

0
(2− y) dy = 2,

which matches our previous measurement of circula on.

Example 14.4.3 Using Green’s Theorem
Let F⃗ = ⟨sin x, cos y⟩ and letRbe the region enclosedby the curveCparametrized
by r⃗(t) =

⟨
2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)

⟩
on 0 ≤ t ≤ 2π, as shown

in Figure 14.4.5. Find the circula on around C.

Notes:
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S Compu ng the circula ondirectly using the line integral looks
difficult, as the integrand will include terms like “sin

(
2 cos t+ 1

10 cos(10t)
)
.”

Green’s Theorem states that
∮
C F⃗ · d⃗r =

∫∫
R curl F⃗ dA; since curl F⃗ = 0 in this

example, the double integral is simply 0 and hence the circula on is 0.
Since curl F⃗ = 0, we can conclude that the circula on is 0 in two ways. One

method is to employ Green’s Theorem as done above. The second way is to
recognize that F⃗ is a conserva ve field, hence there is a func on z = f(x, y)
wherein F⃗ = ∇f. Let A be any point on the curve C; since C is closed, we can say
that C “begins” and “ends” at A. By the Fundamental Theorem of Line Integrals,∮
C F⃗ d⃗r = f(A)− f(A) = 0.

One can use Green’s Theorem to find the area of an enclosed region by in-
tegra ng along its boundary. Let C be a closed curve, enclosing the region R,
parametrized by r⃗(t) = ⟨f(t), g(t)⟩. We know the area of R is computed by
the double integral

∫∫
R dA, where the integrand is 1. By crea ng a field F⃗where

curl F⃗ = 1, we can employ Green’s Theorem to compute the area of R as
∮
C F⃗ · d⃗r.

One is free to choose any field F⃗ to use as long as curl F⃗ = 1. Common
choices are F⃗ = ⟨0, x⟩, F⃗ = ⟨−y, 0⟩ and F⃗ = ⟨−y/2, x/2⟩. We demonstrate this
below.

Example 14.4.4 Using Green’s Theorem to find area
Let C be the closed curve parametrized by r⃗(t) =

⟨
t− t3, t2

⟩
on −1 ≤ t ≤ 1,

enclosing the region R, as shown in Figure 14.4.6. Find the area of R.

S We can choose any field F⃗, as long as curl F⃗ = 1. We choose
F⃗ = ⟨−y, 0⟩. We also confirm (le to the reader) that r⃗(t) traverses the region
R in a counterclockwise fashion. Thus

Area of R =

∫∫
R
dA

=

∮
C
F⃗ · d⃗r

=

∫ 1

−1

⟨
−t2, 0

⟩
·
⟨
1− 3t2, 2t

⟩
dt

=

∫ 1

−1
(−t2)(1− 3t2) dt

=
8
15

.

Notes:
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14.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

The Divergence Theorem

Green’s Theoremmakes a connec onbetween the circula on around a closed
region R and the sum of the curls over R. The Divergence Theorem makes a
somewhat “opposite” connec on: the total flux across the boundary of R is
equal to the sum of the divergences over R.

Theorem 14.4.2 The Divergence Theorem (in the plane)

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametriza on of C, and let F⃗ = ⟨M,N⟩ where Mx and Ny are con nu-
ous over R. Then ∮

C
F⃗ · n⃗ ds =

∫∫
R
div F⃗ dA.

Example 14.4.5 Confirming the Divergence Theorem
Let F⃗ = ⟨x− y, x+ y⟩, let C be the circle of radius 2 centered at the origin and
define R to be the interior of that circle, as shown in Figure 14.4.7. Verify the
Divergence Theorem; that is, find the flux across C and show it is equal to the
double integral of div F⃗ over R.

S We parametrize the circle in the usual way, with r⃗(t) =
⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π. The flux across C is∮

C
F⃗ · n⃗ ds =

∮
C

(
Mg ′(t)− Nf ′(t)

)
dt

=

∫ 2π

0

(
(2 cos t− 2 sin t)(2 cos t)− (2 cos t+ 2 sin t)(−2 sin t)

)
dt

=

∫ 2π

0
4 dt = 8π.

We compute the divergence of F⃗ as div F⃗ = Mx + Ny = 2. Since the divergence
is constant, we can compute the following double integral easily:∫∫

R
div F⃗ dA =

∫∫
R
2 dA = 2

∫∫
R
dA = 2(area of R) = 8π,

which matches our previous result.

Example 14.4.6 Flux when div F⃗ = 0
Let F⃗ be any field where div F⃗ = 0, and let C1 and C2 be any two nonintersec ng

Notes:
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the two paths only intersect at their ini al
and terminal points.

Chapter 14 Vector Analysis

paths, except that each begin at point A and end at point B (see Figure 14.4.8).
Show why the flux across C1 and C2 is the same.

S By referencing Figure 14.4.8, we see we can make a closed
path C that combines C1 with C2, where C2 is traversed with its opposite orienta-
on. We label the enclosed region R. Since div F⃗ = 0, the Divergence Theorem

states that ∮
C
F⃗ · n⃗ ds =

∫∫
R
div F⃗ dA =

∫∫
R
0 dA = 0.

Using the proper es and nota on given in Theorem 14.3.1, consider:

0 =

∮
C
F⃗ · n⃗ ds

=

∫
C1
F⃗ · n⃗ ds+

∫
C∗2

F⃗ · n⃗ ds

(where C∗2 is the path C2 traversed with opposite orienta on)

=

∫
C1
F⃗ · n⃗ ds−

∫
C2
F⃗ · n⃗ ds.∫

C2
F⃗ · n⃗ ds =

∫
C1
F⃗ · n⃗ ds.

Thus the flux across each path is equal.

In this sec on, we have inves gated flow and flux, quan es that measure
interac ons between a vector field and a planar curve. We can also measure
flow along spa al curves, though as men oned before, it does not make sense
to measure flux across spa al curves.

It does, however, make sense to measure the amount of a vector field that
passes across a surface in space – i.e, the flux across a surface. Wewill study this,
though in the next sec on we first learn about a more powerful way to describe
surfaces than using func ons of the form z = f(x, y).
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Exercises 14.4
Terms and Concepts
1. Let F⃗ be a vector field and let C be a curve. Flow is a mea-

sure of the amount of F⃗ going C; flux is
a measure of the amount of F⃗ going C.

2. What is circula on?

3. Green’s Theorem states, informally, that the circula on
around a closed curve that bounds a region R is equal to
the sum of across R.

4. The Divergence Theorem states, informally, that the out-
ward flux across a closed curve that bounds a region R is
equal to the sum of across R.

5. Let F⃗ be a vector field and let C1 and C2 be any noninter-
sec ng paths except that each starts at point A and ends at
point B. If = 0, then

∫
C1
F⃗ · T⃗ ds =

∫
C2
F⃗ · T⃗ ds.

6. Let F⃗ be a vector field and let C1 and C2 be any noninter-
sec ng paths except that each starts at point A and ends at
point B. If = 0, then

∫
C1
F⃗ · n⃗ ds =

∫
C2
F⃗ · n⃗ ds.

Problems
In Exercises 7 – 12, a vector field F⃗ and a curve C are given.
Evaluate

∫
C F⃗ · n⃗ ds, the flux of F⃗ over C.

7. F⃗ = ⟨x + y, x − y⟩; C is the curve with ini al and termi-
nal points (3,−2) and (3, 2), respec vely, parametrized by
r⃗(t) = ⟨3t2, 2t⟩ on−1 ≤ t ≤ 1.

8. F⃗ = ⟨x + y, x − y⟩; C is the curve with ini al and termi-
nal points (3,−2) and (3, 2), respec vely, parametrized by
r⃗(t) = ⟨3, t⟩ on−2 ≤ t ≤ 2.

9. F⃗ = ⟨x2, y+ 1⟩; C is line segment from (0, 0) to (2, 4).

10. F⃗ = ⟨x2, y+1⟩; C is the por on of the parabola y = x2 from
(0, 0) to (2, 4).

11. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to (0, 1).

12. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to (1, 1).

In Exercises 13 – 16, a vector field F⃗ and a closed curve C, en-
closing a region R, are given. Verify Green’s Theorem by eval-

ua ng
∮
C F⃗ · d⃗r and

∫∫
R curl F⃗ dA, showing they are equal.

13. F⃗ = ⟨x − y, x + y⟩; C is the closed curve composed of the
parabola y = x2 on 0 ≤ x ≤ 2 followed by the line segment
from (2, 4) to (0, 0).

14. F⃗ = ⟨−y, x⟩; C is the unit circle.

15. F⃗ = ⟨0, x2⟩; C the triangle with corners at (0, 0), (2, 0) and
(1, 1).

16. F⃗ = ⟨x+ y, 2x⟩; C the curve that starts at (0, 1), follows the
parabola y = (x− 1)2 to (3, 4), then follows a line back to
(0, 1).

In Exercises 17 – 20, a closed curve C enclosing a region R is
given. Find the area of R by compu ng

∮
C F⃗ · d⃗r for an appro-

priate choice of vector field F⃗.

17. C is the ellipse parametrized by r⃗(t) = ⟨4 cos t, 3 sin t⟩ on
0 ≤ t ≤ 2π.

18. C is the curve parametrized by r⃗(t) = ⟨cos t, sin(2t)⟩ on
−π/2 ≤ t ≤ π/2.

19. C is the curve parametrized by r⃗(t) = ⟨cos t, sin(2t)⟩ on
0 ≤ t ≤ 2.

20. C is the curve parametrized by r⃗(t) = ⟨2 cos t +
1
10 cos(10t), 2 sin t+

1
10 sin(10t)⟩ on 0 ≤ t ≤ 2π.

In Exercises 21 – 24, a vector field F⃗ and a closed curve C, en-
closing a region R, are given. Verify the Divergence Theorem
by evalua ng

∮
C F⃗ · n⃗ ds and

∫∫
R div F⃗ dA, showing they are

equal.

21. F⃗ = ⟨x − y, x + y⟩; C is the closed curve composed of the
parabola y = x2 on 0 ≤ x ≤ 2 followed by the line segment
from (2, 4) to (0, 0).

22. F⃗ = ⟨−y, x⟩; C is the unit circle.

23. F⃗ = ⟨0, y2⟩; C the triangle with corners at (0, 0), (2, 0) and
(1, 1).

24. F⃗ = ⟨x2/2, y2/2⟩; C the curve that starts at (0, 1), follows
the parabola y = (x−1)2 to (3, 4), then follows a line back
to (0, 1).
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Note: We use the le er S to denote Sur-
face Area. This sec on begins a study into
surfaces, and it is natural to label a surface
with the le er “S”. We dis nguish a sur-
face from its surface area by using a cal-
ligraphic S to denote a surface: S. When
wri ng this le er by hand, it may be use-
ful to add serifs to the le er, such as:

Note: A func on is one to one on its do-
main if the func on never repeats an out-
put value over the domain. In the case
of r⃗(u, v), r⃗ is one to one if r⃗(u1, v1) ̸=
r⃗(u2, v2) for all points (u1, v1) ̸= (u2, v2)
in the domain of r⃗.

Chapter 14 Vector Analysis

14.5 Parametrized Surfaces and Surface Area
Thus far we have focusedmostly on 2-dimensional vector fields, measuring flow
and flux along/across curves in the plane. Both Green’s Theorem and the Di-
vergence Theorem make connec ons between planar regions and their bound-
aries. We now move our a en on to 3-dimensional vector fields, considering
both curves and surfaces in space.

We are accustomed to describing surfaces as func ons of two variables, usu-
ally wri en as z = f(x, y). For our coming needs, this method of describing
surfaces will prove to be insufficient. Instead, we will parametrize our surfaces,
describing them as the set of terminal points of some vector–valued func on
r⃗(u, v) = ⟨f(u, v), g(u, v), h(u, v)⟩. The bulk of this sec on is spent prac cing the
skill of describing a surface S using a vector–valued func on. Once this skill is
developed, we’ll showhow to find the surface area S of a parametrically–defined
surface S, a skill needed in the remaining sec ons of this chapter.

Defini on 14.5.1 Parametrized Surface

Let r⃗(u, v) = ⟨ f(u, v), g(u, v), h(u, v)⟩ be a vector–valued func on that
is con nuous and one to one on the interior of its domain R in the
u-v plane. The set of all terminal points of r⃗ (i.e., the range of r⃗ ) is
the surfaceS, and r⃗ alongwith its domain R form a parametriza on ofS.

This parametriza on is smooth on R if r⃗u and r⃗v are con nuous and r⃗u× r⃗v
is never 0⃗ on the interior of R.

Given a point (u0, v0) in the domain of a vector–valued func on r⃗, the vec-
tors r⃗u(u0, v0) and r⃗v(u0, v0) are tangent to the surface S at r⃗(u0, v0) (a proof
of this is developed later in this sec on). The defini on of smoothness dictates
that r⃗u × r⃗v ̸= 0⃗; this ensures that neither r⃗u nor r⃗v are 0⃗, nor are they ever par-
allel. Therefore smoothness guarantees that r⃗u and r⃗v determine a plane that is
tangent to S.

A surface S is said to be orientable if a field of normal vectors can be de-
fined on S that vary con nuously along S. This defini onmay be hard to under-
stand; it may help to know that orientable surfaces are o en called “two sided.”
A sphere is an orientable surface, and one can easily envision an “inside” and
“outside” of the sphere. A paraboloid is orientable, where again one can gener-
ally envision “inside” and “outside” sides (or “top” and “bo om” sides) to this
surface. Just about every surface that one can imagine is orientable, and we’ll
assume all surfaces we deal with in this text are orientable.

It is enlightening to examine a classic non-orientable surface: the Möbius
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Figure 14.5.1: A Möbius band, a non-
orientable surface.

Figure 14.5.2: The surface parametrized
in Example 14.5.1.

Figure 14.5.3: The surface parametrized
in Example 14.5.2.

14.5 Parametrized Surfaces and Surface Area

band, shown in Figure 14.5.1. Vectors normal to the surface are given, star ng
at the point indicated in the figure. These normal vectors “vary con nuously” as
they move along the surface. Le ng each vector indicate the “top” side of the
band, we can easily see near any vector which side is the “top”.

However, if as we progress along the band, we recognize that we are labeling
“both sides” of the band as the top; in fact, there are not two “sides” to this band,
but one. The Möbius band is a non-orientable surface.

We now prac ce parameterizing surfaces.

Example 14.5.1 Parameterizing a surface over a rectangle
Parametrize the surface z = x2 + 2y2 over the rectangular region R defined by
−3 ≤ x ≤ 3,−1 ≤ y ≤ 1.

S There is a straigh orward way to parametrize a surface of
the form z = f(x, y) over a rectangular domain. We let x = u and y = v, and let
r⃗(u, v) = ⟨u, v, f(u, v)⟩. In this instance, we have r⃗(u, v) = ⟨u, v, u2 + 2v2⟩, for
−3 ≤ u ≤ 3,−1 ≤ v ≤ 1. This surface is graphed in Figure 14.5.2.

Example 14.5.2 Parameterizing a surface over a circular disk
Parametrize the surface z = x2 + 2y2 over the circular region R enclosed by the
circle of radius 2 that is centered at the origin.

S Wecanparametrize the circular boundary ofRwith the vector–
valued func on ⟨2 cos u, 2 sin u⟩, where 0 ≤ u ≤ 2π. We can obtain the inte-
rior of R by scaling this func on by a variable amount, i.e., by mul plying by v:
⟨2v cos u, 2v sin u⟩, where 0 ≤ v ≤ 1.

It is important to understand the role of v in the above func on. When v = 1,
we get the boundary of R, a circle of radius 2. When v = 0, we simply get the
point (0, 0), the center of R (which can be thought of as a circle with radius of 0).
When v = 1/2, we get the circle of radius 1 that is centered at the origin, which
is the circle halfway between the boundary and the center. As v varies from 0
to 1, we create a series of concentric circles that fill out all of R.

Thus far, wehave determined the x and y components of our parametriza on
of the surface: x = 2v cos u and y = 2v sin u. We find the z component simply
by using z = f(x, y) = x2 + 2y2:

z = (2v cos u)2 + 2(2v sin u)2 = 4v2 cos2 u+ 8v2 sin2 u.

Thus r⃗(u, v) = ⟨2v cos u, 2v sin u, 4v2 cos2 u+ 8v2 sin2 u⟩, 0 ≤ u ≤ 2π, 0 ≤ v ≤
1, which is graphed in Figure 14.5.3. The way that this graphic was generated
highlights how the surface was parametrized. When viewing from above, one
can see lines emana ng from the origin; they represent different values of u as
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y = 2− 2x/3
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x

y

(a)

(b)

Figure 14.5.4: Part (a) shows a graph of
the region R, and part (b) shows the sur-
face over R, as defined in Example 14.5.3.

Chapter 14 Vector Analysis

u sweeps from an angle of 0 up to 2π. One can also see concentric circles, each
corresponding to a different value of v.

Examples 14.5.1 and 14.5.2 demonstrate an important principle when pa-
rameterizing surfaces given in the form z = f(x, y) over a region R: if one can
determine x and y in terms of u and v, then z follows directly as z = f(x, y).

In the following two examples, we parametrize the same surface over trian-
gular regions. Each will use v as a “scaling factor” as done in Example 14.5.2.

Example 14.5.3 Parameterizing a surface over a triangle
Parametrize the surface z = x2 + 2y2 over the triangular region R enclosed by
the coordinate axes and the line y = 2− 2x/3, as shown in Figure 14.5.4(a).

S Wemaybegin by le ng x = u, 0 ≤ u ≤ 3, and y = 2−2u/3.
This gives only the line on the “upper” side of the triangle. To get all of the region
R, we can once again scale y by a variable factor, v.

S ll le ng x = u, 0 ≤ u ≤ 3, we let y = v(2 − 2u/3), 0 ≤ v ≤ 1. When
v = 0, all y-values are 0, and we get the por on of the x-axis between x = 0 and
x = 3. When v = 1, we get the upper side of the triangle. When v = 1/2, we
get the line y = 1/2(2 − 2u/3) = 1 − u/3, which is the line “halfway up” the
triangle, shown in the figure with a dashed line.

Le ng z = f(x, y) = x2 + 2y2, we have r⃗(u, v) = ⟨u, v(2 − 2u/3), u2 +
2
(
v(2 − 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1. This surface is graphed in Figure
14.5.4(b). Again, when one looks from above, we can see the scaling effects of
v: the series of lines that run to the point (3, 0) each represent a different value
of v.

Another common way to parametrize the surface is to begin with y = u,
0 ≤ u ≤ 2. Solving the equa on of the line y = 2 − 2x/3 for x, we have
x = 3− 3y/2, leading to using x = v(3− 3u/2), 0 ≤ v ≤ 1. With z = x2 + 2y2,
we have r⃗(u, v) = ⟨v(3−3u/2), u,

(
v(3−3u/2)

)2
+2v2⟩, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Example 14.5.4 Parameterizing a surface over a triangle
Parametrize the surface z = x2 + 2y2 over the triangular region R enclosed by
the lines y = 3− 2x/3, y = 1 and x = 0 as shown in Figure 14.5.5(a).

S While the region R in this example is very similar to the re-
gion R in the previous example, and our method of parameterizing the surface
is fundamentally the same, it will feel as though our answer is much different
than before.

We begin with le ng x = u, 0 ≤ u ≤ 3. We may be tempted to let y =
v(3− 2u/3), 0 ≤ v ≤ 1, but this is incorrect. When v = 1, we obtain the upper
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Figure 14.5.5: Part (a) shows a graph of
the region R, and part (b) shows the sur-
face over R, as defined in Example 14.5.4.
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line of the triangle as desired. However, when v = 0, the y-value is 0, which
does not lie in the region R.

We will describe the general method of proceeding following this example.
For now, consider y = 1+ v(2− 2u/3), 0 ≤ v ≤ 1. Note that when v = 1, we
have y = 3 − 2u/3, the upper line of the boundary of R. Also, when v = 0, we
have y = 1, which is the lower boundary of R. With z = x2 + 2y2, we determine
r⃗(u, v) = ⟨u, 1+v(2−2u/3), u2+2

(
1+v(2−2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1.

The surface is graphed in Figure 14.5.5(b).

Given a surface of the form z = f(x, y), one cano endetermine a parametriza-
on of the surface over a region R in a manner similar to determining bounds

of integra on over a region R. Using the techniques of Sec on 13.1, suppose a
region R can be described by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area of R
can be found using the iterated integral

∫ b

a

∫ g2(x)

g1(x)
dy dx.

When parameterizing the surface, we can let x = u, a ≤ u ≤ b, and we
can let y = g1(u) + v

(
g2(u) − g1(u)

)
, 0 ≤ v ≤ 1. The parametriza on of

x is straigh orward, but look closely at how y is determined. When v = 0,
y = g1(u) = g1(x). When v = 1, y = g2(u) = g2(x).

As a specific example, consider the triangular region R from Example 14.5.4,
shown in Figure 14.5.5(a). Using the techniques of Sec on 13.1, we can find the
area of R as

∫ 3

0

∫ 3−2x/3

1
dy dx.

Following the above discussion, we can set x = u, where 0 ≤ u ≤ 3, and set
y = 1+v

(
3−2u/3−1

)
= 1+v(2−2u/3), 0 ≤ v ≤ 1, as used in that example.

One can do a similar thing if R is bounded by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y),
but for the sake of simplicity we leave it to the reader to flesh out those details.
The principles outlined above are given in the following Key Idea for reference.
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Figure 14.5.6: The cylinder parametrized
in Example 14.5.5.

Figure 14.5.7: The ellip c cone as de-
scribed in Example 14.5.6.
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Key Idea 14.5.1 Parameterizing Surfaces

Let a surface S be the graph of a func on z = f(x, y), where the domain
of f is a closed, bounded region R in the x-y plane. Let R be bounded by
a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area of R can be found using
the iterated integral

∫ b
a

∫ g2(x)
g1(x) dy dx, and let h(u, v) = g1(u)+ v

(
g2(u)−

g1(u)
)
.

S can be parametrized as

r⃗(u, v) =
⟨
u, h(u, v), f

(
u, h(u, v)

)⟩
, a ≤ u ≤ b, 0 ≤ v ≤ 1.

Example 14.5.5 Parameterizing a cylinderical surface
Find a parametriza on of the cylinder x2 + z2/4 = 1, where −1 ≤ y ≤ 2, as
shown in Figure 14.5.6.

S The equa on x2 + z2/4 = 1 can be envisioned to describe
an ellipse in the x-z plane; as the equa on lacks a y-term, the equa on describes
a cylinder (recall Defini on 10.1.2) that extends without bound parallel to the
y-axis. This ellipse has a ver cal major axis of length 4, a horizontal minor axis
of length 2, and is centered at the origin. We can parametrize this ellipse using
sines and cosines; our parametriza on can begin with

r⃗(u, v) = ⟨cos u, ???, 2 sin u⟩ , 0 ≤ u ≤ 2π,

where we s ll need to determine the y component.
While the cylinder x2 + z2/4 = 1 is sa sfied by any y value, the problem

states that all y values are to be between y = −1 and y = 2. Since the value of
y does not depend at all on the values of x or z, we can use another variable, v,
to describe y. Our final answer is

r⃗(u, v) = ⟨cos u, v, 2 sin u⟩ , 0 ≤ u ≤ 2π, −1 ≤ v ≤ 2.

Example 14.5.6 Parameterizing an ellip c cone
Find a parametriza on of the ellip c cone z2 = x2

4 + y2
9 , where −2 ≤ z ≤ 3, as

shown in Figure 14.5.7.

S One way to parametrize this cone is to recognize that given
a z value, the cross sec on of the cone at that z value is an ellipse with equa on
x2

(2z)2 +
y2

(3z)2 = 1. We can let z = v, for −2 ≤ v ≤ 3 and then parametrize the
above ellipses using sines, cosines and v.
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Figure 14.5.8: The ellip c cone as de-
scribed in Example 14.5.6 with restricted
domain.

(a)

(b)

Figure 14.5.9: An ellipsoid in (a), drawn
again in (b) with its domain restricted, as
described in Example 14.5.7.

14.5 Parametrized Surfaces and Surface Area

We can parametrize the x component of our surface with x = 2z cos u and
the y component with y = 3z sin u, where 0 ≤ u ≤ 2π. Pu ng all components
together, we have

r⃗(u, v) = ⟨2v cos u, 3v sin u, v⟩ , 0 ≤ u ≤ 2π, −2 ≤ v ≤ 3.

When v takes on nega ve values, the radii of the cross–sec onal ellipses
become “nega ve,” which can lead to some surprising results. Consider Figure
14.5.8, where the cone is graphed for 0 ≤ u ≤ π. Because v is nega ve below
the x-y plane, the radii of the cross–sec onal ellipses are nega ve, and the op-
posite side of the cone is sketched below the x-y plane.

Example 14.5.7 Parameterizing an ellipsoid
Find a parametriza on of the ellipsoid x2

25 + y2 + z2
4 = 1 as shown in Figure

14.5.9(a).

S Recall Key Idea 10.2.1 from Sec on 10.2, which states that
all unit vectors in space have the form ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some
angles θ and φ. If we choose our angles appropriately, this allows us to draw
the unit sphere. To get an ellipsoid, we need only scale each component of the
sphere appropriately.

The x-radius of the given ellipsoid is 5, the y-radius is 1 and the z-radius is 2.
Subs tu ngu for θ and v forφ, wehave r⃗(u, v) = ⟨5 sin u cos v, sin u sin v, 2 cos u⟩,
where we s ll need to determine the ranges of u and v.

Note how the x and y components of r⃗ have cos v and sin v terms, respec-
vely. This hints at the fact that ellipses are drawn parallel to the x-y plane as v

varies, which implies we should have v range from 0 to 2π.
One may be tempted to let 0 ≤ u ≤ 2π as well, but note how the z compo-

nent is 2 cos u. We only need cos u to take on values between −1 and 1 once,
therefore we can restrict u to 0 ≤ u ≤ π.

The final parametriza on is thus

r⃗(u, v) = ⟨5 sin u cos v, sin u sin v, 2 cos u⟩, 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

In Figure 14.5.9(b), the ellipsoid is graphed on π
4 ≤ u ≤ 2π

3 ,
π
4 ≤ v ≤ 3π

2 to
demonstrate how each variable affects the surface.

Parametriza on is a powerful way to represent surfaces. One of the advan-
tages of the methods of parametriza on described in this sec on is that the do-
main of r⃗(u, v) is always a rectangle; that is, the bounds on u and v are constants.
This will make some of our future computa ons easier to evaluate.

Just as we could parametrize curves in more than one way, there will always
be mul ple ways to parametrize a surface. Some ways will be more “natural”
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Figure 14.5.10: Illustra ng the process
of finding surface area by approxima ng
with planes.
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than others, but these other ways are not incorrect. Because technology is of-
ten readily available, it is o en a good idea to check one’s work by graphing a
parametriza on of a surface to check if it indeed representswhat it was intended
to.

Surface Area

It will become important in the following sec ons to be able to compute the
surface area of a surface S given a smooth parametriza on r⃗(u, v), a ≤ u ≤
b, c ≤ v ≤ d. Following the principles given in the integra on review at the
beginning of this chapter, we can say that

Surface Area of S = S =
∫∫

S
dS,

where dS represents a small amount of surface area. That is, to compute total
surface area S, add up lots of small amounts of surface area dS across the en re
surface S. The key to finding surface area is knowing how to compute dS. We
begin by approxima ng.

In Sec on 13.5 we used the area of a plane to approximate the surface area
of a small por on of a surface. We will do the same here.

Let R be the region of the u-v plane bounded by a ≤ u ≤ b, c ≤ v ≤ d as
shown in Figure 14.5.10(a). Par on R into rectangles of width ∆u = b−a

n and
height∆v = d−c

n , for some n. Let p = (u0, v0) be the lower le corner of some
rectangle in the par on, and letm and q be neighboring corners as shown.

The point pmaps to a point P = r⃗(u0, v0) on the surfaceS, and the rectangle
with corners p,m and qmaps to some region (probably not rectangular) on the
surface as shown in Figure 14.5.10(b), whereM = r⃗(m) and Q = r⃗(q). We wish
to approximate the surface area of this mapped region.

Let u⃗ = M − P and v⃗ = Q − P. These two vectors form a parallelogram,
illustrated in Figure 14.5.10(c), whose area approximates the surface area we
seek. In this par cular illustra on, we can see that parallelogram does not par-
cularly match well the region we wish to approximate, but that is acceptable;

by increasing the number of par ons of R,∆u and∆v shrink and our approxi-
ma ons will become be er.

From Sec on 10.4 we know the area of this parallelogram is || u⃗× v⃗ ||. If
we repeat this approxima on process for each rectangle in the par on of R,
we can sum the areas of all the parallelograms to get an approxima on of the
surface area S:

Surface area of S = S ≈
n∑

j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || ,
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where u⃗i,j = r⃗(ui +∆u, vj)− r⃗(ui, vj) and v⃗i,j = r⃗(ui, vj +∆v)− r⃗(ui, vj).
From our previous calculus experience, we expect that taking a limit as n →

∞ will result in the exact surface area. However, the current form of the above
double sum makes it difficult to realize what the result of that limit is. The fol-
lowing rewri ng of the double summa on will be helpful:

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =

n∑
j=1

n∑
i=1

∣∣∣∣ (⃗r(ui +∆u, vj)− r⃗(ui, vj)
)
×
(⃗
r(ui, vj +∆v)− r⃗(ui, vj)

) ∣∣∣∣ =
n∑

j=1

n∑
i=1

∣∣∣∣∣∣∣∣ r⃗(ui +∆u, vj)− r⃗(ui, vj)
∆u

× r⃗(ui, vj +∆v)− r⃗(ui, vj)
∆v

∣∣∣∣∣∣∣∣∆u∆v.

We now take the limit as n → ∞, forcing∆u and∆v to 0. As∆u → 0,

r⃗(ui +∆u, vj)− r⃗(ui, vj)
∆u

→ r⃗u(ui, vj) and

r⃗(ui, vj +∆v)− r⃗(ui, vj)
∆v

→ r⃗v(ui, vj).

(This limit process also demonstrates that r⃗u(u, v) and r⃗v(u, v) are tangent to the
surface S at r⃗(u, v). We don’t need this fact now, but it will be important in the
next sec on.)

Thus, in the limit, the double sum leads to a double integral:

lim
n→∞

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =
∫ d

c

∫ b

a
|| r⃗u × r⃗v || du dv.

Theorem 14.5.1 Surface Area of Parametrically Defined Surfaces

Let r⃗(u, v) be a smooth parametriza on of a surface S over a closed,
bounded region R of the u-v plane.

• The surface area differen al dS is: dS = || r⃗u × r⃗v || dA.

• The surface area S of S is

S =
∫∫

S
dS =

∫∫
R
|| r⃗u × r⃗v || dA.

Notes:

887



Chapter 14 Vector Analysis

Example 14.5.8 Finding the surface area of a parametrized surface
Using the parametriza on found in Example 14.5.2, find the surface area of z =
x2 + 2y2 over the circular disk of radius 2, centered at the origin.

S In Example 14.5.2, we parametrized the surface as r⃗(u, v) =⟨
2v cos u, 2v sin u, 4v2 cos2 u+ 8v2 sin2 u

⟩
, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1. To find

the surface area using Theorem 14.5.1, we need || r⃗u × r⃗v ||. We find:

r⃗u =
⟨
−2v sin u, 2v cos u, 8v2 cos u sin u

⟩
r⃗v =

⟨
2 cos u, 2 sin v, 8v cos2 u+ 16v sin2 u

⟩
r⃗u × r⃗v =

⟨
16v2 cos u, 32v2 sin u,−4v

⟩
|| r⃗u × r⃗v || =

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2.

Thus the surface area is

S =
∫∫

S
dS =

∫∫
R
|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 2π

0

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2 du dv ≈ 53.59.

There is a lot of tedious work in the above calcula ons and the final integral is
nontrivial. The use of a computer-algebra system is highly recommended.

In Sec on 14.1, we recalled the arc length differen al ds = || r⃗ ′(t) || dt.
In subsequent sec ons, we used that differen al, but in most applica ons the
“|| r⃗ ′(t) ||” part of the differen al canceled out of the integrand (to our bene-
fit, as integra ng the square roots of func ons is generally difficult). We will
find a similar thing happens when we use the surface area differen al dS in the
following sec ons. That is, our main goal is not to be able to compute surface
area; rather, surface area is a tool to obtain other quan es that are more im-
portant and useful. In our applica ons, we will use dS, but most of the me
the “|| r⃗u × r⃗v ||” part will cancel out of the integrand, making the subsequent
integra on easier to compute.
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Exercises 14.5
Terms and Concepts

1. In your own words, describe what an orientable surface is.

2. Give an example of a non-orientable surface.

Problems

In Exercises 3 – 4, parametrize the surface defined by the
func on z = f(x, y) over each of the given regions R of the
x-y plane.

3. z = 3x2y;

(a) R is the rectangle bounded by −1 ≤ x ≤ 1 and
0 ≤ y ≤ 2.

(b) R is the circle of radius 3, centered at (1, 2).

(c) R is the triangle with ver ces (0, 0), (1, 0) and (0, 2).

(d) R is the region bounded by the x-axis and the graph
of y = 1− x2.

4. z = 4x+ 2y2;

(a) R is the rectangle bounded by 1 ≤ x ≤ 4 and
5 ≤ y ≤ 7.

(b) R is the ellipse with major axis of length 8 parallel to
the x-axis, and minor axis of length 6 parallel to the
y-axis, centered at the origin.

(c) R is the triangle with ver ces (0, 0), (2, 2) and (0, 4).

(d) R is the annulus bounded between the circles, cen-
tered at the origin, with radius 2 and radius 5.

In Exercises 5 – 8, a surface S in space is described that can-
not be defined in terms of a func on z = f(x, y). Give a
parametriza on of S.

5. S is the rectangle in spacewith corners at (0, 0, 0), (0, 2, 0),
(0, 2, 1) and (0, 0, 1).

6. S is the triangle in space with corners at (1, 0, 0), (1, 0, 1)
and (0, 0, 1).

7. S is the ellipsoid x2

9
+

y2

4
+

z2

16
= 1.

8. S is the ellip c cone y2 = x2 + z2

16
, for−1 ≤ y ≤ 5.

In Exercises 9 – 16, a domain D in space is given. Parametrize
each of the bounding surfaces of D.

9. D is the domain bounded by the planes z = 1
2 (3−x), x = 1,

y = 0, y = 2 and z = 0.

10. D is the domain bounded by the planes z = 2x + 4y − 4,
x = 2, y = 1 and z = 0.

11. D is the domain bounded by z = 2y, y = 4− x2 and z = 0.

12. D is the domain bounded by y = 1− z2, y = 1− x2, x = 0,
y = 0 and z = 0.
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13. D is the domain bounded by the cylinder x+ y2/9 = 1 and
the planes z = 1 and z = 3.

14. D is the domain bounded by the cone x2 + y2 = (z − 1)2
and the plane z = 0.

15. D is the domain bounded by the cylinder z = 1 − x2 and
the planes y = −1, y = 2 and z = 0.

16. D is the domain bounded by the paraboloid z = 4−x2−4y2
and the plane z = 0.

In Exercises 17 – 20, find the surface area S of the given sur-
face S. (The associated integrals are computable without the
assistance of technology.)

17. S is the plane z = 2x+ 3y over the rectangle−1 ≤ x ≤ 1,
2 ≤ v ≤ 3.

18. S is the plane z = x+ 2y over the triangle with ver ces at
(0, 0), (1, 0) and (0, 1).

19. S is the plane z = x+ y over the circular disk, centered at
the origin, with radius 2.

20. S is the plane z = x + y over the annulus bounded by the
circles, centered at the origin, with radius 1 and radius 2.

In Exercises 21 – 24, set up the double integral that finds the
surface area S of the given surface S, then use technology to
approximate its value.

21. S is the paraboloid z = x2 + y2 over the circular disk of
radius 3 centered at the origin.

22. S is the paraboloid z = x2 + y2 over the triangle with ver-
ces at (0, 0), (0, 1) and (1, 1).

23. S is the plane z = 5x − y over the region enclosed by the
parabola y = 1− x2 and the x-axis.

24. S is the hyperbolic paraboloid z = x2 − y2 over the circular
disk of radius 1 centered at the origin.
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14.6 Surface Integrals

14.6 Surface Integrals
Consider a smooth surface S that represents a thin sheet of metal. How could
we find the mass of this metallic object?

If the density of this object is constant, then we can find mass via “mass=
density× surface area,” and we could compute the surface area using the tech-
niques of the previous sec on.

What if the density were not constant, but variable, described by a func on
δ(x, y, z)? We can describe the mass using our general integra on techniques
as

mass =
∫∫

S
dm,

where dm represents “a li le bit of mass.” That is, to find the total mass of the
object, sum up lots of li le masses over the surface.

How do we find the “li le bit of mass” dm? On a small por on of the sur-
face with surface area ∆S, the density is approximately constant, hence dm ≈
δ(x, y, z)∆S. Asweuse limits to shrink the size of∆S to 0, we getdm = δ(x, y, z)dS;
that is, a li le bit of mass is equal to a density mes a small amount of surface
area. Thus the total mass of the thin sheet is

mass =
∫∫

S
δ(x, y, z) dS. (14.3)

To evaluate the above integral, wewould seek r⃗(u, v), a smooth parametriza-
on of S over a region R of the u-v plane. The density would become a func on

of u and v, and we would integrate
∫∫

R δ(u, v) || r⃗u × r⃗v || dA.
The integral in Equa on (14.3) is a specific example of a more general con-

struc on defined below.

Defini on 14.6.1 Surface Integral

Let G(x, y, z) be a con nuous func on defined on a surface S. The sur-
face integral of G on S is ∫∫

S
G(x, y, z) dS.

Surface integrals canbeused tomeasure a variety of quan es beyondmass.
If G(x, y, z)measures the sta c charge density at a point, then the surface inte-
gral will compute the total sta c charge of the sheet. If Gmeasures the amount
of fluid passing through a screen (represented by S) at a point, then the surface
integral gives the total amount of fluid going through the screen.

Notes:
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Figure 14.6.1: The surface whose mass is
computed in Example 14.6.1.

Chapter 14 Vector Analysis

Example 14.6.1 Finding the mass of a thin sheet
Find the mass of a thin sheet modeled by the plane 2x + y + z = 3 over the
triangular region of the x-y plane bounded by the coordinate axes and the line
y = 2−2x, as shown in Figure 14.6.1, with density func on δ(x, y, z) = x2+5y+
z, where all distances are measured in cm and the density is given as gm/cm2.

S We begin by parameterizing the planar surface S. Using the
techniques of the previous sec on, we can let x = u and y = v(2− 2u), where
0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Solving for z in the equa on of the plane, we have
z = 3 − 2x − y, hence z = 3 − 2u − v(2 − 2u), giving the parametriza on
r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩.

We need dS = || r⃗u × r⃗v || dA, so we need to compute r⃗u, r⃗v and the norm of
their cross product. We leave it to the reader to confirm the following:

r⃗u = ⟨1,−2v, 2v− 2⟩, r⃗v = ⟨0, 2− 2u, 2u− 2⟩,

r⃗u × r⃗v = ⟨4− 4u, 2− 2u, 2− 2u⟩ and || r⃗u × r⃗v || = 2
√
6
√

(u− 1)2.

Weneed tobe careful to not “simplify” || r⃗u × r⃗v || = 2
√
6
√
(u− 1)2 as 2

√
6(u−

1); rather, it is 2
√
6|u− 1|. In this example, u is bounded by 0 ≤ u ≤ 1, and on

this interval |u− 1| = 1− u. Thus dS = 2
√
6(1− u)dA.

The density is given as a func on of x, y and z, for which we’ll subs tute the
corresponding components of r⃗ (with the slight abuse of nota on that we used
in previous sec ons):

δ(x, y, z) = δ
(⃗
r(u, v)

)
= u2 + 5v(2− 2u) + 3− 2u− v(2− 2u)
= u2 − 8uv− 2u+ 8v+ 3.

Thus the mass of the sheet is:

M =

∫∫
S

dm

=

∫∫
R
δ
(⃗
r(u, v)

)
|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 1

0

(
u2 − 8uv− 2u+ 8v+ 3

)(
2
√
6(1− u)

)
du dv

=
31√
6
≈ 12.66 gm.
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Flux

Let a surfaceS liewithin a vector field F⃗. One is o en interested inmeasuring
the flux of F⃗ across S; that is, measuring “how much of the vector field passes
across S.” For instance, if F⃗ represents the velocity field of moving air and S
represents the shape of an air filter, the fluxwillmeasure howmuch air is passing
through the filter per unit me.

As flux measures the amount of F⃗ passing across S, we need to find the
“amount of F⃗ orthogonal to S.” Similar to our measure of flux in the plane, this
is equal to F⃗ · n⃗, where n⃗ is a unit vector normal to S at a point. We now consider
how to find n⃗.

Given a smooth parametriza on r⃗(u, v) ofS, thework in the previous sec on
showing the development of our method of compu ng surface area also shows
that r⃗u(u, v) and r⃗v(u, v) are tangent to S at r⃗(u, v). Thus r⃗u × r⃗v is orthogonal to
S, and we let

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
,

which is a unit vector normal to S at r⃗(u, v).

The measurement of flux across a surface is a surface integral; that is, to
measure total flux we sum the product of F⃗ · n⃗ mes a small amount of surface
area: F⃗ · n⃗ dS.

A nice thing happens with the actual computa on of flux: the || r⃗u × r⃗v ||
terms go away. Consider:

Flux =
∫∫

S
F⃗ · n⃗ dS

=

∫∫
R
F⃗ · r⃗u × r⃗v

|| r⃗u × r⃗v ||
|| r⃗u × r⃗v || dA

=

∫∫
R
F⃗ · (⃗ru × r⃗v) dA.

The above only makes sense if S is orientable; the normal vectors n⃗ must
vary con nuously across S. We assume that n⃗ does vary con nuously. (If the
parametriza on r⃗ of S is smooth, then our above defini on of n⃗ will vary con-
nuously.)

Notes:

893



Figure 14.6.2: The surface and vector
field used in Example 14.6.2.
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Defini on 14.6.2 Flux over a surface

Let F⃗ be a vector field with con nuous components defined on an ori-
entable surface S with normal vector n⃗. The flux of F⃗ across S is

Flux =
∫∫

S
F⃗ · n⃗ dS.

If S is parametrized by r⃗(u, v), which is smooth on its domain R, then

Flux =
∫∫

R
F⃗
(⃗
r(u, v)

)
· (⃗ru × r⃗v) dA.

Since S is orientable, we adopt the conven on of saying one passes from
the “back” side of S to the “front” side when moving across the surface parallel
to the direc on of n⃗. Also, when S is closed, it is natural to speak of the regions
of space “inside” and “outside” S. We also adopt the conven on that when S is
a closed surface, n⃗ should point to the outside of S. If n⃗ = r⃗u × r⃗v points inside
S, use n⃗ = r⃗v × r⃗u instead.

When the computa on of flux is posi ve, it means that the field is moving
from the back side of S to the front side; when flux is nega ve, it means the
field is moving opposite the direc on of n⃗, and is moving from the front of S
to the back. When S is not closed, there is not a “right” and “wrong” direc on
in which n⃗ should point, but one should be mindful of its direc on to make full
sense of the flux computa on.

We demonstrate the computa on of flux, and its interpreta on, in the fol-
lowing examples.

Example 14.6.2 Finding flux across a surface
LetS be the surface given in Example 14.6.1, whereS is parametrizedby r⃗(u, v) =
⟨u, v(2−2u), 3−2u−v(2−2u)⟩ on 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and let F⃗ = ⟨1, x,−y⟩,
as shown in Figure 14.6.2. Find the flux of F⃗ across S.

S Using our work from the previous example, we have n⃗ =
r⃗u× r⃗v = ⟨4−4u, 2−2u, 2−2u⟩. We also need F⃗

(⃗
r(u, v)

)
= ⟨1, u,−v(2−2u)⟩.
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Figure 14.6.3: The surfaces used in Exam-
ple 14.6.3.

14.6 Surface Integrals

Thus the flux of F⃗ across S is:

Flux =
∫∫

S
F⃗ · n⃗ dS

=

∫∫
R
⟨1, u,−v(2− 2u)⟩ · ⟨4− 4u, 2− 2u, 2− 2u⟩ dA

=

∫ 1

0

∫ 1

0

(
− 4u2v− 2u2 + 8uv− 2u− 4v+ 4

)
du dv

= 5/3.

Tomake full use of this numeric answer, we need to know the direc on in which
the field is passing across S. The graph in Figure 14.6.2 helps, but we need a
method that is not dependent on a graph.

Pick a point (u, v) in the interior of R and consider n⃗(u, v). For instance,
choose (1/2, 1/2) and look at n⃗(1/2, 1/2) = ⟨2, 1, 1⟩/

√
6. This vector has pos-

i ve x, y and z components. Generally speaking, one has some idea of what the
surface S looks like, as that surface is for some reason important. In our case,
we knowS is a plane with z-intercept of z = 3. Knowing n⃗ and the fluxmeasure-
ment of posi ve 5/3, we know that the field must be passing from “behind” S,
i.e., the side the origin is on, to the “front” of S.

Example 14.6.3 Flux across surfaces with shared boundaries
Let S1 be the unit disk in the x-y plane, and let S2 be the paraboloid z = 1 −
x2 − y2, for z ≥ 0, as graphed in Figure 14.6.3. Note how these two surfaces
each have the unit circle as a boundary.

Let F⃗1 = ⟨0, 0, 1⟩ and F⃗2 = ⟨0, 0, z⟩. Using normal vectors for each surface
that point “upward,” i.e., with a pos ve z-component, find the flux of each field
across each surface.

S We begin by parameterizing each surface.
The boundary of the unit disk in the x-y plane is the unit circle, which can be

described with ⟨cos u, sin u, 0⟩, 0 ≤ u ≤ 2π. To obtain the interior of the circle
as well, we can scale by v, giving

r⃗1(u, v) = ⟨v cos u, v sin u, 0⟩, 0 ≤ u ≤ 2π 0 ≤ v ≤ 1.

As the boundary of S2 is also the unit circle, the x and y components of r⃗2
will be the same as those of r⃗1; we just need a different z component. With
z = 1− x2 − y2, we have

r⃗2(u, v) = ⟨v cos u, v sin u, 1− v2 cos2 u− v2 sin2 u⟩ = ⟨v cos u, v sin u, 1− v2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

Notes:
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We now compute the normal vectors n⃗1 and n⃗2.
For n⃗1: r⃗1u = ⟨−v sin u, v cos u, 0⟩, r⃗1v = ⟨cos u, sin u, 0⟩, so

n⃗1 = r⃗1u × r⃗1v = ⟨0, 0,−v⟩.

As this vector has a nega ve z-component, we instead use

n⃗1 = r⃗1v × r⃗1u = ⟨0, 0, v⟩.

Similarly, n⃗2: r⃗2u = ⟨−v sin u, v cos u, 0⟩, r⃗2v = ⟨cos u, sin u,−2v⟩, so

n⃗2 = r⃗2u × r⃗2v = ⟨−2v2 cos u,−2v2 sin u,−v⟩.

Again, this normal vector has a nega ve z-component so we use

n⃗2 = r⃗2v × r⃗2u = ⟨2v2 cos u, 2v2 sin u, v⟩.

We are now set to compute flux. Over field F⃗1 = ⟨0, 0, 1⟩:

Flux across S1 =

∫∫
S1

F⃗1 · n⃗1 dS

=

∫∫
R
⟨0, 0, 1⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v) du dv

= π.

Flux across S2 =

∫∫
S2

F⃗1 · n⃗2 dS

=

∫∫
R
⟨0, 0, 1⟩ · ⟨2v2 cos u, 2v2 sin u, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v) du dv

= π.

These two results are equal and posi ve. Each are posi ve because both
normal vectors are poin ng in the posi ve z-direc ons, as does F⃗1. As the field
passes through each surface in the direc on of their normal vectors, the flux is
measured as posi ve.

We can also intui vely understand why the results are equal. Consider F⃗1
to represent the flow of air, and let each surface represent a filter. Since F⃗1 is

Notes:
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constant, and moving “straight up,” it makes sense that all air passing through
S1 also passes through S2, and vice–versa.

If we treated the surfaces as crea ng one piecewise–smooth surface S , we
would find the total flux acrossS by finding the flux across each piece, being sure
that each normal vector pointed to the outside of the closed surface. Above, n⃗1
does not point outside the surface, though n⃗2 does. We would instead want to
use −n⃗1 in our computa on. We would then find that the flux across S1 is −π,
and hence the total flux across S is −π + π = 0. (As 0 is a special number, we
should wonder if this answer has special significance. It does, which is briefly
discussed following this example and will be more fully developed in the next
sec on.)

We now compute the flux across each surface with F⃗2 = ⟨0, 0, z⟩:

Flux across S1 =

∫∫
S1

F⃗2 · n⃗1 dS.

Over S1, F⃗2 = F⃗2
(⃗
r2(u, v)

)
= ⟨0, 0, 0⟩. Therefore,

=

∫∫
R
⟨0, 0, 0⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0
(0) du dv

= 0.

Flux across S2 =

∫∫
S2

F⃗2 · n⃗2 dS.

Over S2, F⃗2 = F⃗2
(⃗
r2(u, v)

)
= ⟨0, 0, 1− v2⟩. Therefore,

=

∫∫
R
⟨0, 0, 1− v2⟩ · ⟨2v2 cos u, 2v2 sin u, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v3 − v) du dv

= π/2.

This me the measurements of flux differ. Over S1, the field F⃗2 is just 0⃗,
hence there is no flux. Over S2, the flux is again posi ve as F⃗2 points in the pos-
i ve z direc on over S2, as does n⃗2.
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In the previous example, the surfaces S1 and S2 form a closed surface that
is piecewise smooth. That the measurement of flux across each surface was the
same for some fields (and not for others) is reminiscent of a result from Sec on
14.4, where we measured flux across curves. The quick answer to why the flux
was the same when considering F⃗1 is that div F⃗1 = 0. In the next sec on, we’ll
see the second part of the Divergence Theorem which will more fully explain
this occurrence. We will also explore Stokes’ Theorem, the spa al analogue to
Green’s Theorem.
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Exercises 14.6
Terms and Concepts

1. In the plane, flux is ameasurement of howmuch of the vec-
tor field passes across a ; in space, flux is a mea-
surement of how much of the vector field passes across a

.

2. When compu ng flux, what does it mean when the result
is a nega ve number?

3. When S is a closed surface, we choose the normal vector
so that it points to the of the surface.

4. If S is a plane, and F⃗ is always parallel to S, then the flux of
F⃗ across S will be .

Problems
In Exercises 5 – 6, a surface S that represents a thin sheet of
material with density δ is given. Find the mass of each thin
sheet.

5. S is the plane f(x, y) = x+ y on−2 ≤ x ≤ 2,−3 ≤ y ≤ 3,
with δ(x, y, z) = z.

6. S is the unit sphere, with δ(x, y, z) = x+ y+ z+ 10.

In Exercises 7 – 14, a surface S and a vector field F⃗ are given.
Compute the flux of F⃗ across S. (If S is not a closed surface,
choose n⃗ so that it has a posi ve z-component, unless other-
wise indicated.)

7. S is the plane f(x, y) = 3x + y on 0 ≤ x ≤ 1, 1 ≤ y ≤ 4;
F⃗ = ⟨x2,−z, 2y⟩.

8. S is the plane f(x, y) = 8 − x − y over the triangle with
ver ces at (0, 0), (1, 0) and (1, 5); F⃗ = ⟨3, 1, 2⟩.

9. S is the paraboloid f(x, y) = x2 + y2 over the unit disk;
F⃗ = ⟨1, 0, 0⟩.

10. S is the unit sphere; F⃗ = ⟨y− z, z− x, x− y⟩.

11. S is the square in space with corners at (0, 0, 0), (1, 0, 0),
(1, 0, 1) and (0, 0, 1) (choose n⃗ such that it has a posi ve
y-component); F⃗ = ⟨0,−z, y⟩.

12. S is the disk in the y-z plane with radius 1, centered at
(0, 1, 1) (choose n⃗ such that it has a posi ve x-component);
F⃗ = ⟨y, z, x⟩.

13. S is the closed surface composed of S1, whose boundary is
the ellipse in the x-y plane described by x2

25 + y2
9 = 1 and

S2, part of the ellip cal paraboloid f(x, y) = 1 − x2
25 − y2

9
(see graph); F⃗ = ⟨5, 2, 3⟩.

14. S is the closed surface composed of S1, part of the unit
sphere and S2, part of the plane z = 1/2 (see graph);
F⃗ = ⟨x,−y, z⟩.

899





Note: the term “outer unit normal vec-
tor” used in Theorem 14.7.1 means n⃗
points to the outside of S.

Figure 14.7.1: The surfaces used in Exam-
ple 14.7.1.
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14.7 The Divergence Theorem and Stokes’ Theorem

The Divergence Theorem

Theorem 14.4.2 gives the Divergence Theorem in the plane, which states
that the flux of a vector field across a closed curve equals the sum of the diver-
gences over the region enclosed by the curve. Recall that the flux wasmeasured
via a line integral, and the sum of the divergences was measured through a dou-
ble integral.

We now consider the three-dimensional version of the Divergence Theorem.
It states, in words, that the flux across a closed surface equals the sum of the
divergences over the domain enclosed by the surface. Since we are in space
(versus the plane), we measure flux via a surface integral, and the sums of di-
vergences will be measured through a triple integral.

Theorem 14.7.1 The Divergence Theorem (in space)

Let D be a closed domain in space whose boundary is an orientable,
piecewise smooth surface S with outer unit normal vector n⃗, and let F⃗
be a vector field whose components are differen able on D. Then∫∫

S
F⃗ · n⃗ dS =

∫∫∫
D
div F⃗ dV.

Example 14.7.1 Using the Divergence Theorem in space
Let D be the domain in space bounded by the planes z = 0 and z = 2x, along
with the cylinder x = 1− y2, as graphed in Figure 14.7.1, let S be the boundary
of D, and let F⃗ = ⟨x+ y, y2, 2z⟩.

Verify the Divergence Theorem by finding the total outward flux of F⃗ across
S, and show this is equal to

∫∫∫
D div F⃗ dV.

S The surface S is piecewise smooth, comprising surfaces S1,
which is part of the plane z = 2x, surface S2, which is part of the cylinder x =
1−y2, and surfaceS3, which is part of the plane z = 0. To find the total outward
flux across S, we need to compute the outward flux across each of these three
surfaces.

We leave it to the reader to confirm that surfaces S1, S2 and S3 can be pa-

Notes:
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rameterized by r⃗1, r⃗2 and r⃗3 respec vely as

r⃗1(u, v) =
⟨
v(1− u2), u, 2v(1− u2)

⟩
,

r⃗2(u, v) =
⟨
(1− u2), u, 2v(1− u2)

⟩
,

r⃗3(u, v) =
⟨
v(1− u2), u, 0

⟩
,

where−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for all three func ons.

We compute a unit normal vector n⃗ for each as r⃗u×⃗rv
|| r⃗u×⃗rv || , though recall that

as we are integra ng F⃗ · n⃗ dS, we actually only use r⃗u× r⃗v. Finally, in previous flux
computa ons, it did not ma er which direc on n⃗ pointed as long as we made
note of its direc on. When using the Divergence Theorem, we need n⃗ to point
to the outside of the closed surface, so in prac ce this means we’ll either use
r⃗u × r⃗v or r⃗v × r⃗u, depending on which points outside of the closed surface S.

We leave it to the reader to confirm the following cross products and inte-
gra ons are correct.

For S1, we need to use r⃗1v × r⃗1u = ⟨2(u2 − 1), 0, 1 − u2⟩. (Note the z-
component is nonnega ve as u ≤ 1, therefore this vector always points up,
meaning to the outside, of S.) The flux across S1 is:

Flux across S1: =
∫∫

S1

F⃗ · n⃗1 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r1(u, v)

)
·
(⃗
r1v × r⃗1u

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
v(1− u2) + u, u2, 4v(1− u2)

⟩
·
⟨
2(u2 − 1), 0, 1− u2

⟩
du dv

=

∫ 1

0

∫ 1

−1

(
2u4v+ 2u3 − 4u2v− 2u+ 2v

)
du dv

=
16
15

.

For S2, we use r⃗2u× r⃗2v = ⟨2(1−u2), 4u(1−u2), 0⟩. (Note the x-component
is always nonnega ve, meaning this vector points outside S.) The flux across S2
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is:

Flux across S2: =
∫∫

S2

F⃗ · n⃗2 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r2(u, v)

)
·
(⃗
r2u × r⃗2v

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
1− u2 + u, u2, 4v(1− u2)

⟩
·
⟨
2(1− u2), 4u(1− u2), 0

⟩
du dv

=

∫ 1

0

∫ 1

−1

(
4u5 − 2u4 − 2u3 + 4u2 − 2u− 2

)
du dv

=
32
15

.

For S3, we use r⃗3u × r⃗3v = ⟨0, 0, u2 − 1⟩. (Note the z-component is never
posi ve, meaning this vector points down, outside of S.) The flux across S3 is:

Flux across S3: =
∫∫

S3

F⃗ · n⃗3 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r3(u, v)

)
·
(⃗
r3u × r⃗3v

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
v(1− u2) + u, u2, 0

⟩
·
⟨
0, 0, u2 − 1

⟩
du dv

=

∫ 1

0

∫ 1

−1
0 du dv

= 0.

Thus the total outward flux, measured by surface integrals across all three
component surfaces of S, is 16/15 + 32/15 + 0 = 48/15 = 16/5 = 3.2. We
now find the total outward flux by integra ng div F⃗ over D.

Following the steps outlined in Sec on 13.6, we see the bounds of x, y and
z can be set as (thinking “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 2x; 0 ≤ x ≤ 1− y2; −1 ≤ y ≤ 1.

With div F⃗ = 1+ 2y+ 2 = 2y+ 3, we find the total outward flux of F⃗ over S as:

Flux =
∫∫∫

D
div F⃗ dV =

∫ 1

−1

∫ 1−y2

0

∫ 2x

0

(
2y+ 3

)
dz dx dy = 16/5,

the same result we obtained previously.
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Figure 14.7.2: The surfaces used in Exam-
ple 14.7.2.

14.7 The Divergence Theorem and Stokes’ Theorem

In Example 14.7.1 we see that the total outward flux of a vector field across a
closed surface can be found two different ways because of the Divergence The-
orem. One computa on took far less work to obtain. In that par cular case,
since S was comprised of three separate surfaces, it was far simpler to compute
one triple integral than three surface integrals (each of which required par al
deriva ves and a cross product). In prac ce, if outward flux needs to be mea-
sured, one would choose only one method. We will use both methods in this
sec on simply to reinforce the truth of the Divergence Theorem.

We prac ce again in the following example.

Example 14.7.2 Using the Divergence Theorem in space
Let S be the surface formed by the paraboloid z = 1 − x2 − y2, z ≥ 0, and the
unit disk centered at the origin in the x-y plane, graphed in Figure 14.7.2, and let
F⃗ = ⟨0, 0, z⟩. (This surface and vector field were used in Example 14.6.3.)

Verify theDivergence Theorem; find the total outward flux acrossS and eval-
uate the triple integral of div F⃗, showing that these two quan es are equal.

S We find the flux across S first. As S is piecewise–smooth,
we decompose it into smooth components S1, the disk, and S2, the paraboloid,
and find the flux across each.

In Example 14.6.3, we found the flux across S1 is 0. We also found that the
flux acrossS2 is π/2. (In that example, the normal vector had a posi ve z compo-
nent hence was an outer normal.) Thus the total outward flux is 0+π/2 = π/2.

We now compute
∫∫∫

D div F⃗ dV. We can describe D as the domain bounded
by (think “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 1− x2 − y2, −
√

1− x2 ≤ y ≤
√

1− x2, −1 ≤ x ≤ 1.

This descrip on of D is not very easy to integrate. With polar, we can do be er.
Let R represent the unit disk, which can be described in polar simply as r, where
0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. With x = r cos θ and y = r sin θ, the surface S2
becomes

z = 1− x2 − y2 ⇒ 1− (r cos θ)2 − (r sin θ)2 ⇒ 1− r2.

Thus D can be described as the domain bounded by:

0 ≤ z ≤ 1− r2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

With div F⃗ = 1, we can integrate, recalling that dV = r dz dr dθ:∫∫∫
D
div F⃗ dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

0
r dz dr dθ =

π

2
,

which matches our flux computa on above.
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Figure 14.7.3: The cube used in Example
14.7.3.
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Example 14.7.3 A “paradox” of the Divergence Theorem and Gauss’s Law
The magnitude of many physical quan es (such as light intensity or electro-
magne c and gravita onal forces) follow an “inverse square law”: the magni-
tude of the quan ty at a point is inversely propor onal to the square of the
distance to the source of the quan ty.

Let a point light source be placed at the origin and let F⃗ be the vector field
which describes the intensity and direc on of the emana ng light. At a point
(x, y, z), the unit vector describing the direc on of the light passing through
that point is ⟨x, y, z⟩/

√
x2 + y2 + z2. As the intensity of light follows the inverse

square law, the magnitude of F⃗ at (x, y, z) is k/(x2 + y2 + z2) for some constant
k. Taken together,

F⃗(x, y, z) =
k

(x2 + y2 + z2)3/2
⟨x, y, z⟩.

Consider the cube, centered at the origin, with sides of length 2a for some
a > 0 (hence corners of the cube lie at (a, a, a), (−a,−a,−a), etc., as shown
in Figure 14.7.3). Find the flux across the six faces of the cube and compare this
to
∫∫

D div F⃗ dV.

S LetS1 be the “top” face of the cube, which canbeparametrized
by r⃗(u, v) = ⟨u, v, a⟩ for−a ≤ u ≤ a,−a ≤ v ≤ a. We leave it to the reader to
confirm that r⃗u × r⃗v = ⟨0, 0, 1⟩, which points outside of the cube.

The flux across this face is:

Flux =
∫∫

S1

F⃗ · n⃗ dS

=

∫ a

−a

∫ a

−a
F⃗
(⃗
r(u, v)

)
·
(⃗
ru × r⃗v

)
du dv

=

∫ a

−a

∫ a

−a

k a
(u2 + v2 + a2)3/2

du dv.

This double integral is not trivial to compute, requiring mul ple trigonometric
subs tu ons. This example is not meant to stress integra on techniques, so we
leave it to the reader to confirm the result is

=
2kπ
3

.

Note how the result is independent of a; no ma er the size of the cube, the flux
through the top surface is always 2kπ/3.

An argument of symmetry shows that the flux through each of the six faces
is 2kπ/3, thus the total flux through the faces of the cube is 6× 2kπ/3 = 4kπ.
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It takes a bit of algebra, but we can show that div F⃗ = 0. Thus the Divergence
Theorem would seem to imply that the total flux through the faces of the cube
should be

Flux =

∫∫∫
D
div F⃗ dV =

∫∫∫
D
0 dV = 0,

but clearly this does not match the result from above. What went wrong?
Revisit the statement of the Divergence Theorem. One of the condi ons is

that the components of F⃗must be differen able on the domain enclosed by the
surface. In our case, F⃗ is not differen able at the origin – it is not even defined!
As F⃗does not sa sfy the condi ons of theDivergence Theorem, it does not apply,
and we cannot expect

∫∫
S F⃗ · n⃗ dA =

∫∫∫
D div F⃗ dV.

Since F⃗ is differen able everywhere except the origin, the Divergence Theo-
rem does apply over any domain that does not include the origin. Let S2 be any
surface that encloses the cube used before, and let D̂ be the domain between
the cube and S2; note how D̂ does not include the origin and so the Divergence
Theorem does apply over this domain. The total outward flux over D̂ is thus∫∫

D̂ div F⃗ dV = 0, which means the amount of flux coming out of S2 is the same
as the amount of flux coming out of the cube. The conclusion: the flux across
any surface enclosing the origin will be 4kπ.

This has an important consequence in electrodynamics. Let q be a point
charge at the origin. The electric field generated by this point charge is

E⃗ =
q

4πε0
⟨x, y, z⟩

(x2 + y2 + z2)3/2
,

i.e., it is F⃗ with k = q/(4πε0), where ε0 is a physical constant (the “permi vity
of free space”). Gauss’s Law states that the outward flux of E⃗ across any surface
enclosing the origin is q/ε0.

Our interest in the Divergence Theorem is twofold. First, it’s truth alone is
interes ng: to study the behavior of a vector field across a closed surface, one
can examine proper es of that field within the surface. Secondly, it offers an
alterna ve way of compu ng flux. When there are mul ple methods of com-
pu ng a desired quan ty, one has power to select the easiest computa on as
illustrated next.

Example 14.7.4 Using the Divergence Theorem to compute flux
Let S be the cube bounded by the planes x = ±1, y = ±1, z = ±1, and let
F⃗ = ⟨x2y, 2yz, x2z3⟩. Compute the outward flux of F⃗ over S.

S We compute div F⃗ = 2xy + 2z + 3x2z2. By the Divergence
Theorem, the outward flux is the triple integral over the domain D enclosed by

Notes:
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S:

Outward flux:
∫ 1

−1

∫ 1

−1

∫ 1

−1
(2xy+ 2z+ 3x2z2) dz dy dx =

8
3
.

The direct flux computa on requires six surface integrals, one for each face of
the cube. The Divergence Theorem offers a much more simple computa on.

Stokes’ Theorem

Just as the spa al Divergence Theorem of this sec on is an extension of the
planar Divergence Theorem, Stokes’ Theorem is the spa al extension of Green’s
Theorem. Recall that Green’s Theorem states that the circula on of a vector
field around a closed curve in the plane is equal to the sum of the curl of the
field over the region enclosed by the curve. Stokes’ Theorem effec vely makes
the same statement: given a closed curve that lies on a surfaceS, the circula on
of a vector field around that curve is the same as the sum of “the curl of the
field” across the enclosed surface. We use quotes around “the curl of the field”
to signify that this statement is not quite correct, as we do not sum curl F⃗, but
curl F⃗ · n⃗, where n⃗ is a unit vector normal to S. That is, we sum the por on of
curl F⃗ that is orthogonal to S at a point.

Green’s Theorem dictated that the curve was to be traversed counterclock-
wise when measuring circula on. Stokes’ Theorem will follow a right hand rule:
when the thumb of one’s right hand points in the direc on of n⃗, the path C will
be traversed in the direc on of the curling fingers of the hand (this is equivalent
to traversing counterclockwise in the plane).

Theorem 14.7.2 Stokes’ Theorem

Let S be a piecewise smooth, orientable surface whose boundary is a
piecewise smooth curve C, let n⃗ be a unit vector normal to S, let C be
traversed with respect to n⃗ according to the right hand rule, and let the
components of F⃗ have con nuous first par al deriva ves over S. Then∮

C
F⃗ · d⃗r =

∫∫
S
(curl F⃗) · n⃗ dS.

In general, the best approach to evalua ng the surface integral in Stokes’
Theorem is to parametrize the surface S with a func on r⃗(u, v). We can find a
unit normal vector n⃗ as

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
.
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Figure 14.7.4: As given in Example 14.7.5,
the surface S is the por on of the plane
bounded by the curve.

14.7 The Divergence Theorem and Stokes’ Theorem

Since dS = || r⃗u × r⃗v || dA, the surface integral in prac ce is evaluated as∫∫
S
(curl F⃗) · (⃗ru × r⃗v) dA,

where r⃗u × r⃗v may be replaced by r⃗v × r⃗u to properly match the direc on of this
vector with the orienta on of the parameteriza on of C.

Example 14.7.5 Verifying Stokes’ Theorem
Considering the planar surface f(x, y) = 7− 2x− 2y, let C be the curve in space
that lies on this surface above the circle of radius 1 and centered at (1, 1) in
the x-y plane, let S be the planar region enclosed by C, as illustrated in Figure
14.7.4, and let F⃗ = ⟨x+y, 2y, y2⟩. Verify Stoke’s Theorem by showing

∮
C F⃗ · d⃗r =∫∫

S(curl F⃗) · n⃗ dS.

S We begin by parameterizing C and then find the circula on.
A unit circle centered at (1, 1) can be parametrized with x = cos t + 1, y =
sin t+1 on 0 ≤ t ≤ 2π; to put this curve on the surface f, make the z component
equal f(x, y): z = 7−2(cos t+1)−2(sin t+1) = 3−2 cos t−2 sin t. All together,
we parametrize C with r⃗(t) = ⟨cos t+ 1, sin t+ 1, 3− 2 cos t− 2 sin t⟩.

The circula on of F⃗ around C is∮
C
F⃗ · d⃗r =

∫ 2π

0
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt

=

∫ 2π

0

(
2 sin3 t− 2 cos t sin2 t+ 3 sin2 t− 3 cos t sin t

)
dt

= 3π.

We now parametrize S. (We reuse the le er “r” for our surface as this is our
custom.) Based on the parametriza on of C above, we describe S with r⃗(u, v) =
⟨v cos u+ 1, v sin u+ 1, 3− 2v cos u− 2v sin u⟩, where 0 ≤ u ≤ 2π and 0 ≤
v ≤ 1.

We leave it to the reader to confirm that r⃗u × r⃗v = ⟨2v, 2v, v⟩. As 0 ≤ v ≤ 1,
this vector always has a non-nega ve z-component, which the right–hand rule
requires given the orienta on of C used above. We also leave it to the reader to
confirm curl F⃗ = ⟨2y, 0,−1⟩.

The surface integral of Stokes’ Theorem is thus∫∫
S
(curl F⃗) · n⃗ dS =

∫∫
S
(curl F⃗) · (⃗ru × r⃗v) dA

=

∫ 1

0

∫ 2π

0
⟨2v sin u+ 2, 0,−1⟩ · ⟨2v, 2v, v⟩ du dv

= 3π,

which matches our previous result.
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(a)

(b)

Figure 14.7.5: As given in Example 14.7.6,
the surface S is the por on of the plane
bounded by the curve.
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One of the interes ng results of Stokes’ Theorem is that if two surfaces S1
and S2 share the same boundary, then

∫∫
S1
(curl F⃗) · n⃗ dS =

∫∫
S2
(curl F⃗) · n⃗ dS.

That is, the value of these two surface integrals is somehow independent of the
interior of the surface. We demonstrate this principle in the next example.

Example 14.7.6 Stokes’ Theorem and surfaces that share a boundary
Let C be the curve given in Example 14.7.5 and note that it lies on the surface
z = 6 − x2 − y2. Let S be the region of this surface bounded by C, and let
F⃗ = ⟨x + y, 2y, y2⟩ as in the previous example. Compute

∫∫
S(curl F⃗) · n⃗ dS to

show it equals the result found in the previous example.

S We begin by demonstra ng that C lies on the surface z =
6−x2−y2. We can parametrize the x and y components of Cwith x = cos t+1,
y = sin t + 1 as before. Li ing these components to the surface f gives the z
component as z = 6−x2−y2 = 6−(cos t+1)2−(sin t+1)2 = 3−2 cos t−2 sin t,
which is the same z component as found in Example 14.7.5. Thus the curve C
lies on the surface z = 6− x2 − y2, as illustrated in Figure 14.7.5.

Since C and F⃗ are the same as in the previous example, we already know that∮
C F⃗ · d⃗r = 3π. We confirm that this is also the value of

∫∫
S(curl F⃗) · n⃗ dS.

We parametrize S with

r⃗(u, v) = ⟨v cos u+ 1, v sin u+ 1, 6− (v cos u+ 1)2 − (v sin u+ 1)2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1, and leave it to the reader to confirm that

r⃗u × r⃗v =
⟨
2v
(
v cos u+ 1

)
, 2v
(
v sin u+ 1

)
, v
⟩
,

which also conforms to the right–hand rule with regard to the orienta on of C.
With curl F⃗ = ⟨2y, 0,−1⟩ as before, we have∫∫

S
(curl F⃗) · n⃗ dS =∫ 1

0

∫ 2π

0
⟨2v sin u+ 2, 0,−1⟩ ·

⟨
2v
(
v cos u+ 1

)
, 2v
(
v sin u+ 1

)
, v
⟩
du dv =

3π.

Even though the surfaces used in this example and in Example 14.7.5 are very
different, because they share the same boundary, Stokes’ Theorem guarantees
they have equal “sum of curls” across their respec ve surfaces.

Notes:
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14.7 The Divergence Theorem and Stokes’ Theorem

A Common Thread of Calculus

We have threefold interest in each of the major theorems of this chapter:
the Fundamental Theorem of Line Integrals, Green’s, Stokes’ and the Divergence
Theorems. First, we find the beauty of their truth interes ng. Second, each
provides two methods of compu ng a desired quan ty, some mes offering a
simpler method of computa on.

There is yet one more reason of interest in the major theorems of this chap-
ter. These important theorems also all share an important principle with the
Fundamental Theorem of Calculus, introduced in Chapter 5.

Revisit this fundamental theorem, adop ng the nota on used heavily in this
chapter. Let I be the interval [a, b] and let y = F(x) be differen able on I, with
F ′(x) = f(x). The Fundamental Theorem of Calculus states that∫

I
f(x) dx = F(b)− F(a).

That is, the sum of the rates of change of a func on F over an interval I can also
be calculated with a certain sum of F itself on the boundary of I (in this case, at
the points x = a and x = b).

Each of the named theorems above can be expressed in similar terms. Con-
sider the Fundamental Theorem of Line Integrals: given a func on z = f(x, y),
the gradient∇f is a type of rate of change of f. Given a curve C with ini al and
terminal points A and B, respec vely, this fundamental theorem states that∫

C
∇f ds = f(B)− f(A),

where again the sumof a rate of change of f along a curve C can also be evaluated
by a certain sum of f at the boundary of C (i.e., the points A and B).

Green’s Theorem is essen ally a special case of Stokes’ Theorem, so we con-
sider just Stokes’ Theorem here. Recalling that the curl of a vector field F⃗ is a
measure of a rate of change of F⃗, Stokes’ Theorem states that over a surface S
bounded by a closed curve C,∫∫

S

(
curl F⃗

)
· n⃗ dS =

∮
C
F⃗ · d⃗r,

i.e., the sum of a rate of change of F⃗ can be calculated with a certain sum of F⃗
itself over the boundary of S. In this case, the la er sum is also an infinite sum,
requiring an integral.

Finally, the Divergence Theorems state that the sum of divergences of a vec-
tor field (another measure of a rate of change of F⃗) over a region can also be
computed with a certain sum of F⃗ over the boundary of that region. When the

Notes:
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Chapter 14 Vector Analysis

region is planar, the la er sum of F⃗ is an integral; when the region is spa al, the
la er sum of F⃗ is a double integral.

The common thread among these theorems: the sum of a rate of change of
a func on over a region can be computed as another sum of the func on itself
on the boundary of the region. While very general, this is a very powerful and
important statement.

Notes:
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Exercises 14.7
Terms and Concepts

1. What are the differences between the Divergence Theo-
rems of Sec on 14.4 and this sec on?

2. What property of a vector field does the Divergence Theo-
rem relate to flux?

3. What property of a vector field does Stokes’ Theorem relate
to circula on?

4. Stokes’ Theorem is the spa al version of what other theo-
rem?

Problems
In Exercises 5 – 8, a closed surface S enclosing a domain D
and a vector field F⃗ are given. Verify the Divergence Theorem
on S; that is, show

∫∫
S F⃗ · n⃗ dS =

∫∫∫
D div F⃗ dV.

5. S is the surface bounding the domain D enclosed by the
plane z = 2− x/2− 2y/3 and the coordinate planes in the
first octant; F⃗ = ⟨x2, y2, x⟩.

6. S is the surface bounding the domain D enclosed by the
cylinder x2 + y2 = 1 and the planes z = −3 and z = 3;
F⃗ = ⟨−x, y, z⟩.

7. S is the surface bounding the domain D enclosed by z =
xy(3− x)(3− y) and the plane z = 0; F⃗ = ⟨3x, 4y, 5z+ 1⟩.

8. S is the surface composed of S1, the paraboloid z = 4 −
x2 − y2 for z ≥ 0, and S2, the disk of radius 2 centered at
the origin; F⃗ = ⟨x, y, z2⟩.

In Exercises 9 – 12, a closed curve C that is the boundary of a
surface S is given along with a vector field F⃗. Verify Stokes’
Theorem on C; that is, show

∮
C F⃗ · d⃗r =

∫∫
S

(
curl F⃗

)
· n⃗ dS.

9. C is the curve parametrized by r⃗(t) = ⟨cos t, sin t, 1⟩ and S
is the por on of z = x2 + y2 enclosed by C; F⃗ = ⟨z,−x, y⟩.

10. C is the curve parametrized by r⃗(t) = ⟨cos t, sin t, e−1⟩
and S is the por on of z = e−x2−y2 enclosed by C; F⃗ =
⟨−y, x, 1⟩.

11. C is the curve that follows the triangle with ver ces at
(0, 0, 2), (4, 0, 0) and (0, 3, 0), traversing the the ver ces in
that order and returning to (0, 0, 2), and S is the por on of
the plane z = 2−x/2−2y/3 enclosed by C; F⃗ = ⟨y,−z, y⟩.
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12. C is the curvewhose x and y coordinates follow the parabola
y = 1− x2 from x = 1 to x = −1, then follow the line from
(−1, 0) back to (1, 0), where the z coordinates of C are de-
termined by f(x, y) = 2x2 + y2, and S is the por on of
z = 2x2 + y2 enclosed by C; F⃗ = ⟨y2 + z, x, x2 − y⟩.

In Exercises 13 – 16, a closed surface S and a vector field F⃗
are given. Find the outward flux of F⃗ over S either through
direct computa on or through the Divergence Theorem.

13. S is the surface formed by the intersec ons of z = 0 and
z = (x2 − 1)(y2 − 1); F⃗ = ⟨x2 + 1, yz, xz2⟩.

14. S is the surface formed by the intersec ons of the planes
z = 1

2 (3− x), x = 1, y = 0, y = 2 and z = 0; F⃗ = ⟨x, y2, z⟩.

15. S is the surface formed by the intersec ons of the planes
z = 2y, y = 4− x2 and z = 0; F⃗ = ⟨xz, 0, xz⟩.

16. S is the surface formed by the intersec ons of the cylinder
z = 1 − x2 and the planes y = −2, y = 2 and z = 0;
F⃗ = ⟨0, y3, 0⟩.

In Exercises 17 – 20, a closed curve C that is the boundary of
a surface S is given along with a vector field F⃗. Find the cir-
cula on of F⃗ around C either through direct computa on or
through Stokes’ Theorem.

17. C is the curve whose x- and y-values are determined by the
three sides of a triangle with ver ces at (−1, 0), (1, 0) and
(0, 1), traversed in that order, and the z-values are deter-
mined by the func on z = xy; F⃗ = ⟨z− y2, x, z⟩.

18. C is the curve whose x- and y-values are given by r⃗(t) =
⟨2 cos t, 2 sin t⟩ and the z-values are determined by the
func on z = x2 + y3 − 3y+ 1; F⃗ = ⟨−y, x, z⟩.

19. C is the curve whose x- and y-values are given by r⃗(t) =
⟨cos t, 3 sin t⟩ and the z-values are determined by the func-
on z = 5− 2x− y; F⃗ = ⟨− 1

3y, 3x,
2
3y− 3x⟩.
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20. C is the curve whose x- and y-values are sides of the square
with ver ces at (1, 1), (−1, 1), (−1,−1) and (1,−1), tra-
versed in that order, and the z-values are determined by
the func on z = 10− 5x− 2y; F⃗ = ⟨5y2, 2y2, y2⟩.

Exercises 21 – 24 are designed to challenge your understand-
ing and require no computa on.

21. LetS be any closed surface enclosing a domain D. Consider
F⃗1 = ⟨x, 0, 0⟩ and F⃗2 = ⟨y, y2, z− 2yz⟩.
These fields are clearly very different. Why is it that the
total outward flux of each field across S is the same?

22. (a) Green’s Theorem can be used to find the area of a re-
gion enclosed by a curve by evalua ng a line integral
with the appropriate choice of vector field F⃗. What
condi on on F⃗makes this possible?

(b) Likewise, Stokes’ Theorem can be used to find the
surface area of a region enclosed by a curve in space
by evalua ng a line integral with the appropriate
choice of vector field F⃗. What condi on on F⃗ makes
this possible?

23. The Divergence Theorem establishes equality between a
par cular double integral and a par cular triple integral.
What types of circumstances would lead one to choose to
evaluate the triple integral over the double integral?

24. Stokes’ Theorem establishes equality between a par cular
line integral and a par cular double integral. What types
of circumstances would lead one to choose to evaluate the
double integral over the line integral?
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A: S T S P
Chapter 1
Sec on 1.1

1. Answers will vary.
3. F
5. Answers will vary.
7. −1
9. Limit does not exist

11. 1.5
13. Limit does not exist.
15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly 7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx. −1.

Sec on 1.2

1. ε should be given first, and the restric on |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

3. T
5. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 4| < δ, |f(x)− 13| < ε.
Consider |f(x)− 13| < ε:

|f(x)− 13| < ε

|(2x+ 5)− 13| < ε

|2x− 8| < ε

2|x− 4| < ε

−ε/2 < x− 4 < ε/2.

This implies we can let δ = ε/2. Then:
|x− 4| < δ

−δ < x− 4 < δ

−ε/2 < x− 4 < ε/2
−ε < 2x− 8 < ε

−ε < (2x+ 5)− 13 < ε

|(2x+ 5)− 13| < ε,

which is what we wanted to prove.

7. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 3| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 3|:

|f(x)− 6| < ε

|x2 − 3− 6| < ε

|x2 − 9| < ε

|x− 3| · |x+ 3| < ε

|x− 3| < ε/|x+ 3|

Since x is near 3, we can safely assume that, for instance,
2 < x < 4. Thus

2+ 3 < x+ 3 < 4+ 3
5 < x+ 3 < 7
1
7
<

1
x+ 3

<
1
5

ε

7
<

ε

x+ 3
<

ε

5

Let δ = ε
7 . Then:

|x− 3| < δ

|x− 3| <
ε

7
|x− 3| <

ε

x+ 3

|x− 3| · |x+ 3| <
ε

x+ 3
· |x+ 3|

Assuming x is near 3, x+ 3 is posi ve and we can drop the
absolute value signs on the right.

|x− 3| · |x+ 3| <
ε

x+ 3
· (x+ 3)

|x2 − 9| < ε

|(x2 − 3)− 6| < ε,

which is what we wanted to prove.
9. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 1| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 6| < ε

|(2x2 + 3x+ 1)− 6| < ε

|2x2 + 3x− 5| < ε

|2x+ 5| · |x− 1| < ε

|x− 1| < ε/|2x+ 5|

Since x is near 1, we can safely assume that, for instance,
0 < x < 2. Thus

0+ 5 < 2x+ 5 < 4+ 5
5 < 2x+ 5 < 9
1
9
<

1
2x+ 5

<
1
5

ε

9
<

ε

2x+ 5
<

ε

5



Let δ = ε
9 . Then:

|x− 1| < δ

|x− 1| <
ε

9
|x− 1| <

ε

2x+ 5

|x− 1| · |2x+ 5| <
ε

2x+ 5
· |2x+ 5|

Assuming x is near 1, 2x+ 5 is posi ve and we can drop the
absolute value signs on the right.

|x− 1| · |2x+ 5| <
ε

2x+ 5
· (2x+ 5)

|2x2 + 3x− 5| < ε

|(2x2 + 3x+ 1)− 6| < ε,

which is what we wanted to prove.

11. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a constant
func on, the la er inequality is simply |5− 5| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

13. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 1| < δ, |f(x)− 1| < ε.
Consider |f(x)− 1| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 1| < ε

|1/x− 1| < ε

|(1− x)/x| < ε

|x− 1|/|x| < ε

|x− 1| < ε · |x|

Since x is near 1, we can safely assume that, for instance,
1/2 < x < 3/2. Thus ε/2 < ε · x.
Let δ = ε

2 . Then:

|x− 1| < δ

|x− 1| <
ε

2
|x− 1| < ε · x
|x− 1|/x < ε

Assuming x is near 1, x is posi ve and we can bring it into the
absolute value signs on the le .

|(x− 1)/x| < ε

|1− 1/x| < ε

|(1/x)− 1| < ε,

which is what we wanted to prove.

Sec on 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 9

9. 0

11. 3

13. 3

15. 1

17. 0

19. 7

21. 1/2

23. Limit does not exist

25. 2

27. π2+3π+5
5π2−2π−3 ≈ 0.6064

29. −8

31. 10

33. −3/2

35. 0

37. 1

39. 3

41. 1

43. (a) Apply Part 1 of Theorem 1.3.1.
(b) Apply Theorem 1.3.6; g(x) = x

x is the same as g(x) = 1
everywhere except at x = 0. Thus lim

x→0
g(x) = lim

x→0
1 = 1.

(c) The func on f(x) is always 0, so g
(
f(x)
)
is never defined as

g(x) is not defined at x = 0. Therefore the limit does not
exist.

(d) The Composi on Rule requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the condi ons of the
Composi on Rule are not sa sfied, and hence the rule is
not violated.

Sec on 1.4

1. The func on approaches different values from the le and right;
the func on grows without bound; the func on oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2
(b) 2
(c) 2
(d) 0
(e) 2
(f) 2
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(g) 2
(h) Not defined

13. (a) 2
(b) −4
(c) Does not exist.
(d) 2

15. (a) 0
(b) 0
(c) 0
(d) 0
(e) 2
(f) 2
(g) 2
(h) 2

17. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

19. (a) 4
(b) 4
(c) 4
(d) 3

21. (a) −1
(b) 1
(c) Does not exist
(d) 0

23. 2/3

25. −9

Sec on 1.5

1. Answers will vary.

3. A root of a func on f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] and [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. Yes, by the Intermediate Value Theorem.

37. We cannot say; the Intermediate Value Theorem only applies to
func on values between−10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

41. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

43. (a) 20
(b) 25
(c) Limit does not exist
(d) 25

45. Answers will vary.

Sec on 1.6

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1
(b) 0
(c) 1/2
(d) 1/2

13. (a) Limit does not exist
(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; ver cal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; ver cal asymptotes at x = −1, 0.

23. No horizontal or ver cal asymptotes.

25. ∞
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27. −∞

29. Solu on omi ed.

31. Yes. The only “ques onable” place is at x = 3, but the le and
right limits agree.

Chapter 2
Sec on 2.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 0

9. f ′(t) = −3

11. h′(x) = 3x2

13. r ′(x) = −1
x2

15. (a) y = 6

(b) x = −2

17. (a) y = −3x+ 4

(b) y = 1/3(x− 7)− 17

19. (a) y = 48(x− 4) + 64

(b) y = − 1
48 (x− 4) + 64

21. (a) y = −1/4(x+ 2)− 1/2

(b) y = 4(x+ 2)− 1/2

23. y = 8.1(x− 3) + 16

25. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.

27. (a) Approxima ons will vary; they should match (c) closely.

(b) f ′(x) = 2x

(c) At (−1, 0), slope is−2. At (0,−1), slope is 0. At (2, 3),
slope is 4.

29. .....

−2

.

−1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

31. .....

−2

.

−1

.

1

.

2

. −5.

5

.

x

.

y

33. (a) Approximately on (−2, 0) and (2,∞).

(b) Approximately on (−∞,−2) and (0, 2).

(c) Approximately at x = 0, ±2.

(d) Approximately on (−∞,−1) and (1,∞).

(e) Approximately on (−1, 1).

(f) Approximately at x = ±1.

35. limh→0+
f(0+h)−f(0)

h = 0; note also that limx→0+ f ′(x) = 0. So f
is differen able at x = 0.
limh→0−

f(1+h)−f(1)
h = −∞; note also that

limx→1− f ′(x) = −∞. So f is not differen able at x = 1.
f is differen able on [0, 1), not its en re domain.

37. Approximately 24.

39. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]
(d) [−

√
5,
√
5]

Sec on 2.2

1. Velocity

3. Linear func ons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. /s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, nega ve profit for not

producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

Sec on 2.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity func on, and f ′′(x) is accelera on.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2(x− π

4 )−
√
2

Normal line: y = −1√
2
(x− π

4 )−
√
2
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39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

Sec on 2.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. f ′(x) = sin x+ x cos x

17. f ′(x) = ex ln x+ ex 1x

19. g′(x) = −12
(x−5)2

21. h′(x) = − csc2 x− ex

23. h′(t) = 14t+ 6

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

27. f ′(x) = 7

29. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

31. f ′(x) = −x sin x−cos x
x2 + tan x−x sec2 x

tan2 x

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

39. Tangent line: y = 4
Normal line: x = 2

41. x = 3/2

43. f ′(x) is never 0.

45. f ′′(x) = 2 cos x− x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x

49. .....

−2

.

−1

.

1

.

2

.

−3

.

3

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

51. .....

−2

.

−1

.

1

.

2

.

3

.

4

.

5

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

Sec on 2.5

1. T
3. F
5. T
7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)
11. f ′(x) = 3

(
ln x+ x2

)
2( 1x + 2x)

13. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

15. g′(x) = 5 sec2(5x)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − 1
t3

)
19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)
21. f ′(x) = 2/x
23. g′(r) = ln 4 · 4r

25. g′(t) = 0

27. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

35. f ′(x) = 4(5x−9)3 cos(4x+1)−15 sin(4x+1)(5x−9)2
(5x−9)6

37. Tangent line: y = 0
Normal line: x = 0

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

41. In both cases the deriva ve is the same: 1/x.
43. (a) ◦ F/mph

(b) The sign would be nega ve; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Sec on 2.6

1. Answers will vary.
3. T
5. f ′(x) = 1

2 x
−1/2 − 1

2 x
−3/2 = 1

2
√

x −
1

2
√

x3

7. f ′(t) = −t√
1−t2

9. h′(x) = 1.5x0.5 = 1.5
√
x

11. g′(x) =
√

x(1)−(x+7)(1/2x−1/2)
x = 1

2
√

x −
7

2
√

x3

13. dy
dx = −4x3

2y+1

15. dy
dx = sin(x) sec(y)

17. dy
dx = y

x

A.5



19. dy
dx = − 2 sin(y) cos(y)

x

21. dy
dx = 1

2y+2

23. If one takes the deriva ve of the equa on, as shown, using the
Quo ent Rule, one finds dy

dx =
− cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y) .

If one first clears the denominator and writes
sin(x) + y = cos(y) + x then takes the deriva ve of both sides,
one finds dy

dx =
1−cos(x)
1+sin(y) .

These expressions, by themselves, are not equal. However, for
values of x and y that sa sfy the original equa on (i.e, for x and y
such that sin(x)+y)

cos(y)+x) = 1), these expressions are equal.

25. dy
dx = − 2x+y

2y+x

27. (a) y = 0
(b) y = −1.859(x− 0.1) + 0.281

29. (a) y = 4
(b) y = 0.93(x− 2) + 4√108

31. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

33. d2y
dx2 =

(2y+1)(−12x2)+4x3
(
2−4x3
2y+1

)
(2y+1)2

35. d2y
dx2 = cos x cos y+sin2 x tan y

cos2 y

37. y′ = (1+ x)1/x
( 1
x(x+1) − ln(1+x)

x2
)

Tangent line: y = (1− 2 ln 2)(x− 1) + 2

39. y′ = xx
x+1
(
ln x+ 1− 1

x+1
)

Tangent line: y = (1/4)(x− 1) + 1/2

41. y′ = x+1
x+2
( 1
x+1 − 1

x+2
)

Tangent line: y = 1/9(x− 1) + 2/3

Sec on 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
inver ble).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1
(b) f ′(x) = cos(sin−1 x) 1√

1−x2
= 1.

27. y =
√
2(x−

√
2/2) + π/4

29. dy
dx =

y(y−2x)
x(x−2y)

31. 3x2 + 1

Chapter 3
Sec on 3.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; the func on isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the func on isn’t defined here. E: none F: rel.
min G: rel. max

9. f ′(0) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

13. f ′(2) is not defined f ′(6) = 0

15. f ′(0) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)

23. min: (π,−eπ)

max: (π/4,
√

2eπ/4
2 )

25. min: (1, 0)
max: (e, 1/e)

27. dy
dx =

y(y−2x)
x(x−2y)

29. 3x2 + 1

Sec on 3.2

1. Answers will vary.

3. Any c in [−1, 1] is valid.

5. c = −1/2

7. Rolle’s Thm. does not apply.

9. Rolle’s Thm. does not apply.

11. c = 0

13. c = 3/
√
2

15. The Mean Value Theorem does not apply.

17. c = ± sec−1(2/
√
π)

19. c = 5−7
√

7
6

21. Max value of 19 at x = −2 and x = 5; min value of 6.75 at
x = 1.5.

23. They are the odd, integer valued mul ples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

Sec on 3.3

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.

5. False; for instance, y = x3 is always increasing though it has a
cri cal point at x = 0.

7. Graph and verify.

9. Graph and verify.

A.6



11. Graph and verify.

13. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

17. domain=(−∞,∞)

c.p. at c = 1
6 (−1±

√
7);

decreasing on ( 16 (−1−
√
7), 1

6 (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

√
7)) and ( 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on en re domain, (−∞,−2), (−2, 4) and (4,∞)

23. domain=(−∞,∞)

c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on (−3π/4,−π/4) and (π/4, 3π/4);
increasing on (−π,−3π/4), (−π/4, π/4) and (3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

25. c = 1/2

Sec on 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Possible points of inflec on: none; concave up on (−∞,∞)

17. Possible points of inflec on: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

19. Possible points of inflec on: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) and (0,∞)

21. Possible points of inflec on: x = 1; concave up on (−∞,∞)

23. Possible points of inflec on: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) and (1/

√
3,∞)

25. Possible points of inflec on: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) and (3π/4, π)

27. Possible points of inflec on: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. max: x = 0

39. max: x = π/4; min: x = −3π/4

41. min: x = 1/
√
e

43. f ′ has no maximal or minimal value.

45. f ′ has a minimal value at x = 0

47. Possible points of inflec on: x = −2/3, 0; f ′ has a rela ve min
at: x = 0 ; rela ve max at: x = −2/3

49. f ′ has no rela ve extrema

51. f ′ has a rela ve max at x = −1/
√
3; rela ve min at x = 1/

√
3

53. f ′ has a rela ve min at x = 3π/4; rela ve max at x = −π/4

55. f ′ has a rela ve min at x = 1/
√
e3 = e−3/2

Sec on 3.5

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts and draw the
appropriate line.

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. Cri cal point: x = 0 Points of inflec on: ±b/
√
3

29. Cri cal points: x = nπ/2−b
a , where n is an odd integer Points of

inflec on: (nπ − b)/a, where n is an integer.

31. dy
dx = −x/y, so the func on is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posi ve when y < 0 and is
nega ve when y > 0. Hence the func on is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter 4
Sec on 4.1

1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 = 1.5707963,
x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458,
x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −5.156, x = −0.369 and x = 0.525

11. roots are: x = −1.013, x = 0.988, and x = 1.393

13. x = ±0.824,

15. x = ±0.743

17. The approxima ons alternate between x = 1 and x = 2.
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Sec on 4.2

1. T

3. (a) 5/(2π) ≈ 0.796cm/s
(b) 1/(4π) ≈ 0.0796 cm/s
(c) 1/(40π) ≈ 0.00796 cm/s

5. 63.14mph

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s
(b) 0.0725 rad/s
(c) In the limit, rate goes to 0.0733 rad/s

9. (a) 0.04 /s
(b) 0.458 /s
(c) 3.35 /s
(d) Not defined; as the distance approaches 24, the rates

approaches∞.

11. (a) 50.92 /min
(b) 0.509 /min
(c) 0.141 /min

As the tank holds about 523.6 3, it will take about 52.36 minutes.

13. (a) The rope is 80 long.
(b) 1.71 /sec
(c) 1.84 /sec
(d) About 34 feet.

15. The cone is rising at a rate of 0.003 /s.

Sec on 4.3

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equa on has only 1
cri cal value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should be
2r = 7.67cm. No, this is not the size of the standard can.

11. The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giving a

minimum cost of $374,899.96.

15. The dog should run about 19 feet along the shore before star ng
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

Sec on 4.4

1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 2 and dx = 0.05. Thus
dy = .2; knowing 22 = 4, we have 2.052 ≈ 4.2.

9. Use y = x3; dy = 3x2 · dx with x = 5 and dx = 0.1. Thus
dy = 7.5; knowing 53 = 125, we have 5.13 ≈ 132.5.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 16 and dx = 0.5. Thus

dy = .0625; knowing
√
16 = 4, we have

√
16.5 ≈ 4.0625.

13. Use y = 3√x; dy = 1/(3 3√x2) · dx with x = 64 and dx = −1.
Thus dy = −1/48 ≈ 0.0208; we could use
−1/48 ≈ −1/50 = −0.02; knowing 3√64 = 4, we have
3√63 ≈ 3.98.

15. Use y = sin x; dy = cos x · dx with x = π and dx ≈ −0.14. Thus
dy = 0.14; knowing sin π = 0, we have sin 3 ≈ 0.14.

17. dy = (2x+ 3)dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x)dx

31. dV = ±0.157

33. ±15π/8 ≈ ±5.89in2

35. (a) 297.8 feet
(b) ±62.3
(c) ±20.9%

37. (a) 298.9 feet
(b) ±8.67
(c) ±2.9%

39. 1%

Chapter 5
Sec on 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx

Sec on 5.2

1. Answers will vary.
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3. 0

5. (a) 3
(b) 4
(c) 3
(d) 0
(e) −4
(f) 9

7. (a) 4
(b) 2
(c) 4
(d) 2
(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) −59
(b) −48
(c) −27
(d) −33

13. (a) 4
(b) 4
(c) −4
(d) −2

15. (a) 2 /s
(b) 2
(c) 1.5

17. (a) 64 /s
(b) 64
(c) t = 2
(d) t = 2+

√
7 ≈ 4.65 seconds

19. 2

21. 16

23. 24

25. −7

27. 1/4x4 − 2/3x3 + 7/2x2 − 9x+ C

29. 3/4t4/3 − 1/t+ 2t/ ln 2+ C

Sec on 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. 1+ 1/2+ 1/3+ 1/4+ 1/5 = 137/60

11. 1/2+ 1/6+ 1/12+ 1/20 = 4/5

13. Answers may vary;
∑5

i=1 3i

15. Answers may vary;
∑4

i=1
i

i+1

17. 5 · 10 = 50

19. 1045

21. −8525

23. 5050

25. 155

27. 24

29. 19

31. π/3+ π/(2
√
3) ≈ 1.954

33. 0.388584

35. (a) Exact expressions will vary; (1+n)2

4n2 .
(b) 121/400, 10201/40000, 1002001/4000000
(c) 1/4

37. (a) 8.
(b) 8, 8, 8
(c) 8

39. (a) Exact expressions will vary; 100− 200/n.
(b) 80, 98, 499/5
(c) 100

41. F(x) = 5 tan x+ 4

43. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

45. G(t) = sin t− cos t− 78

Sec on 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. Explana ons will vary. A sketch will help.

31. c = 2/
√
3

33. c = ln(e− 1) ≈ 0.54

35. 2/π

37. 2

39. 16

41. −300

43. 30

45. −1

47. −64 /s

49. 2 /s

51. 27/2

53. 9/2
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55. F′(x) = (3x2 + 1) 1
x3+x

57. F′(x) = 2x(x2 + 2)− (x+ 2)

Sec on 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 3/4
(b) 2/3
(c) 2/3

7. (a) 1
4 (1+

√
2)π ≈ 1.896

(b) 1
6 (1+ 2

√
2)π ≈ 2.005

(c) 2

9. (a) 38.5781
(b) 147/4 ≈ 36.75
(c) 147/4 ≈ 36.75

11. (a) 0
(b) 0
(c) 0

13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452

15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066

17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873

19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

21. (a) n = 161 (using max
(
f ′′(x)

)
= 1)

(b) n = 12 (using max
(
f (4)(x)

)
= 1)

23. (a) n = 1004 (using max
(
f ′′(x)

)
= 39)

(b) n = 62 (using max
(
f (4)(x)

)
= 800)

25. (a) Area is 30.8667 cm2.
(b) Area is 308, 667 yd2.

Chapter 6
Sec on 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18
(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − 1
6 sin(3− 6x) + C

19. 1
2 ln | sec(2x) + tan(2x)|+ C

21. sin(x2)
2 + C

23. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

25. 1
3 e

3x−1 + C

27. 1
2 e

(x−1)2 + C

29. ln
(
ex + 1

)
+ C

31. 27x
ln 27 + C

33. 1
2 ln

2(x) + C

35. 3
2 (ln x)

2 + C

37. x2
2 + 3x+ ln |x|+ C

39. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

41. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

43.
√
7 tan−1

(
x√
7

)
+ C

45. 14 sin−1
(

x√
5

)
+ C

47. 5
4 sec

−1(|x|/4) + C

49.
tan−1

(
x−1√

7

)
√

7
+ C

51. 3 sin−1 ( x−4
5
)
+ C

53. − 1
3(x3+3)

+ C

55. −
√
1− x2 + C

57. − 2
3 cos

3
2 (x) + C

59. ln |x− 5|+ C

61. 3x2
2 + ln

∣∣x2 + 3x+ 5
∣∣− 5x+ C

63. 3 ln
∣∣3x2 + 9x+ 7

∣∣+ C

65. 1
18 tan

−1
(

x2
9

)
+ C

67. sec−1(|2x|) + C

69. 3
2 ln
∣∣x2 − 2x+ 10

∣∣+ 1
3 tan

−1 ( x−1
3
)
+ C

71. 15
2 ln

∣∣x2 − 10x+ 32
∣∣+ x+

41 tan−1
(

x−5√
7

)
√

7
+ C

73. x2
2 + 3 ln

∣∣x2 + 4x+ 9
∣∣− 4x+

24 tan−1
(

x+2√
5

)
√

5
+ C

75. tan−1(sin(x)) + C

77. 3
√
x2 − 2x− 6+ C

79. − ln 2

81. 2/3

83. (1− e)/2

85. π/2

Sec on 6.2

1. T

3. Determining which func ons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. sin x− x cos x+ C

7. −x2 cos x+ 2x sin x+ 2 cos x+ C

9. 1/2ex2 + C

11. − 1
2 xe

−2x − e−2x

4 + C

13. 1/5e2x(sin x+ 2 cos x) + C

15. 1/10e5x(sin(5x) + cos(5x)) + C
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17.
√
1− x2 + x sin−1(x) + C

19. 1
2 x

2 tan−1(x)− x
2 + 1

2 tan
−1(x) + C

21. 1
2 x

2 ln |x| − x2
4 + C

23. − x2
4 + 1

2 x
2 ln |x− 1| − x

2 − 1
2 ln |x− 1|+ C

25. 1
3 x

3 ln |x| − x3
9 + C

27. 2(x+ 1) + (x+ 1) (ln(x+ 1))2 − 2(x+ 1) ln(x+ 1) + C

29. ln | sin(x)| − x cot(x) + C

31. 1
3 (x

2 − 2)3/2 + C

33. x sec x− ln | sec x+ tan x|+ C

35. 1/2x
(
sin(ln x)− cos(ln x)

)
+ C

37. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

39. 2
√
xe

√
x − 2e

√
x + C

41. π

43. 0

45. 1/2

47. 3
4e2 − 5

4e4

49. 1/5
(
eπ + e−π

)
Sec on 6.3

1. F

3. F

5. − 1
5 cos

5(x) + C

7. 1
5 cos

5 x− 1
3 cos

3 x+ C

9. 1
11 sin

11 x− 2
9 sin

9 x+ 1
7 sin

7 x+ C

11. x
8 − 1

32 sin(4x) + C

13. 1
2
(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

15. 1
2
( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

17. 1
2
(
sin(x) + 1

3 sin(3x)
)
+ C

19. tan5(x)
5 + C

21. tan6(x)
6 +

tan4(x)
4 + C

23. sec5(x)
5 − sec3(x)

3 + C

25. 1
3 tan

3 x− tan x+ x+ C

27. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

29. 2
5

31. 32/315

33. 2/3

35. 16/15

Sec on 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

21. − 1√
x2+9

+ C (Trig. Subst. is not needed)

23. 1
18

x+2
x2+4x+13 + 1

54 tan
−1 ( x+2

2
)
+ C

25. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)

+ C

27. π/2

29. 2
√
2+ 2 ln(1+

√
2)

31. 9 sin−1(1/3) +
√
8 Note: the new lower bound is

θ = sin−1(−1/3) and the new upper bound is θ = sin−1(1/3).
The final answer comes with recognizing that
sin−1(−1/3) = − sin−1(1/3) and that
cos
(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
=

√
8/3.

Sec on 6.5

1. ra onal

3. A
x + B

x−3

5. A
x−

√
7
+ B

x+
√

7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. ln |x+ 5| − 2
x+5 + C

13. 5
x+1 + 7 ln |x|+ 2 ln |x+ 1|+ C

15. − 1
5 ln |5x− 1|+ 2

3 ln |3x− 1|+ 3
7 ln |7 x+ 3|+ C

17. x2
2 + x+ 125

9 ln |x− 5|+ 64
9 ln |x+ 4| − 35

2 + C

19. 1
6

(
− ln

∣∣x2 + 2x+ 3
∣∣+ 2 ln |x| −

√
2 tan−1

(
x+1√

2

))
+ C

21. ln
∣∣3x2 + 5x− 1

∣∣+ 2 ln |x+ 1|+ C

23. 9
10 ln

∣∣x2 + 9
∣∣+ 1

5 ln |x+ 1| − 4
15 tan

−1 ( x
3
)
+ C

25. 3
(
ln
∣∣x2 − 2x+ 11

∣∣+ ln |x− 9|
)
+ 3

√
2
5 tan

−1
(

x−1√
10

)
+ C

27. ln(2000/243) ≈ 2.108

29. −π/4+ tan−1 3− ln(11/9) ≈ 0.263

Sec on 6.6

1. Because cosh x is always posi ve.

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2
−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1 A.11



5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

7.
d
dx

[sech x] =
d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= −
2(ex − e−x)

(ex + e−x)(ex + e−x)

= −
2

ex + e−x ·
ex − e−x

ex + e−x

= − sech x tanh x

9.
∫

tanh x dx =
∫ sinh x

cosh x
dx

Let u = cosh x; du = (sinh x)dx

=

∫ 1
u
du

= ln |u|+ C
= ln(cosh x) + C.

11. 2 cosh 2x

13. 2x sec2(x2)

15. sinh2 x+ cosh2 x

17. −2x
(x2)

√
1−x4

19. 4x√
4x4−1

21. − csc x

23. y = x

25. y = 9
25 (x+ ln 3)− 4

5

27. y = x

29. 1/2 ln(cosh(2x)) + C

31. 1/2 sinh2 x+ C or 1/2 cosh2 x+ C

33. x cosh(x)− sinh(x) + C

35. cosh−1 x/3+ C = ln
(
x+

√
x2 − 9

)
+ C

37. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

39. 1
16 tan

−1(x/2) + 1
32 ln |x− 2|+ 1

32 ln |x+ 2|+ C

41. tan−1(ex) + C

43. x tanh−1 x+ 1/2 ln |x2 − 1|+ C

45. 0

47. 2

Sec on 6.7

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F

5. deriva ves; limits

7. Answers will vary.

9. 3

11. −1

13. 5

15. 2/3

17. ∞

19. 0

21. 0

23. ∞

25. 0

27. −2

29. 0

31. 0

33. ∞

35. ∞

37. 0

39. 1

41. 1

43. 1

45. 1

47. 1

49. 2

51. −∞

53. 0

Sec on 6.8

1. The interval of integra on is finite, and the integrand is
con nuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. −1/4

29. diverges

31. 1

33. 1/2

35. diverges; Limit Comparison Test with 1/x.

37. diverges; Limit Comparison Test with 1/x.

39. converges; Direct Comparison Test with e−x.

41. converges; Direct Comparison Test with 1/(x2 − 1).

43. converges; Direct Comparison Test with 1/ex.
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Chapter 7
Sec on 7.1

1. T

3. Answers will vary.

5. 4π + π2 ≈ 22.436

7. π

9. 1/2

11. 1/ ln 4

13. 4.5

15. 2− π/2

17. 1/6

19. All enclosed regions have the same area, with regions being the
reflec on of adjacent regions. One region is formed on
[π/4, 5π/4], with area 2

√
2.

21. 1

23. 9/2

25. 1/12(9− 2
√
2) ≈ 0.514

27. 1

29. 4

31. 219,000 2

Sec on 7.2

1. T

3. Recall that “dx” does not just “sit there;” it is mul plied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

5. 48π
√
3/5 units3

7. π2/4 units3

9. 9π/2 units3

11. π2 − 2π units3

13. (a) π/2
(b) 5π/6
(c) 4π/5
(d) 8π/15

15. (a) 4π/3
(b) 2π/3
(c) 4π/3
(d) π/3

17. (a) π2/2
(b) π2/2− 4π sinh−1(1)
(c) π2/2+ 4π sinh−1(1)

19. Placing the p of the cone at the origin such that the x-axis runs
through the center of the circular base, we have A(x) = πx2/4.
Thus the volume is 250π/3 units3.

21. Orient the cone such that the p is at the origin and the x-axis is
perpendicular to the base. The cross–sec ons of this cone are
right, isosceles triangles with side length 2x/5; thus the
cross–sec onal areas are A(x) = 2x2/25, giving a volume of 80/3
units3.

Sec on 7.3

1. T

3. F

5. 9π/2 units3

7. π2 − 2π units3

9. 48π
√
3/5 units3

11. π2/4 units3

13. (a) 4π/5
(b) 8π/15
(c) π/2
(d) 5π/6

15. (a) 4π/3
(b) π/3
(c) 4π/3
(d) 2π/3

17. (a) 2π(
√
2− 1)

(b) 2π(1−
√
2+ sinh−1(1))

Sec on 7.4

1. T

3.
√
2

5. 4/3

7. 109/2

9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0
√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
∫ 1
0
√
1− x2

√
1+ x/(1− x2) dx = 4π

Sec on 7.5

1. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s2·m.
In Imperial Units, it is –lb.

3. Smaller.

5. (a) 500 –lb
(b) 100− 50

√
2 ≈ 29.29 –lb

7. (a) 1
2 · d · l2 –lb

(b) 75 %
(c) ℓ(1−

√
2/2) ≈ 0.2929ℓ

9. (a) 756 –lb
(b) 60,000 –lb
(c) Yes, for the cable accounts for about 1% of the total work.
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11. 575 –lb

13. 0.05 J

15. 5/3 –lb

17. f · d/2 J

19. 5 –lb

21. (a) 52,929.6 –lb
(b) 18,525.3 –lb
(c) When 3.83 of water have been pumped from the tank,

leaving about 2.17 in the tank.

23. 212,135 –lb

25. 187,214 –lb

27. 4,917,150 J

Sec on 7.6

1. Answers will vary.

3. 499.2 lb

5. 6739.2 lb

7. 3920.7 lb

9. 2496 lb

11. 602.59 lb

13. (a) 2340 lb
(b) 5625 lb

15. (a) 1597.44 lb
(b) 3840 lb

17. (a) 56.42 lb
(b) 135.62 lb

19. 5.1

Chapter 8
Sec on 8.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. − 1
3 ,−2,− 81

5 ,− 512
3 ,− 15625

7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the defini on of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m,

∣∣ |an| − 0
∣∣ < ε. Since

∣∣ |an| − 0
∣∣ = |an − 0|, this

directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.

41. A sketch of one proof method:
Let any ε > 0 be given. Since {an} and {bn} converge, there
exists an N > 0 such that for all n ≥ N, both an and bn are within
ε/2 of L; we can conclude that they are at most ε apart from each
other. Since an ≤ cn ≤ bn, one can show that cn is within ε of L,
showing that {cn} also converges to L.

Sec on 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {an}. The other is the
sequence of nth par al sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) −1,− 1
2 ,−

5
6 ,−

7
12 ,−

47
60

(b) Plot omi ed

9. (a) −1, 0,−1, 0,−1

(b) Plot omi ed

11. (a) 1, 3
2 ,

5
3 ,

41
24 ,

103
60

(b) Plot omi ed

13. (a) −0.9,−0.09,−0.819,−0.1629,−0.75339

(b) Plot omi ed

15. lim
n→∞

an = 3; by Theorem 8.2.4 the series diverges.

17. lim
n→∞

an = ∞; by Theorem 8.2.4 the series diverges.

19. lim
n→∞

an = 1/2; by Theorem 8.2.4 the series diverges.

21. Converges; p-series with p = 5.

23. Diverges; geometric series with r = 6/5.

25. Diverges; fails nth term test

27. F

29. Diverges; by Theorem 8.2.3 this is half the Harmonic Series, which
diverges by growing without bound. “Half of growing without
bound” is s ll growing without bound.

31. (a) Sn =
1−(1/4)n

3/4

(b) Converges to 4/3.

33. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

35. (a) Sn = 5 1−1/2n
1/2

(b) Converges to 10.

37. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

39. (a) With par al frac ons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

41. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).
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43. (a) an = 1
n(n+3) ; using par al frac ons, the resul ng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

45. (a) With par al frac ons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

47. (a) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
par al sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Sec on 8.3

1. con nuous, posi ve and decreasing

3. The Integral Test (we do not have a con nuous defini on of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its deriva ve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 3.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test
35. Diverges; the nth Term Test and Direct Comparison Test can be

used.
37. Converges; the Direct Comparison Test can be used with sequence

1/3n.
39. Diverges; the nth Term Test can be used, along with the Integral

Test.
41. (a) Converges; use Direct Comparison Test as an

n < n.
(b) Converges; since original series converges, we know

limn→∞ an = 0. Thus for large n, anan+1 < an.
(c) Converges; similar logic to part (b) so (an)2 < an.
(d) May converge; certainly nan > an but that does not mean

it does not converge.
(e) Does not converge, using logic from (b) and nth Term Test.

Sec on 8.4

1. algebraic, or polynomial.
3. Integral Test, Limit Comparison Test, and Root Test
5. Converges
7. Converges
9. The Ra o Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summa on can be rewri en as
∞∑
n=1

2nn!
3nn!

, to

which the Ra o Test or Geometric Series Test can be applied.
15. Converges
17. Converges
19. Diverges
21. Diverges. The Root Test is inconclusive, but the nth-Term Test

shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges
25. Diverges; Limit Comparison Test with 1/n.
27. Converges; Ra o Test or Limit Comparison Test with 1/3n.
29. Diverges; nth-Term Test or Limit Comparison Test with 1.
31. Diverges; Direct Comparison Test with 1/n
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33. Converges; Root Test

Sec on 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are nega ve and the others posi ve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges
(b) converges (p-Series)
(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) condi onal

11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)
(b) diverges
(c) n/a; diverges

15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute

17. (a) converges
(b) converges (Ra o Test)
(c) absolute

19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) condi onal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

Sec on 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1
(b) (2, 4]

13. (a) R = 2
(b) (−2, 2)

15. (a) R = 1/5
(b) (4/5, 6/5)

17. (a) R = 1
(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

21. (a) R = 1
(b) [−1, 1]

23. (a) R = 0
(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+
∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

Sec on 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

2 − 1
6 x

3

7. p5(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third deriva ve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.
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25. The nth deriva ve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.
27. The nth deriva ve of f(x) = cos x is bounded by 1 on intervals

containing 0 and π/3. Thus |Rn(π/3)| ≤ 1
(n+1)! (π/3)

(n+1).
When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is: when n even, 0; when n is odd, (−1)(n−1)/2

n! xn.

33. The nth term is (−1)nxn.

35. 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4

37. 1+ 2x− 2x2 + 4x3 − 10x4

Sec on 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summa on of an infinite
number of terms.

3. All deriva ves of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth deriva ve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣,

where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− 1)(n+1)∣∣,

where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
Per the statement of the problem, we only consider the case
1 < x < 2.
If 1 < x < 2, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus

∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
<

1
n+ 1

.

Thus
lim

n→∞

∣∣Rn(x)∣∣ < lim
n→∞

1
n+ 1

= 0,

hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
on (1, 2).

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summa on s ll starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877

Chapter 9
Sec on 9.1

1. When defining the conics as the intersec ons of a plane and a
double napped cone, degenerate conics are created when the
plane intersects the ps of the cones (usually taken as the origin).
Nondegenerate conics are formed when this plane does not
contain the origin.

3. Hyperbola
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5. With a horizontal transverse axis, the x2 term has a posi ve
coefficient; with a ver cal transverse axis, the y2 term has a
posi ve coefficient.

7. y = 1
2 (x− 3)2 + 3

2

9. x = − 1
4 (y− 5)2 + 2

11. y = − 1
4 (x− 1)2 + 2

13. y = 4x2

15. focus: (0, 1); directrix: y = −1. The point P is 2 units from each.

17.
−1 1 2 3

2

4

x

y

19. (x+1)2
9 +

(y−2)2
4 = 1; foci at (−1±

√
5, 2); e =

√
5/3

21. x2
9 + y2

5 = 1

23. (x−2)2
45 + y2

49 = 1

25. (x−1)2
2 + (y− 2)2 = 1

27. x2
4 +

(y−3)2
6 = 1

29. x2 − y2
3 = 1

31. (y−3)2
4 − (x−1)2

9 = 1

33.

−5 5

−6

−4

−2

2

x

y

35. x2
4 − y2

5 = 1

37. (x−3)2
16 − (y−3)2

9 = 1

39. x2
4 − y2

3 = 1

41. (y− 2)2 − x2
10 = 1

43. (a) c =
√
12− 4 = 2

√
2.

(b) The sum of distances for each point is 2
√
12 ≈ 6.9282.

45. The sound originated from a point approximately 31m to the le
of B and 1340m above it.

Sec on 9.2

1. T

3. rectangular

5.

5 10

−5

x

y

7.

1 2

1

2

x

y

9.

−10 −5 5 10

2

4

6

8

x

y

11.
−5 5

−5

5

x

y

13.
−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y
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15.

5 10

−10

10

x

y

17.

−1 1

−1

1

x

y

19. (a) Traces the parabola y = x2, moves from le to right.

(b) Traces the parabola y = x2, but only from−1 ≤ x ≤ 1;
traces this por on back and forth infinitely.

(c) Traces the parabola y = x2, but only for 0 < x. Moves le
to right.

(d) Traces the parabola y = x2, moves from right to le .

21. y = −1.5x+ 8.5

23. (x−1)2
16 +

(y+2)2
9 = 1

25. y = 2x+ 3

27. y = e2x − 1

29. x2 − y2 = 1

31. y = b
a (x− x0) + y0; line through (x0, y0) with slope b/a.

33. (x−h)2

a2 +
(y−k)2

b2 = 1; ellipse centered at (h, k) with horizontal
axis of length 2a and ver cal axis of length 2b.

35. x = (t+ 11)/6, y = (t2 − 97)/12. At t = 1, x = 2, y = −8.
y′ = 6x− 11; when x = 2, y′ = 1.

37. x = cos−1 t, y =
√
1− t2. At t = 1, x = 0, y = 0.

y′ = cos x; when x = 0, y′ = 1.

39. t = ±1

41. t = π/2, 3π/2

43. t = −1

45. t = . . . π/2, 3π/2, 5π/2, . . .

47. x = 4t, y = −16t2 + 64t

49. x = 10t, y = −16t2 + 320t

51. x = 3 cos(2πt) + 1, y = 3 sin(2πt) + 1; other answers possible

53. x = 5 cos t, y =
√
24 sin t; other answers possible

55. x = 2 tan t, y = ±6 sec t; other answers possible

Sec on 9.3

1. F

3. F

5. (a) dy
dx = 2t

(b) Tangent line: y = 2(x− 1) + 1; normal line:
y = −1/2(x− 1) + 1

7. (a) dy
dx = 2t+1

2t−1

(b) Tangent line: y = 3x+ 2; normal line: y = −1/3x+ 2

9. (a) dy
dx = csc t

(b) t = π/4: Tangent line: y =
√
2(x−

√
2) + 1; normal line:

y = −1/
√
2(x−

√
2) + 1

11. (a) dy
dx =

cos t sin(2t)+sin t cos(2t)
− sin t sin(2t)+2 cos t cos(2t)

(b) Tangent line: y = x−
√
2; normal line: y = −x−

√
2

13. t = 0

15. t = −1/2

17. The graph does not have a horizontal tangent line.

19. The solu on is non-trivial; use iden es sin(2t) = 2 sin t cos t and
cos(2t) = cos2 t− sin2 t to rewrite
g′(t) = 2 sin t(2 cos2 t− sin2 t). On [0, 2π], sin t = 0 when
t = 0, π, 2π, and 2 cos2 t− sin2 t = 0 when
t = tan−1(

√
2), π ± tan−1(

√
2), 2π − tan−1(

√
2).

21. t0 = 0; limt→0
dy
dx = 0.

23. t0 = 1; limt→1
dy
dx = ∞.

25. d2y
dx2 = 2; always concave up

27. d2y
dx2 = − 4

(2t−1)3 ; concave up on (−∞, 1/2); concave down on
(1/2,∞).

29. d2y
dx2 = − cot3 t; concave up on (−∞, 0); concave down on
(0,∞).

31. d2y
dx2 =

4(13+3 cos(4t))
(cos t+3 cos(3t))3 , obtained with a computer algebra system;

concave up on
(
− tan−1(

√
2/2), tan−1(

√
2/2)

)
, concave down

on
(
− π/2,− tan−1(

√
2/2)

)
∪
(
tan−1(

√
2/2), π/2

)
33. L = 6π

35. L = 2
√
34

37. L ≈ 2.4416 (actual value: L = 2.42211)

39. L ≈ 4.19216 (actual value: L = 4.18308)

41. The answer is 16π for both (of course), but the integrals are
different.

43. SA ≈ 8.50101 (actual value SA = 8.02851)

Sec on 9.4

1. Answers will vary.

3. T

5. 1 2O
A

B

C

D

7. A = P(2.5, π/4) and P(−2.5, 5π/4);
B = P(−1, 5π/6) and P(1, 11π/6);
C = P(3, 4π/3) and P(−3, π/3);
D = P(1.5, 2π/3) and P(−1.5, 5π/3);

9. A = (
√
2,
√
2)

B = (
√
2,−

√
2)

C = P(
√
5,−0.46)

D = P(
√
5, 2.68)

A.19



11.

.....
1

.
2

.

1

.

2

.

x

.

y

13.

.....

−2

.

2

. −2.

−1

.

1

.

2

.

x

.

y

15.

.....

−2

.

2

.

−2

.

2

.

x

.

y

17.

.....

−2

.

2

.
−2

.

2

.

x

.

y

19.

.....

−1

.

1

. −1.

1

.

x

.

y

21.

.....

−1

.

1

. −1.

1

.

x

.

y

23.

.....
−2

.
2

.

2

.

3

.

1

.

x

.

y

25.

.....

−1

.

1

. −1.

−0.5

.

0.5

.

1

.

x

.

y

27.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

29.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

31. (x− 3)2 + y2 = 3
33. (x− 1/2)2 + (y− 1/2)2 = 1/2
35. x = 3
37. x4 + x2y2 − y2 = 0
39. x2 + y2 = 4
41. θ = π/4
43. r = 5 sec θ
45. r = cos θ/ sin2 θ
47. r =

√
7

49. P(
√
3/2, π/6), P(0, π/2), P(−

√
3/2, 5π/6)

51. P(0, 0) = P(0, π/2), P(
√
2, π/4)

53. P(
√
2/2, π/12), P(−

√
2/2, 5π/12), P(

√
2/2, 3π/4)

55. For all points, r = 1; θ =
π/12, 5π/12, 7π/12, 11π/12, 13π/12, 17π/12, 19π/12, 23π/12.

57. Answers will vary. Ifm and n do not have any common factors,
then an interval of 2nπ is needed to sketch the en re graph.

Sec on 9.5

1. Using x = r cos θ and y = r sin θ, we can write x = f(θ) cos θ,
y = f(θ) sin θ.

3. (a) dy
dx = − cot θ

(b) tangent line: y = −(x−
√
2/2) +

√
2/2; normal line:

y = x

5. (a) dy
dx =

cos θ(1+2 sin θ)
cos2 θ−sin θ(1+sin θ)

(b) tangent line: x = 3
√
3/4; normal line: y = 3/4

7. (a) dy
dx = θ cos θ+sin θ

cos θ−θ sin θ

(b) tangent line: y = −2/πx+ π/2; normal line:
y = π/2x+ π/2

9. (a) dy
dx =

4 sin(θ) cos(4θ)+sin(4θ) cos(θ)
4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b) tangent line: y = 5
√
3(x+

√
3/4)− 3/4; normal line:

y = −1/5
√
3(x+

√
3/4)− 3/4
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11. horizontal: θ = π/2, 3π/2;
ver cal: θ = 0, π, 2π

13. horizontal: θ = tan−1(1/
√
5), π/2, π − tan−1(1/

√
5), π +

tan−1(1/
√
5), 3π/2, 2π − tan−1(1/

√
5);

ver cal: θ = 0, tan−1(
√
5), π − tan−1(

√
5), π, π +

tan−1(
√
5), 2π − tan−1(

√
5)

15. In polar: θ = 0 ∼= θ = π

In rectangular: y = 0

17. area = 4π

19. area = π/12

21. area = 3π/2

23. area = 2π + 3
√
3/2

25. area = 1

27. area = 1
32 (4π − 3

√
3)

29. 4π

31. area =
√
2π

33. L ≈ 2.2592; (actual value L = 2.22748)

35. SA = 16π

37. SA = 32π/5

39. SA = 36π

Chapter 10
Sec on 10.1

1. right hand

3. curve (a parabola); surface (a cylinder)

5. a hyperboloid of two sheets

7. || AB || =
√
6; || BC || =

√
17; || AC || =

√
11. Yes, it is a right

triangle as || AB ||2 + || AC ||2 = || BC ||2.
9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.

13. The first octant of space; all points (x, y, z) where each of x, y and
z are non-nega ve. (Analogous to the first quadrant in the plane.)

15.

17.

19. x2 + z2 = 1
(1+y2)2

21. z = (
√

x2 + y2)2 = x2 + y2

23. (a) x = y2 +
z2

9

25. (b) x2 +
y2

9
+

z2

4
= 1

27.

29.

31.

Sec on 10.2

1. Answers will vary.

3. A vector with magnitude 1.

5. Their respec ve unit vectors are parallel; unit vectors u⃗1 and u⃗2
are parallel if u⃗1 = ±u⃗2.

7. # ‰PQ = ⟨1, 6⟩ = 1⃗i+ 6⃗j

9. # ‰PQ = ⟨6,−1, 6⟩ = 6⃗i− j⃗+ 6⃗k

11. (a) u⃗+ v⃗ = ⟨2,−1⟩; u⃗− v⃗ = ⟨0,−3⟩; 2⃗u− 3⃗v = ⟨−1,−7⟩.

(c) x⃗ = ⟨1/2, 2⟩.
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13.

.....

u⃗

. v⃗.
u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

15.

...

..
u⃗

.v⃗ .
u⃗ + v⃗

.
u⃗ − v⃗

.

x

.

y

.

z

17. || u⃗ || =
√
5, || v⃗ || =

√
13, || u⃗+ v⃗ || =

√
26, || u⃗− v⃗ || =

√
10

19. || u⃗ || =
√
5, || v⃗ || = 3

√
5, || u⃗+ v⃗ || = 2

√
5, || u⃗− v⃗ || = 4

√
5

21. When u⃗ and v⃗ have the same direc on. (Note: parallel is not
enough.)

23. u⃗ = ⟨0.6, 0.8⟩

25. u⃗ =
⟨
1/

√
3,−1/

√
3, 1/

√
3
⟩

27. u⃗ = ⟨cos 120◦, sin 120◦⟩ =
⟨
−1/2,

√
3/2
⟩
.

29. The force on each chain is 100/
√
3 ≈ 57.735lb.

31. The force on the chain with angle θ is approx. 45.124lb; the force
on the chain with angle φ is approx. 59.629lb.

33. θ = 45◦; the weight is li ed 0.29 (about 3.5in).

35. θ = 45◦; the weight is li ed 2.93 .

Sec on 10.3

1. Scalar

3. By considering the sign of the dot product of the two vectors. If
the dot product is posi ve, the angle is acute; if the dot product is
nega ve, the angle is obtuse.

5. −22

7. 3

9. not defined

11. Answers will vary.

13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and ⟨14,−8⟩.

19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and
⟨4, 5,−9⟩.

21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.

23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.

25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.

27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.

29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.

31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.

33. 1.96lb

35. 141.42 –lb

37. 500 –lb

39. 500 –lb

Sec on 10.4

1. vector

3. “Perpendicular” is one answer.

5. Torque

7. u⃗× v⃗ = ⟨12,−15, 3⟩

9. u⃗× v⃗ = ⟨−5,−31, 27⟩

11. u⃗× v⃗ = ⟨0,−2, 0⟩

13. u⃗× v⃗ = ⟨0, 0, ad− bc⟩

15. i⃗× k⃗ = −⃗j

17. Answers will vary.

19. 5

21. 0

23.
√
14

25. 3

27. 5
√
2/2

29. 1

31. 7

33. 2

35. ± 1√
6
⟨1, 1,−2⟩

37. ⟨0,±1, 0⟩

39. 87.5 –lb

41. 200/3 ≈ 66.67 –lb

43. With u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, we have

u⃗ · (⃗u× v⃗) = ⟨u1, u2, u3⟩ · (⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩)
= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)
= 0.

Sec on 10.5

1. A point on the line and the direc on of the line.

3. parallel, skew

5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩
parametric: x = 2+ 9t, y = −4+ 2t, z = 1+ 5t
symmetric: (x− 2)/9 = (y+ 4)/2 = (z− 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2+ 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y− 1)/3 = −(z− 5)

9. Answers can vary; here the direc on is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1+ 43t, z = 2+ 9t
symmetric: −x/10 = (y− 1)/43 = (z− 2)/9

11. Answers can vary; here the direc on is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7+ t, y = 2− t, z = −1+ 2t
symmetric: x− 7 = 2− y = (z+ 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1+ 2t, y = 1+ 3t
symmetric: (x− 1)/2 = (y− 1)/3

15. parallel

17. intersec ng; ℓ⃗1(3) = ℓ⃗2(4) = ⟨9,−5, 13⟩A.22



19. skew

21. same

23.
√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = 0⃗, giving a distance of 0.

31. (a) The distance formula cannot be used because since d⃗1 and
d⃗2 are parallel, c⃗ is 0⃗ and we cannot divide by || 0⃗ ||.

(b) Since d⃗1 and d⃗2 are parallel,
#     ‰P1P2 lies in the plane formed

by the two lines. Thus #     ‰P1P2 × d⃗2 is orthogonal to this
plane, and c⃗ = (

#     ‰P1P2 × d⃗2)× d⃗2 is parallel to the plane,
but s ll orthogonal to both d⃗1 and d⃗2. We desire the length
of the projec on of #     ‰P1P2 onto c⃗, which is what the formula
provides.

(c) Since the lines are parallel, one can measure the distance
between the lines at any loca on on either line (just as to
find the distance between straight railroad tracks, one can
use a measuring tape anywhere along the track, not just at
one specific place.) Let P = P1 and Q = P2 as given by the
equa ons of the lines, and apply the formula for distance
between a point and a line.

Sec on 10.6

1. A point in the plane and a normal vector (i.e., a direc on
orthogonal to the plane).

3. Answers will vary.

5. Answers will vary.

7. Standard form: 3(x− 2)− (y− 3) + 7(z− 4) = 0
general form: 3x− y+ 7z = 31

9. Answers may vary;
Standard form: 8(x− 1) + 4(y− 2)− 4(z− 3) = 0
general form: 8x+ 4y− 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y− 1) + (z− 2) = 0
general form: −7x+ 2y+ z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y− 1) = 0
general form: 2x− y = 1

15. Answers may vary;
Standard form: 2(x− 2)− (y+ 6)− 4(z− 1) = 0
general form: 2x− y− 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y− 7) + (z− 3) = 0
general form: x+ y+ z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y− 7)− 10(z− 2) = 0
general form: 3x+ 8y− 10z = 24

21. Answers may vary:

ℓ =


x = 14t
y = −1− 10t
z = 2− 8t

23. (−3,−7,−5)

25. No point of intersec on; the plane and line are parallel.

27.
√

5/7

29. 1/
√
3

31. If P is any point in the plane, and Q is also in the plane, then # ‰PQ
lies parallel to the plane and is orthogonal to n⃗, the normal vector.
Thus n⃗ · # ‰PQ = 0, giving the distance as 0.

Chapter 11

Sec on 11.1

1. parametric equa ons

3. displacement

5.

.....

1

.

2

.

3

.

4

.
−1
.

1

.

2

.

3

.

4

.

x

.

y

7.

.....
−5

.
5

.

5

.

10

. x.

y

9.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y

11.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y
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13.

...

..
1

.
2

.4 .
6

.
−2

.

2

.
x

. y.

z

15.

...

..
−1

.1 .
−1

.
1

.

−1

.

1

.x . y.

z

17. || r⃗(t) || =
√
t2 + t4 = |t|

√
t2 + 1.

19. || r⃗(t) || =
√

4 cos2 t+ 4 sin2 t+ t2 =
√
t2 + 4.

21. Answers may vary, though most direct solu on is
r⃗(t) = ⟨2 cos t+ 1, 2 sin t+ 2⟩.

23. Answers may vary, though most direct solu on is
r⃗(t) = ⟨1.5 cos t, 5 sin t⟩.

25. Answers may vary, though most direct solu ons are
r⃗(t) = ⟨t, 5(t− 2) + 3⟩ and
r⃗(t) = ⟨t+ 2, 5t+ 3⟩.

27. Specific forms may vary, though most direct solu ons are
r⃗(t) = ⟨1, 2, 3⟩+ t ⟨3, 3, 3⟩ and
r⃗(t) = ⟨3t+ 1, 3t+ 2, 3t+ 3⟩.

29. Answers may vary, though most direct solu on is
r⃗(t) = ⟨2 cos t, 2 sin t, 2t⟩.

31. ⟨1, 0⟩

33. ⟨0, 0, 1⟩

Sec on 11.2

1. component

3. It is difficult to iden fy the points on the graphs of r⃗(t) and r⃗ ′(t)
that correspond to each other.

5. ⟨11, 74, sin 5⟩

7. ⟨1, e⟩

9. (−∞, 0)
∪
(0,∞)

11. r⃗ ′(t) = ⟨− sin t, et, 1/t⟩

13. r⃗ ′(t) = (2t) ⟨sin t, 2t+ 5⟩+ (t2) ⟨cos t, 2⟩ =⟨
2t sin t+ t2 cos t, 6t2 + 10t

⟩
15. r⃗ ′(t) =

⟨2t, 1, 0⟩ × ⟨sin t, 2t+ 5, 1⟩+
⟨
t2 + 1, t− 1, 1

⟩
× ⟨cos t, 2, 0⟩ =⟨

−1, cos t− 2t, 6t2 + 10t+ 2+ cos t− sin t− t cos t
⟩

17.

.....
2

.
4

.
6

.

2

.

4

.

6

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) = ⟨2t+ 1, 2t− 1⟩

19.

.....

2

.

4

.
−2
.

2

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) =
⟨
2t, 3t2 − 1

⟩
21. ℓ(t) = ⟨2, 0⟩+ t ⟨3, 1⟩
23. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩
25. t = 2nπ, where n is an integer; so

t = . . .− 4π,−2π, 0, 2π, 4π, . . .

27. r⃗(t) is not smooth at t = 3π/4+ nπ, where n is an integer

29. Both deriva ves return
⟨
5t4, 4t3 − 3t2, 3t2

⟩
.

31. Both deriva ves return⟨
2t− et − 1, cos t− 3t2, (t2 + 2t)et − (t− 1) cos t− sin t

⟩
.

33.
⟨ 1
4 t

4, sin t, tet − et
⟩
+ C⃗

35. ⟨−2, 0⟩
37. r⃗(t) =

⟨ 1
2 t

2 + 2,− cos t+ 3
⟩

39. r⃗(t) =
⟨
t4/12+ t+ 4, t3/6+ 2t+ 5, t2/2+ 3t+ 6

⟩
41. 2

√
13π

43. 1
54
(
(22)3/2 − 8

)
45. As r⃗(t) has constant length, r⃗(t) · r⃗(t) = c2 for some constant c.

Thus

r⃗(t) · r⃗(t) = c2

d
dt
(⃗
r(t) · r⃗(t)

)
=

d
dt
(
c2
)

r⃗ ′(t) · r⃗(t) + r⃗(t) · r⃗ ′(t) = 0

2⃗r(t) · r⃗ ′(t) = 0

r⃗(t) · r⃗ ′(t) = 0.

Sec on 11.3

1. Velocity is a vector, indica ng an objects direc on of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.

3. The average velocity is found by dividing the displacement by the
me traveled – it is a vector. The average speed is found by

dividing the distance traveled by the me traveled – it is a scalar.

5. One example is traveling at a constant speed s in a circle, ending
at the star ng posi on. Since the displacement is 0⃗, the average
velocity is 0⃗, hence || 0⃗ || = 0. But traveling at constant speed s
means the average speed is also s > 0.

A.24



7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

9. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

11. v⃗(t) = ⟨1, cos t⟩, a⃗(t) = ⟨0,− sin t⟩

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

v⃗(π/4)

.
a⃗(π/4)

. x.

y

13. v⃗(t) = ⟨2t+ 1,−2t+ 2⟩, a⃗(t) = ⟨2,−2⟩

.....

2

.

4

.

6

.

2

.

−2

.

−4

.

−6

.−8.

v⃗(1)

.

a⃗(1)

.

x

.

y

15. || v⃗(t) || =
√
4t2 + 1.

Min at t = 0; Max at t = ±1.

17. || v⃗(t) || = 5.
Speed is constant, so there is no difference between min/max

19. || v⃗(t) || = | sec t|
√
tan2 t+ sec2 t.

min: t = 0; max: t = π/4

21. || v⃗(t) || = 13.
speed is constant, so there is no difference between min/max

23. || v⃗(t) || =
√

4t2 + 1+ t2/(1− t2).
min: t = 0; max: there is no max; speed approaches∞ as
t → ±1

25. (a) r⃗1(1) = ⟨1, 1⟩; r⃗2(1) = ⟨1, 1⟩

(b) v⃗1(1) = ⟨1, 2⟩; || v⃗1(1) || =
√
5; a⃗1(1) = ⟨0, 2⟩

v⃗2(1) = ⟨2, 4⟩; || v⃗2(1) || = 2
√
5; a⃗2(1) = ⟨2, 12⟩

27. (a) r⃗1(2) = ⟨6, 4⟩; r⃗2(2) = ⟨6, 4⟩

(b) v⃗1(2) = ⟨3, 2⟩; || v⃗1(2) || =
√
13; a⃗1(2) = ⟨0, 0⟩

v⃗2(2) = ⟨6, 4⟩; || v⃗2(2) || = 2
√
13; a⃗2(2) = ⟨0, 0⟩

29. v⃗(t) = ⟨2t+ 1, 3t+ 2⟩, r⃗(t) =
⟨
t2 + t+ 5, 3t2/2+ 2t− 2

⟩
31. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨1− cos t, sin t⟩

33. Displacement: ⟨0, 0, 6π⟩; distance traveled: 2
√
13π ≈ 22.65 ;

average velocity: ⟨0, 0, 3⟩; average speed:
√
13 ≈ 3.61 /s

35. Displacement: ⟨0, 0⟩; distance traveled: 2π ≈ 6.28 ; average
velocity: ⟨0, 0⟩; average speed: 1 /s

37. At t-values of sin−1(9/30)/(4π) + n/2 ≈ 0.024+ n/2 seconds,
where n is an integer.

39. (a) Holding the crossbow at an angle of 0.013 radians,
≈ 0.745◦ will hit the target 0.4s later. (Another solu on
exists, with an angle of 89◦, landing 18.75s later, but this is
imprac cal.)

(b) In the .4 seconds the arrow travels, a deer, traveling at
20mph or 29.33 /s, can travel 11.7 . So she needs to lead
the deer by 11.7 .

41. The posi on func on is r⃗(t) =
⟨
220t,−16t2 + 1000

⟩
. The

y-component is 0 when t = 7.9; r⃗(7.9) = ⟨1739.25, 0⟩, meaning
the box will travel about 1740 horizontally before it lands.

Sec on 11.4

1. 1
3. T⃗(t) and N⃗(t).

5. T⃗(t) =
⟨

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

⟩
; T⃗(1) =

⟨
4/

√
17, 1/

√
17
⟩

7. T⃗(t) = cos t sin t√
cos2 t sin2 t

⟨− cos t, sin t⟩. (Be careful; this cannot be

simplified as just ⟨− cos t, sin t⟩ as
√
cos2 t sin2 t ̸= cos t sin t, but

rather | cos t sin t|.) T⃗(π/4) =
⟨
−
√
2/2,

√
2/2
⟩

9. ℓ(t) = ⟨2, 0⟩+ t
⟨
4/

√
17, 1/

√
17
⟩
; in parametric form,

ℓ(t) =
{

x = 2+ 4t/
√
17

y = t/
√
17

11. ℓ(t) =
⟨√

2/4,
√
2/4
⟩
+ t
⟨
−
√
2/2,

√
2/2
⟩
; in parametric form,

ℓ(t) =
{

x =
√
2/4−

√
2t/2

y =
√
2/4+

√
2t/2

13. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

15. T⃗(t) =
⟨
− sin t√

4 cos2 t+sin2 t
, 2 cos t√

4 cos2 t+sin2 t

⟩
;

N⃗(t) =
⟨
− 2 cos t√

4 cos2 t+sin2 t
,− sin t√

4 cos2 t+sin2 t

⟩
17. (a) Be sure to show work

(b) N⃗(π/4) =
⟨
−5/

√
34,−3/

√
34
⟩

19. (a) Be sure to show work

(b) N⃗(0) =
⟨
− 1√

5
, 2√

5

⟩
21. T⃗(t) = 1√

5
⟨2, cos t,− sin t⟩; N⃗(t) = ⟨0,− sin t,− cos t⟩

23. T⃗(t) = 1√
a2+b2

⟨−a sin t, a cos t, b⟩; N⃗(t) = ⟨− cos t,− sin t, 0⟩

25. aT = 4t√
1+4t2

and aN =
√

4− 16t2
1+4t2

At t = 0, aT = 0 and aN = 2;
At t = 1, aT = 4/

√
5 and aN = 2/

√
5.

At t = 0, all accelera on comes in the form of changing the
direc on of velocity and not the speed; at t = 1, more
accelera on comes in changing the speed than in changing
direc on.

27. aT = 0 and aN = 2
At t = 0, aT = 0 and aN = 2;
At t = π/2, aT = 0 and aN = 2.
The object moves at constant speed, so all accelera on comes
from changing direc on, hence aT = 0. a⃗(t) is always parallel to
N⃗(t), but twice as long, hence aN = 2.

29. aT = 0 and aN = a
At t = 0, aT = 0 and aN = a;
At t = π/2, aT = 0 and aN = a.
The object moves at constant speed, meaning that aT is always 0.
The object “rises” along the z-axis at a constant rate, so all
accelera on comes in the form of changing direc on circling the
z-axis. The greater the radius of this circle the greater the
accelera on, hence aN = a.

Sec on 11.5

1. me and/or distance
3. Answers may include lines, circles, helixes
5. κ

A.25



7. s = 3t, so r⃗(s) = ⟨2s/3, s/3,−2s/3⟩

9. s =
√
13t, so r⃗(s) =

⟨
3 cos(s/

√
13), 3 sin(s/

√
13), 2s/

√
13
⟩

11. κ =
|6x|

(1+(3x2−1)2)3/2
;

κ(0) = 0, κ(1/2) = 192
17

√
17

≈ 2.74.

13. κ =
| cos x|

(1+sin2 x)3/2
;

κ(0) = 1, κ(π/2) = 0

15. κ =
|2 cos t cos(2t)+4 sin t sin(2t)|

(4 cos2(2t)+sin2 t)3/2
;

κ(0) = 1/4, κ(π/4) = 8

17. κ =
|6t2+2|

(4t2+(3t2−1)2)3/2
;

κ(0) = 2, κ(5) = 19
1394

√
1394

≈ 0.0004

19. κ = 0;
κ(0) = 0, κ(1) = 0

21. κ = 3
13 ;

κ(0) = 3/13, κ(π/2) = 3/13

23. maximized at x = ±
√

2
4√5

25. maximized at t = 1/4

27. radius of curvature is 5
√
5/4.

29. radius of curvature is 9.

31. x2 + (y− 1/2)2 = 1/4, or c⃗(t) = ⟨1/2 cos t, 1/2 sin t+ 1/2⟩

33. x2 + (y+ 8)2 = 81, or c⃗(t) = ⟨9 cos t, 9 sin t− 8⟩

Chapter 12
Sec on 12.1

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2 + y2 ≤ 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

...

..
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.

1

.

2

.

−2

.

2

.

x

.
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17. Level curves are parabolas x = y2 + c.

...

..
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.
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c = 2

.

c = 0

.

c = −2

.

x

.

y

19. When c ̸= 0, the level curves are circles, centered at (1/c,−1/c)
with radius

√
2/c2 − 1. When c = 0, the level curve is the line

y = x.

...
..
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2

.

4

.
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.
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.

c = −1

.

c = 0

.

x

.

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2.

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

23. domain: x+ 2y− 4z ̸= 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with radius√
c.

29. The level surfaces are paraboloids of the form z = x2
c + y2

c ; the
larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =
√

x2 + 4y2

the level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2; whereas for z = x2 + 4y2 the level curves are
ellipses of the form x2

c + y2
c/4 = 1, i.e., a =

√
c and b =

√
c/2.

The first set of ellipses are spaced evenly apart, meaning the
func on grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the func on
grows faster and faster as c increases.
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The func on z =
√

x2 + 4y2 can be rewri en as z2 = x2 + 4y2,
an ellip c cone; the func on z = x2 + 4y2 is a paraboloid, each
matching the descrip on above.

Sec on 12.2

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}

7. (a) Answers will vary.
interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set
(c) S is bounded

9. (a) Answers will vary.
interior point: none
boundary point: (0,−1)

(b) S is a closed set, consis ng only of boundary points
(c) S is bounded

11. (a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.
(c) D is bounded.

13. (a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.
(c) D is unbounded.

15. (a) Along y = 0, the limit is 1.
(b) Along x = 0, the limit is−1.

Since the above limits are not equal, the limit does not exist.

17. (a) Along y = mx, the limit is
mx(1−m)

m2x+ 1
= 0 for allm.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

19. (a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ, the
overall limit does not exist.

Sec on 12.3

1. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being mul plied by a
nonconstant func on.

3. fx

5. fx = 2xy− 1, fy = x2 + 2
fx(1, 2) = 3, fy(1, 2) = 3

7. fx = − sin x sin y, fy = cos x cos y
fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4

9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x

11. fx = 1/y, fy = −x/y2
fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex2+y2 , fy = 2yex2+y2

fxx = 2ex2+y2 + 4x2ex2+y2 , fyy = 2ex2+y2 + 4y2ex2+y2

fxy = 4xyex2+y2 , fyx = 4xyex2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3),
fyy = −225x2y4 cos(5xy3)− 30xy sin(5xy3)
fxy = −75xy5 cos(5xy3)− 15y2 sin(5xy3),
fyx = −75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 − 2

(x2+y2+1)2 , fyy =
8y2

(x2+y2+1)3 − 2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.

29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2

Sec on 12.4

1. T

3. T

5. dz = (sin y+ 2x)dx+ (x cos y)dy

7. dz = 5dx− 7dy

9. dz = x√
x2+y

dx+ 1
2
√

x2+y
dy, with dx = −0.05 and dy = .1. At

(3, 7), dz = 3/4(−0.05) + 1/8(.1) = −0.025, so
f(2.95, 7.1) ≈ −0.025+ 4 = 3.975.

11. dz = (2xy− y2)dx+ (x2 − 2xy)dy, with dx = 0.04 and
dy = 0.06. At (2, 3), dz = 3(0.04) + (−8)(0.06) = −0.36, so
f(2.04, 3.06) ≈ −0.36− 6 = −6.36.

13. The total differen al of volume is dV = 4πdr+ πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensi ve to changes in the radius.
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15. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx+ x sec2 θdθ.
With θ = 85◦ and x = 30, we have dℓ = 11.43dx+ 3949.38dθ.
The measured length of the wall is much more sensi ve to errors
in θ than in x. While it can be difficult to compare sensi vi es
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

17. dw = 2xyz3 dx+ x2z3 dy+ 3x2yz2 dz

19. dx = 0.05, dy = −0.1. dz = 9(.05) + (−2)(−0.1) = 0.65. So
f(3.05, 0.9) ≈ 7+ 0.65 = 7.65.

21. dx = 0.5, dy = 0.1, dz = −0.2.
dw = 2(0.5) + (−3)(0.1) + 3.7(−0.2) = −0.04, so
f(2.5, 4.1, 4.8) ≈ −1− 0.04 = −1.04.

Sec on 12.5

1. Because the parametric equa ons describe a level curve, z is
constant for all t. Therefore dz

dt = 0.

3. dx
dt , and

∂f
∂y

5. F

7. (a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dz
dt = 14.

9. (a) dz
dt = 5(−2 sin t) + 2(cos t) = −10 sin t+ 2 cos t

(b) At t = π/4, dz
dt = −4

√
2.

11. (a)
dz
dt

= 2x(cos t) + 4y(3 cos t).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and dz

dt = 19.

13. t = −4/3; this corresponds to a minimum

15. t = tan−1(1/5) + nπ, where n is an integer

17. We find that
dz
dt

= 38 cos t sin t.

Thus dz
dt = 0 when t = πn or πn+ π/2, where n is any integer.

19. (a) ∂z
∂s = 2xy(1) + x2(2) = 2xy+ 2x2;
∂z
∂t = 2xy(−1) + x2(4) = −2xy+ 4x2

(b) With s = 1, t = 0, x = 1 and y = 2. Thus ∂z
∂s = 6 and

∂z
∂t = 0

21. (a) ∂z
∂s = 2x(cos t) + 2y(sin t) = 2x cos t+ 2y sin t;
∂z
∂t = 2x(−s sin t) + 2y(s cos t) = −2xs sin t+ 2ys cos t

(b) With s = 2, t = π/4, x =
√
2 and y =

√
2. Thus ∂z

∂s = 4
and ∂z

∂t = 0

23. fx = 2x tan y, fy = x2 sec2 y;
dy
dx

= −
2 tan y
x sec2 y

25. fx =
(x+ y2)(2x)− (x2 + y)(1)

(x+ y2)2
,

fy =
(x+ y2)(1)− (x2 + y)(2y)

(x+ y2)2
;

dy
dx

= −
2x(x+ y2)− (x2 + y)
x+ y2 − 2y(x2 + y)

27. dz
dt = 2(4) + 1(−5) = 3.

29. ∂z
∂s = −4(5) + 9(−2) = −38,
∂z
∂t = −4(7) + 9(6) = 26.

Sec on 12.6

1. A par al deriva ve is essen ally a special case of a direc onal
deriva ve; it is the direc onal deriva ve in the direc on of x or y,
i.e., ⟨1, 0⟩ or ⟨0, 1⟩.

3. u⃗ = ⟨0, 1⟩

5. maximal, or greatest

7. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
9. ∇f =

⟨
−2x

(x2+y2+1)2 ,
−2y

(x2+y2+1)2

⟩
11. ∇f = ⟨2x− y− 7, 4y− x⟩

13. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
;∇f(2, 1) = ⟨−2, 2⟩. Be

sure to change all direc ons to unit vectors.

(a) 2/5 (⃗u = ⟨3/5, 4/5⟩)
(b) −2/

√
5 (⃗u =

⟨
−1/

√
5,−2/

√
5
⟩
)

15. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
;∇f(1, 1) = ⟨−2/9,−2/9⟩. Be

sure to change all direc ons to unit vectors.

(a) 0 (⃗u =
⟨
1/

√
2,−1/

√
2
⟩
)

(b) 2
√
2/9 (⃗u =

⟨
−1/

√
2,−1/

√
2
⟩
)

17. ∇f = ⟨2x− y− 7, 4y− x⟩;∇f(4, 1) = ⟨0, 0⟩.

(a) 0

(b) 0

19. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
(a) ∇f(2, 1) = ⟨−2, 2⟩
(b) || ∇f(2, 1) || = || ⟨−2, 2⟩ || =

√
8

(c) ⟨2,−2⟩
(d)

⟨
1/

√
2, 1/

√
2
⟩

21. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩.
(b) || ∇f(1, 1) || = || ⟨−2/9,−2/9⟩ || = 2

√
2/9

(c) ⟨2/9, 2/9⟩
(d)

⟨
1/

√
2,−1/

√
2
⟩

23. ∇f = ⟨2x− y− 7, 4y− x⟩

(a) ∇f(4, 1) = ⟨0, 0⟩
(b) 0

(c) ⟨0, 0⟩
(d) All direc ons give a direc onal deriva ve of 0.

25. (a) ∇F(x, y, z) =
⟨
6xz3 + 4y, 4x, 9x2z2 − 6z

⟩
(b) 113/

√
3

27. (a) ∇F(x, y, z) =
⟨
2xy2, 2y(x2 − z2),−2y2z

⟩
(b) 0

Sec on 12.7

1. Answers will vary. The displacement of the vector is one unit in
the x-direc on and 3 units in the z-direc on, with no change in y.
Thus along a line parallel to v⃗, the change in z is 3 mes the
change in x – i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.

3. T

5. (a) ℓx(t) =

 x = 2+ t
y = 3
z = −48− 12t
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(b) ℓy(t) =

 x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7. (a) ℓx(t) =

 x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =

 x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =

 x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =

 x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent plane
is the same as the original func on, a plane.)

21. ∇F = ⟨x/4, y/2, z/8⟩; at P,∇F =
⟨
1/4,

√
2/2,

√
6/8
⟩

(a) ℓ⃗n(t) =


x = 1+ t/4
y =

√
2+

√
2t/2

z =
√
6+

√
6t/8

(b) 1
4 (x− 1) +

√
2

2 (y−
√
2) +

√
6

8 (z−
√
6) = 0.

23. ∇F =
⟨
y2 − z2, 2xy,−2xz

⟩
; at P,∇F = ⟨0, 4, 4⟩

(a) ℓ⃗n(t) =

 x = 2
y = 1+ 4t
z = −1+ 4t

(b) 4(y− 1) + 4(z+ 1) = 0.

Sec on 12.8

1. F; it is the “other way around.”

3. T

5. One cri cal point at (−4, 2); fxx = 1 and D = 4, so this point
corresponds to a rela ve minimum.

7. One cri cal point at (6,−3); D = −4, so this point corresponds
to a saddle point.

9. Two cri cal points: at (0,−1); fxx = 2 and D = −12, so this point
corresponds to a saddle point;
at (0, 1), fxx = 2 and D = 12, so this corresponds to a rela ve
minimum.

11. There are infinite cri cal points, whenever x = 0 or y = 0. With
D = −12x2y2, at each cri cal point D = 0 and the test is
inconclusive. (Some elementary thought shows that each is an
absolute minimum.)

13. One cri cal point: fx = 0 when x = 3; fy = 0 when y = 0, so one
cri cal point at (3, 0), which is a rela ve maximum, where
fxx = y2−16

(16−(x−3)2−y2)3/2
and D = 16

(16−(x−3)2−y2)2 .
Both fx and fy are undefined along the circle (x− 3)2 + y2 = 16;
at any point along this curve, f(x, y) = 0, the absolute minimum
of the func on.

15. The triangle is bound by the lines y = −1, y = 2x+ 1 and
y = −2x+ 1.
Along y = −1, there is a cri cal point at (0,−1).
Along y = 2x+ 1, there is a cri cal point at (−3/5,−1/5).
Along y = −2x+ 1, there is a cri cal point at (3/5,−1/5).
The func on f has one cri cal point, irrespec ve of the constraint,
at (0,−1/2).
Checking the value of f at these four points, along with the three
ver ces of the triangle, we find the absolute maximum is at
(0, 1, 3) and the absolute minimum is at (0,−1/2, 3/4).

17. The region has no “corners” or “ver ces,” just a smooth edge.
To find cri cal points along the circle x2 + y2 = 4, we solve for y2:
y2 = 4− x2. We can go further and state y = ±

√
4− x2.

We can rewrite f as
f(x) = x2 + 2x+ (4− x2) + 2

√
4− x2 = 2x+ 4+ 2

√
4− x2.

(We will return and use−
√
4− x2 later.) Solving f ′(x) = 0, we

get x =
√
2 ⇒ y =

√
2. f ′(x) is also undefined at x = ±2,

where y = 0.

Using y = −
√
4− x2, we rewrite f(x, y) as

f(x) = 2x+ 4− 2
√
4− x2. Solving f ′(x) = 0, we get

x = −
√
2, y = −

√
2. Again, f ′(x) is undefined at x = ±2.

The func on z = f(x, y) itself has a cri cal point at (−1,−1).
Checking the value of f at (−1,−1), (

√
2,
√
2), (−

√
2,−

√
2),

(2, 0) and (−2, 0), we find the absolute maximum is at
(
√
2,
√
2, 4+ 4

√
2) and the absolute minimum is at

(−1,−1,−2).

Chapter 13
Sec on 13.1

1. C(y), meaning that instead of being just a constant, like the
number 5, it is a func on of y, which acts like a constant when
taking deriva ves with respect to x.

3. curve to curve, then from point to point

5. (a) 18x2 + 42x− 117

(b) −108

7. (a) x4/2− x2 + 2x− 3/2

(b) 23/15

9. (a) sin2 y

(b) π/2

11.
∫ 4

1

∫ 1

−2
dy dx and

∫ 1

−2

∫ 4

1
dx dy.

area of R = 9u2

13.
∫ 4

2

∫ 7−x

x−1
dy dx. The order dx dy needs two iterated integrals as

x is bounded above by two different func ons. This gives:

∫ 3

1

∫ y+1

2
dx dy+

∫ 5

3

∫ 7−y

2
dx dy.

area of R = 4u2

15.
∫ 1

0

∫ √
x

x4
dy dx and

∫ 1

0

∫ 4√y

y2
dx dy

area of R = 7/15u2
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17.

.....

R

.

y = 4 − x2

. −2. 2.

2

.

4

.
x

.

y

area of R =

∫ 4

0

∫ √
4−y

−
√

4−y
dx dy

19.

.....

R

.

x2/16 + y2/4 = 1

.

2

.

4

.
−2
.

2

.

x

.

y

area of R =

∫ 4

0

∫ √
4−x2/4

−
√

4−x2/4
dy dx

21.

.....

R

.

y = x2

.

y =
x+

2

.
−1
.

1
.

2
.

1

.

2

.

3

.

4

. x.

y

area of R =

∫ 2

−1

∫ x+2

x2
dy dx

Sec on 13.2

1. volume

3. The double integral gives the signed volume under the surface.
Since the surface is always posi ve, it is always above the x-y
plane and hence produces only “posi ve” volume.

5. 6;
∫ 1

−1

∫ 2

1

(
x
y
+ 3
)

dy dx

7. 112/3;
∫ 2

0

∫ 4−2y

0

(
3x2 − y+ 2

)
dx dy

9. 16/5;
∫ 1

−1

∫ 1−x2

0
(x+ y+ 2) dy dx

11. (a)

.....

R

.

y =
√
x

.

y = x2

. 1.

1

. x.

y

(b)
∫ 1

0

∫ √
x

x2
x2y dy dx =

∫ 1

0

∫ √y

y2
x2y dx dy.

(c) 3
56

13. (a)

.....

R

.

−1

.

1

.

1

. −1.

x

.

y

(b)
∫ 1

−1

∫ 1

−1
x2 − y2 dy dx =

∫ 1

−1

∫ 1

−1
x2 − y2 dx dy.

(c) 0

15. (a)

.....

R

.

3x+
2y =

6

. 1. 2.

1

.

2

.

3

.
x

.

y

(b)

(c)
∫ 2

0

∫ 3−3/2x

0

(
6− 3x− 2y

)
dy dx =∫ 3

0

∫ 2−2/3y

0

(
6− 3x− 2y

)
dx dy.

(d) 6

17. (a)

.....

R

.

−3

.

3

. −3.

3

.

x

.

y

(b)
∫ 3

−3

∫ √
9−x2

0

(
x3y− x

)
dy dx =∫ 3

0

∫ √
9−y2

−
√

9−y2

(
x3y− x

)
dx dy.
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(c) 0

19. Integra ng ex2 with respect to x is not possible in terms of

elementary func ons.
∫ 2

0

∫ 2x

0
ex

2
dy dx = e4 − 1.

21. Integra ng
∫ 1

y

2y
x2 + y2

dx gives tan−1(1/y)− π/4; integra ng

tan−1(1/y) is hard.∫ 1

0

∫ x

0

2y
x2 + y2

dy dx = ln 2.

23. average value of f = 6/2 = 3

25. average value of f = 112/3
4 = 28/3

Sec on 13.3

1. f
(
r cos θ, r sin θ

)
, r dr dθ

3.
∫ 2π

0

∫ 1

0

(
3r cos θ − r sin θ + 4

)
r dr dθ = 4π

5.
∫ π

0

∫ 3 cos θ

cos θ

(
8− r sin θ

)
r dr dθ = 16π

7.
∫ 2π

0

∫ 2

1

(
ln(r2)

)
r dr dθ = 2π

(
ln 16− 3/2

)
9.
∫ π/2

−π/2

∫ 6

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ =∫ π/2

−π/2

∫ 6

0

(
r2 cos(2θ)

)
r dr dθ = 0

11.
∫ π/2

−π/2

∫ 5

0

(
r2
)
dr dθ = 125π/3

13.
∫ π/4

0

∫ √
8

0

(
r cos θ + r sin θ

)
r dr dθ = 16

√
2/3

15. (a) This is impossible to integrate with rectangular coordinates
as e−(x2+y2) does not have an an deriva ve in terms of
elementary func ons.

(b)
∫ 2π

0

∫ a

0
rer

2
dr dθ = π(1− e−a2 ).

(c) lim
a→∞

π(1− e−a2 ) = π. This implies that there is a finite

volume under the surface e−(x2+y2) over the en re x-y
plane.

Sec on 13.4

1. Because they are scalar mul ples of each other.

3. “li le masses”

5. Mx measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direc on.

7. x = 5.25

9. (x, y) = (0, 3)

11. M = 150gm;

13. M = 2lb

15. M = 16π ≈ 50.27kg

17. M = 54π ≈ 169.65lb

19. M = 150gm;My = 600;Mx = −75; (x, y) = (4,−0.5)

21. M = 2lb;My = 0;Mx = 2/3; (x, y) = (0, 1/3)

23. M = 16π ≈ 50.27kg;My = 4π;Mx = 4π; (x, y) = (1/4, 1/4)

25. M = 54π ≈ 169.65lb;My = 0;Mx = 504; (x, y) = (0, 2.97)

27. Ix = 64/3; Iy = 64/3; IO = 128/3

29. Ix = 16/3; Iy = 64/3; IO = 80/3

Sec on 13.5

1. arc length

3. surface areas

5. Intui vely, adding h to f only shi s f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
Analy cally, fx = gx and fy = gy; therefore, the surface area of
each is computed with iden cal double integrals.

7. SA =

∫ 2π

0

∫ 2π

0

√
1+ cos2 x cos2 y+ sin2 x sin2 y dx dy

9. SA =

∫ 1

−1

∫ 1

−1

√
1+ 4x2 + 4y2 dx dy

11. SA =

∫ 3

0

∫ 1

−1

√
1+ 9+ 49 dx dy = 6

√
59 ≈ 46.09

13. This is easier in polar:

SA =

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 cos2 t+ 4r2 sin2 t dr dθ

=

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 dr dθ

=
π

6
(
65

√
65− 1

)
≈ 273.87

15.

SA =

∫ 2

0

∫ 2x

0

√
1+ 1+ 4x2 dy dx

=

∫ 2

0

(
2x
√

2+ 4x2
)
dx

=
26
3
√
2 ≈ 12.26

17. This is easier in polar:

SA =

∫ 2π

0

∫ 5

0
r

√
1+

4r2 cos2 θ + 4r2 sin2 θ
r2 sin2 θ + r2 cos2 θ

dr dθ

=

∫ 2π

0

∫ 5

0
r
√
5 dr dθ

= 25π
√
5 ≈ 175.62

19. Integra ng in polar is easiest considering R:

SA =

∫ 2π

0

∫ 1

0
r
√

1+ c2 + d2 dr dθ

=

∫ 2π

0

1
2

(√
1+ c2 + d2

)
dθ

= π
√

1+ c2 + d2.

The value of h does not ma er as it only shi s the plane ver cally
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

Sec on 13.6

1. surface to surface, curve to curve and point to point

3. Answers can vary. From this sec on we used triple integra on to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

5. V =
∫ 1
−1
∫ 1
−1
(
8− x2 − y2 − (2x+ y)

)
dx dy = 88/3

7. V =
∫ π
0
∫ x
0
(
cos x sin y+ 2− sin x cos y

)
dy dx = π2 − π ≈ 6.728
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9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0
dz dx dy

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0
dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0
dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx = 1.

11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2
dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2
dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√

2z

∫ 2

0
dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx = 4/3.

13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0
dz dx dy

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1
dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1
dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2
dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz = 4/3.

15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dz dx dy

dy dz dx:
∫ 1

0

∫ x

0

∫ 1−x2

0
dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0
dy dz dx

dy dx dz:
∫ 1

0

∫ z

0

∫ 1−z2

0
dy dx dz+

∫ 1

0

∫ 1

z

∫ 1−x2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0
dx dy dz

Answers will vary. Neither order is par cularly “hard.” The order
dz dy dx requires integra ng a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

17. 8

19. π

21. M = 10,Myz = 15/2,Mxz = 5/2,Mxy = 5;
(x, y, z) = (3/4, 1/4, 1/2)

23. M = 16/5,Myz = 16/3,Mxz = 104/45,Mxy = 32/9;
(x, y, z) = (5/3, 13/18, 10/9) ≈ (1.67, 0.72, 1.11)

Sec on 13.7

1. In cylindrical, r determines how far from the origin one goes in the
x-y plane before considering the z-component. Equivalently, if on
projects a point in cylindrical coordinates onto the x-y plane, r will
be the distance of this projec on from the origin.
In spherical, ρ is the distance from the origin to the point.

3. Cylinders (tubes) centered at the origin, parallel to the z-axis;
planes parallel to the z-axis that intersect the z-axis; planes
parallel to the x-y plane.

5. (a) Cylindrical: (2
√
2, π/4, 1) and (2, 5π/6, 0)

Spherical: (3, π/4, cos−1(1/3)) and (2, 5π/6, π/2)

(b) Rectangular: (
√
2,
√
2, 2) and (0,−3,−4)

Spherical: (2
√
2, π/4, π/4) and

(5, 3π/2, π − tan−1(3/4))

(c) Rectangular: (1, 1,
√
2) and (0, 0, 1)

Cylindrical: (
√
2, π/4,

√
2) and (0, 0, 1)

7. (a) A cylindrical surface or tube, centered along the z-axis of
radius 1, extending from the x-y plane up to the plane
z = 1 (i.e., the tube has a length of 1).

(b) This is a region of space, being half of a tube with “thick”
walls of inner radius 1 and outer radius 2, centered along
the z-axis with a length of 1, where the half “below” the x-z
plane is removed.

(c) This is upper half of the sphere of radius 3 centered at the
origin (i.e., the upper hemisphere).

(d) This is a region of space, where the ball of radius 2,
centered at the origin, is removed from the ball of radius 3,
centered at the origin.

9.
∫ θ2

θ1

∫ r2

r1

∫ z2

z1
h(r, θ, z)r dz dr dθ

11. The region in space is bounded between the planes z = 0 and
z = 2, inside of the cylinder x2 + y2 = 4, and the planes θ = 0
and θ = π/2: describes a “wedge” of a cylinder of height 2 and
radius 2; the angle of the wedge is π/2, or 90◦.

13. Bounded between the plane z = 1 and the cone
z = 1−

√
x2 + y2: describes an inverted cone, with height of 1,

point at (0, 0, 1) and base radius of 1.

15. Describes a quarter of a ball of radius 3, centered at the origin;
the quarter resides above the x-y plane and above the x-z plane.

17. Describes the por on of the unit ball that resides in the first
octant.

19. Bounded above the cone z =
√

x2 + y2 and below the sphere
x2 + y2 + z2 = 4: describes a shape that is somewhat
“diamond”-like; some think of it as looking like an ice cream cone
(see Figure 13.7.8). It describes a cone, where the side makes an
angle of π/4 with the posi ve z-axis, topped by the por on of the
ball of radius 2, centered at the origin.

21. The region in space is bounded below by the cone
z =

√
3
√

x2 + y2 and above by the plane z = 1: it describes a
cone, with point at the origin, centered along the posi ve z-axis,
with height of 1 and base radius of tan(π/6) = 1/

√
3.

23. In cylindrical coordinates, the density is δ(r, θ, z) = r+ 1. Thus
mass is ∫ 2π

0

∫ 2

0

∫ 4

0
(r+ 1)r dz dr dθ = 112π/3.
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25. In cylindrical coordinates, the density is δ(r, θ, z) = 1. Thus mass
is ∫ π

0

∫ 1

0

∫ 4−r sin θ

0
r dz dr dθ = 2π − 2/3 ≈ 5.617.

27. In cylindrical coordinates, the density is δ(r, θ, z) = r+ 1. Thus
mass is

M =

∫ 2π

0

∫ 2

0

∫ 4

0
(r+ 1)r dz dr dθ = 112π/3.

We findMyz = 0,Mxz = 0, andMxy = 224π/3, placing the
center of mass at (0, 0, 2).

29. In cylindrical coordinates, the density is δ(r, θ, z) = 1. Thus mass
is ∫ π

0

∫ 1

0

∫ 4−r sin θ

0
r dz dr dθ = 2π − 2/3 ≈ 5.617.

We findMyz = 0,Mxz = 8/3− π/8, andMxy = 65π/16− 8/3,
placing the center of mass at≈ (0, 0.405, 1.80).

31. In spherical coordinates, the density is δ(ρ, θ,φ) = 1. Thus mass
is ∫ π/2

0

∫ 2π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ = 2π/3.

33. In spherical coordinates, the density is δ(ρ, θ,φ) = ρ cosφ. Thus
mass is∫ π/4

0

∫ 2π

0

∫ 1

0

(
ρ cos(φ)

)
ρ2 sin(φ) dρ dθ dφ = π/8.

35. In spherical coordinates, the density is δ(ρ, θ,φ) = 1. Thus mass
is ∫ π/2

0

∫ 2π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ = 2π/3.

We findMyz = 0,Mxz = 0, andMxy = π/4, placing the center of
mass at (0, 0, 3/8).

37. In spherical coordinates, the density is δ(ρ, θ,φ) = ρ cosφ. Thus
mass is∫ π/4

0

∫ 2π

0

∫ 1

0

(
ρ cos(φ)

)
ρ2 sin(φ) dρ dθ dφ = π/8.

We findMyz = 0,Mxz = 0, andMxy = (4−
√
2)π/30, placing

the center of mass at (0, 0, 4(4−
√
2)/15).

39. Rectangular:
∫ 1
−1
∫√1−x2

−
√

1−x2

∫√1−x2−y2

−
√

1−x2−y2
dz dy dx

Cylindrical:
∫ 2π
0
∫ 1
0
∫√1−r2

−
√

1−r2
r dz dr dθ

Spherical:
∫ π
0
∫ 2π
0
∫ 1
0 ρ2 sin(φ) dρ dθ dφ

Spherical appears simplest, avoiding the integra on of
square-roots and using techniques such as Subs tu on; all
bounds are constants.

41. Rectangular:
∫ 1
−1
∫√1−x2

−
√

1−x2

∫ 1√
x2+y2

dz dy dx

Cylindrical:
∫ 2π
0
∫ 1
0
∫ 1
r r dz dr dθ

Spherical:
∫ π/4
0

∫ 2π
0
∫ sec φ
0 ρ2 sin(φ) dρ dθ dφ

Cylindrical appears simplest, avoiding the integra on of
square-roots that rectangular uses. Spherical is not difficult,
though it requires Subs tu on, an extra step.

Chapter 14
Sec on 14.1

1. When C is a curve in the plane and f is a surface defined over C,
then

∫
C f(s) ds describes the area under the spa al curve that lies

on f, over C.

3. The variable s denotes the arc-length parameter, which is
generally difficult to use. The Key Idea allows one to parametrize
a curve using another, ideally easier-to-use, parameter.

5. 12
√
2

7. 40π

9. Over the first subcurve of C, the line integral has a value of 3/2;
over the second subcurve, the line integral has a value of 4/3. The
total value of the line integral is thus 17/6.

11.
∫ 1
0 (5t

2 +2 t+ 2)
√

(4t+ 1)2 + 1 dt ≈ 17.071

13.
∮ 2π
0
(
10− 4 cos2 t− sin2 t

)√
cos2 t+ 4 sin2 t dt ≈ 74.986

15. 7
√
26/3

17. 8π3

19. M = 8
√
2π2; center of mass is (0,−1/(2π), 8π/3).

Sec on 14.2

1. Answers will vary. Appropriate answers include veloci es of
moving par cles (air, water, etc.); gravita onal or electromagne c
forces.

3. Specific answers will vary, though should relate to the idea that
the vector field is spinning clockwise at that point.

5. Correct answers should look similar to

−2

2

−2 2
x

y

7. Correct answers should look similar to

−2

2

−2 2
x

y

9. div F⃗ = 1+ 2y
curl F⃗ = 0

11. div F⃗ = x cos(xy)− y sin(xy)
curl F⃗ = y cos(xy) + x sin(xy)

13. div F⃗ = 3
curl F⃗ = ⟨−1,−1,−1⟩

15. div F⃗ = 1+ 2y
curl F⃗ = 0

17. div F⃗ = 2y− sin z
curl F⃗ = 0⃗

Sec on 14.3

1. False. It is true for line integrals over scalar fields, though.

3. True.
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5. We can conclude that F⃗ is conserva ve.

7. 11/6. (One parametriza on for C is r⃗(t) = ⟨3t, t⟩ on 0 ≤ t ≤ 1.)

9. 0. (One parametriza on for C is r⃗(t) = ⟨cos t, sin t⟩ on
0 ≤ t ≤ π.)

11. 12. (One parametriza on for C is r⃗(t) = ⟨1, 2, 3⟩+ t⟨3, 1,−1⟩ on
0 ≤ t ≤ 1.)

13. 5/6 joules. (One parametriza on for C is r⃗(t) = ⟨t, t⟩ on
0 ≤ t ≤ 1.)

15. 24 -lbs.

17. (a) f(x, y) = xy+ x
(b) curl F⃗ = 0.
(c) 1. (One parametriza on for C is r⃗(t) = ⟨t,−1t⟩ on

0 ≤ t ≤ 1.)
(d) 1 (with A = (0, 1) and B = (1, 0), f(B)− f(A) = 1.)

19. (a) f(x, y) = x2yz
(b) curl F⃗ = 0⃗.
(c) 250.
(d) 250 (with A = (1,−1, 0) and B = (5, 5, 2),

f(B)− f(A) = 250.)

21. Since F⃗ is conserva ve, it is the gradient of some poten al
func on. That is,∇f = ⟨fx, fy, fz⟩ = F⃗ = ⟨M,N, P⟩. In par cular,
M = fx, N = fy and P = fz.
Note that
curl F⃗ = ⟨Py−Nz,Mz−Px,Nx−My⟩ = ⟨fzy−fyz, fxz−fzx, fyx−fxy⟩,
which, by Theorem 12.3.1, is ⟨0, 0, 0⟩.

Sec on 14.4

1. along, across

3. the curl of F⃗, or curl F⃗

5. curl F⃗

7. 12

9. −2/3

11. 1/2

13. The line integral
∮
C F⃗ · d⃗r, over the parabola, is 38/3; over the line,

it is−10. The total line integral is thus 38/3− 10 = 8/3. The
double integral of curl F⃗ = 2 over R also has value 8/3.

15. Three line integrals need to be computed to compute
∮
C F⃗ · d⃗r. It

does not ma er which corner one starts from first, but be sure to
proceed around the triangle in a counterclockwise fashion.
From (0, 0) to (2, 0), the line integral has a value of 0. From (2, 0)
to (1, 1) the integral has a value of 7/3. From (1, 1) to (0, 0) the
line integral has a value of−1/3. Total value is 2.
The double integral of curl F⃗ over R also has value 2.

17. Any choice of F⃗ is appropriate as long as curl F⃗ = 1. When
F⃗ = ⟨−y/2, x/2⟩, the integrand of the line integral is simply 6.
The area of R is 12π.

19. Any choice of F⃗ is appropriate as long as curl F⃗ = 1. The choices of
F⃗ = ⟨−y, 0⟩, ⟨0, x⟩ and ⟨−y/2, x/2⟩ each lead to reasonable
integrands. The area of R is 16/15.

21. The line integral
∮
C F⃗ · n⃗ ds, over the parabola, is−22/3; over the

line, it is 10. The total line integral is thus−22/3+ 10 = 8/3.
The double integral of div F⃗ = 2 over R also has value 8/3.

23. Three line integrals need to be computed to compute
∮
C F⃗ · n⃗ ds.

It does not ma er which corner one starts from first, but be sure
to proceed around the triangle in a counterclockwise fashion.
From (0, 0) to (2, 0), the line integral has a value of 0. From (2, 0)
to (1, 1) the integral has a value of 1/3. From (1, 1) to (0, 0) the
line integral has a value of 1/3. Total value is 2/3.
The double integral of div F⃗ over R also has value 2/3.

Sec on 14.5

1. Answers will vary, though generally should meaningfully include
terms like “two sided”.

3. (a) r⃗(u, v) = ⟨u, v, 3u2v⟩ on−1 ≤ u ≤ 1, 0 ≤ v ≤ 2.

(b) r⃗(u, v) =
⟨3v cos u+ 1, 3v sin u+ 2, 3(3v cos u+ 1)2(3v sin u+ 2)⟩,
on 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(c) r⃗(u, v) = ⟨u, v(2− 2u), 3u2v(2− 2u)⟩ on 0 ≤ u, v ≤ 1.

(d) r⃗(u, v) = ⟨u, v(1− u2), 3u2v(1− u2)⟩ on−1 ≤ u ≤ 1,
0 ≤ v ≤ 1.

5. r⃗(u, v) = ⟨0, u, v⟩ with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

7. r⃗(u, v) = ⟨3 sin u cos v, 2 sin u sin v, 4 cos u⟩ with 0 ≤ u ≤ π,
0 ≤ v ≤ 2π.

9. Answers may vary.
For z = 1

2 (3− x): r⃗(u, v) = ⟨u, v, 1
2 (3− u)⟩, with 1 ≤ u ≤ 3 and

0 ≤ v ≤ 2.
For x = 1: r⃗(u, v) = ⟨0, u, v⟩, with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1
For y = 0: r⃗(u, v) = ⟨u, 0, v/2(3− u)⟩, with 1 ≤ u ≤ 3,
0 ≤ v ≤ 1
For y = 2: r⃗(u, v) = ⟨u, 2, v/2(3− u)⟩, with 1 ≤ u ≤ 3,
0 ≤ v ≤ 1
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩, with 1 ≤ u ≤ 3, 0 ≤ v ≤ 2

11. Answers may vary.
For z = 2y : r⃗(u, v) = ⟨u, v(4− u2), 2v(4− u2)⟩ with
−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For y = 4− x2 : r⃗(u, v) = ⟨u, 4− u2, 2v(4− u2)⟩ with
−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v(4− u2), 0⟩ with−2 ≤ u ≤ 2 and
0 ≤ v ≤ 1.

13. Answers may vary.
For x+ y2/9 = 1: r⃗(u, v) = ⟨cos u, 3 sin u, v⟩ with 0 ≤ u ≤ 2π
and 1 ≤ v ≤ 3.
For z = 1: r⃗(u, v) = ⟨v cos u, 3v sin u, 1⟩ with 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1.
For z = 3: r⃗(u, v) = ⟨v cos u, 3v sin u, 3⟩ with 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1.

15. Answers may vary.
For z = 1− x2: r⃗(u, v) = ⟨u, v, 1− u2⟩ with−1 ≤ u ≤ 1 and
−1 ≤ v ≤ 2.
For y = −1: r⃗(u, v) = ⟨u,−1, v(1− u2)⟩ with−1 ≤ u ≤ 1 and
0 ≤ v ≤ 1.
For y = 2: r⃗(u, v) = ⟨u, 2, v(1− u2)⟩ with−1 ≤ u ≤ 1 and
0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩ with−1 ≤ u ≤ 1 and−1 ≤ v ≤ 2.

17. S = 2
√
14.

19. S = 4
√
3π.

21. S =
∫ 3
0
∫ 2π
0

√
v2 + 4v4 du dv = (37

√
37− 1)π/6 ≈ 117.319.

23. S =
∫ 1
0
∫ 1
−1
√

(5u2 − 2uv− 5)2 + u4 + (1− u2)2 du dv ≈
7.084.

Sec on 14.6

1. curve; surface

3. outside

5. 240
√
3

7. 24
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9. 0

11. −1/2

13. 0; the flux over S1 is−45π and the flux over S2 is 45π.

Sec on 14.7

1. Answers will vary; in Sec on 14.4, the Divergence Theorem
connects outward flux over a closed curve in the plane to the
divergence of the vector field, whereas in this sec on the
Divergence Theorem connects outward flux over a closed surface
in space to the divergence of the vector field.

3. Curl.

5. Outward flux across the plane z = 2− x/2− 2y/3 is 14; across
the plane z = 0 the outward flux is−8; across the planes x = 0
and y = 0 the outward flux is 0.
Total outward flux: 14.∫∫

D div F⃗ dV =
∫ 4
0
∫ 3−3x/4
0

∫ 2−x/2−2y/3
0 (2x+ 2y) dz dy dx = 14.

7. Outward flux across the surface z = xy(3− x)(3− y) is 252;
across the plane z = 0 the outward flux is−9.
Total outward flux: 243.∫∫

D div F⃗ dV =
∫ 3
0
∫ 3
0
∫ xy(3−x)(3−y)
0 12 dz dy dx = 243.

9. Circula on on C:
∮
C F⃗ · d⃗r = π∫∫

S
(
curl F⃗

)
· n⃗ dS = π.

11. Circula on on C: The flow along the line from (0, 0, 2) to (4, 0, 0)
is 0; from (4, 0, 0) to (0, 3, 0) it is−6, and from (0, 3, 0) to
(0, 0, 2) it is 6. The total circula on is 0+ (−6) + 6 = 0.∫∫

S
(
curl F⃗

)
· n⃗ dS =

∫∫
S 0 dS = 0.

13. 128/225

15. 8192/105 ≈ 78.019

17. 5/3

19. 23π

21. Each field has a divergence of 1; by the Divergence Theorem, the
total outward flux across S is

∫∫
D 1 dS for each field.

23. Answers will vary. O en the closed surface S is composed of
several smooth surfaces. To measure total outward flux, this may
require evalua ng mul ple double integrals. Each double integral
requires the parametriza on of a surface and the computa on of
the cross product of par al deriva ves. One triple integral may
require less work, especially as the divergence of a vector field is
generally easy to compute.

A.35





Index

!, 405
Absolute Convergence Theorem, 456
absolute maximum, 129
absolute minimum, 129
Absolute Value Theorem, 410
accelera on, 77, 651
Alterna ng Harmonic Series, 427, 454, 467
Alterna ng Series Test, 450
aN, 669, 679
analy c func on, 488
angle of eleva on, 656
an deriva ve, 197

of vector–valued func on, 646
arc length, 379, 527, 553, 648, 673
arc length parameter, 673, 675
asymptote

horizontal, 50
ver cal, 48

aT, 669, 679
average rate of change, 635
average value of a func on, 777
average value of func on, 244

Binomial Series, 489
Bisec on Method, 42
boundary point, 690
bounded sequence, 412

convergence, 413
bounded set, 690

center of mass, 791–793, 795, 822
Chain Rule, 101

mul variable, 721, 724
nota on, 107

circle of curvature, 678
circula on, 870
closed, 690
closed disk, 690
concave down, 151
concave up, 151
concavity, 151, 524

inflec on point, 152
test for, 152

conic sec ons, 498
degenerate, 498
ellipse, 501
hyperbola, 504
parabola, 498

connected, 865
simply, 865

conserva ve field, 865, 866, 868

Constant Mul ple Rule
of deriva ves, 84
of integra on, 201
of series, 427

constrained op miza on, 754
con nuous func on, 37, 696

proper es, 40, 697
vector–valued, 638

contour lines, 684
convergence

absolute, 454, 456
Alterna ng Series Test, 450
condi onal, 454
Direct Comparison Test, 437

for integra on, 347
Integral Test, 434
interval of, 462
Limit Comparison Test, 438

for integra on, 349
nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of monotonic sequences, 416
of p-series, 423
of power series, 461
of sequence, 408, 413
of series, 419
radius of, 462
Ra o Comparison Test, 443
Root Comparison Test, 446

coordinates
cylindrical, 828
polar, 533
spherical, 831

cri cal number, 131
cri cal point, 131, 749–751
cross product

and deriva ves, 643
applica ons, 605

area of parallelogram, 606
torque, 608
volume of parallelepiped, 607

defini on, 601
proper es, 603, 604

curl, 853
of conserva ve fields, 868

curvature, 675
and mo on, 679
equa ons for, 677
of circle, 677, 678
radius of, 678
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curve
parametrically defined, 511
rectangular equa on, 511
smooth, 517

curve sketching, 159
cusp, 517
cycloid, 633
cylinder, 563
cylindrical coordinates, 828

decreasing func on, 142
finding intervals, 143

definite integral, 209
and subs tu on, 278
of vector–valued func on, 646
proper es, 211

del operator, 851
deriva ve

accelera on, 78
as a func on, 66
at a point, 62
basic rules, 82
Chain Rule, 101, 107, 721, 724
Constant Mul ple Rule, 84
Constant Rule, 82
differen al, 189
direc onal, 729, 731, 732, 735, 736
exponen al func ons, 107
First Deriv. Test, 145
Generalized Power Rule, 102
higher order, 85

interpreta on, 86
hyperbolic funct., 324
implicit, 111, 726
interpreta on, 75
inverse func on, 122
inverse hyper., 327
inverse trig., 125
logarithmic differen a on, 118
Mean Value Theorem, 138
mixed par al, 704
mo on, 78
mul variable differen ability, 713, 718
normal line, 63
nota on, 66, 85
parametric equa ons, 521
par al, 700, 708
Power Rule, 82, 95, 116
power series, 465
Product Rule, 89
Quo ent Rule, 92
second, 85
Second Deriv. Test, 155
Sum/Difference Rule, 84
tangent line, 62
third, 85
trigonometric func ons, 94
vector–valued func ons, 639, 640, 643
velocity, 78

differen able, 62, 713, 718

differen al, 189
nota on, 189

Direct Comparison Test
for integra on, 347
for series, 437

direc onal deriva ve, 729, 731, 732, 735, 736
directrix, 498, 563
Disk Method, 364
displacement, 238, 634, 648
distance

between lines, 619
between point and line, 619
between point and plane, 628
between points in space, 560
traveled, 659

divergence, 852, 853
Alterna ng Series Test, 450
Direct Comparison Test, 437

for integra on, 347
Integral Test, 434
Limit Comparison Test, 438

for integra on, 349
nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of p-series, 423
of sequence, 408
of series, 419
Ra o Comparison Test, 443
Root Comparison Test, 446

Divergence Theorem
in space, 900
in the plane, 877

dot product
and deriva ves, 643
defini on, 588
proper es, 589, 590

double integral, 770, 771
in polar, 781
proper es, 774

eccentricity, 503, 507
elementary func on, 248
ellipse

defini on, 501
eccentricity, 503
parametric equa ons, 517
reflec ve property, 504
standard equa on, 502

extrema
absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
finding, 132
rela ve, 130, 749, 750

Extreme Value Theorem, 130, 754
extreme values, 129

factorial, 405
First Deriva ve Test, 145



first octant, 560
floor func on, 38
flow, 870, 872
fluid pressure/force, 397, 399
flux, 870, 872, 893, 894
focus, 498, 501, 504
Fubini’s Theorem, 771
func on

of three variables, 687
of two variables, 683
vector–valued, 631

Fundamental Theorem of Calculus, 236, 237
and Chain Rule, 240

Fundamental Theorem of Line Integrals, 864, 866

Gabriel’s Horn, 384
Gauss’s Law, 904
Generalized Power Rule, 102
geometric series, 421, 422
gradient, 731, 732, 735, 736, 746

and level curves, 732
and level surfaces, 746

Green’s Theorem, 874

Harmonic Series, 427
Head To Tail Rule, 578
Hooke’s Law, 390
hyperbola

defini on, 504
eccentricity, 507
parametric equa ons, 517
reflec ve property, 507
standard equa on, 505

hyperbolic func on
defini on, 321
deriva ves, 324
iden es, 324
integrals, 324
inverse, 325

deriva ve, 327
integra on, 327
logarithmic def., 326

implicit differen a on, 111, 726
improper integra on, 342, 345
incompressible vector field, 852
increasing func on, 142

finding intervals, 143
indefinite integral, 197

of vector–valued func on, 646
indeterminate form, 2, 49, 335, 336
inflec on point, 152
ini al point, 574
ini al value problem, 202
Integral Test, 434
integra on

arc length, 379
area, 209, 762, 763
area between curves, 241, 354
average value, 244
by parts, 283

by subs tu on, 265
definite, 209

and subs tu on, 278
proper es, 211
Riemann Sums, 232

displacement, 238
distance traveled, 659
double, 770
fluid force, 397, 399
Fun. Thm. of Calc., 236, 237
general applica on technique, 353
hyperbolic funct., 324
improper, 342, 345, 347, 349
indefinite, 197
inverse hyper., 327
iterated, 761
Mean Value Theorem, 243
mul ple, 761
nota on, 198, 209, 237, 761
numerical, 248

Le /Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255, 256
Trapezoidal Rule, 251, 255, 256

of mul variable func ons, 759
of power series, 465
of trig. func ons, 271
of trig. powers, 294, 299
of vector–valued func on, 646
of vector–valued func ons, 646
par al frac on decomp., 314
Power Rule, 202
Sum/Difference Rule, 202
surface area, 383, 529, 554
trig. subst., 305
triple, 808, 819–821
volume

cross-sec onal area, 362
Disk Method, 364
Shell Method, 371, 375
Washer Method, 366, 375

with cylindrical coordinates, 829
with spherical coordinates, 833
work, 387

interior point, 690
Intermediate Value Theorem, 42
interval of convergence, 462
iterated integra on, 761, 770, 771, 808, 819–821

changing order, 765
proper es, 774, 814

L’Hôpital’s Rule, 332, 334
lamina, 787
Le Hand Rule, 218, 223, 248
Le /Right Hand Rule, 255
level curves, 684, 732
level surface, 688, 746
limit

Absolute Value Theorem, 410
at infinity, 50
defini on, 10



difference quo ent, 6
does not exist, 4, 32
indeterminate form, 2, 49, 335, 336
L’Hôpital’s Rule, 332, 334
le handed, 30
of infinity, 46
of mul variable func on, 691, 692, 698
of sequence, 408
of vector–valued func ons, 637
one sided, 30
proper es, 18, 692
pseudo-defini on, 2
right handed, 30
Squeeze Theorem, 22

Limit Comparison Test
for integra on, 349
for series, 438

line integral
Fundamental Theorem, 864, 866
over scalar field, 841, 843, 859
over vector field, 860
path independent, 865, 866
proper es over a scalar field, 846
proper es over a vector field, 863

lines, 612
distances between, 619
equa ons for, 614
intersec ng, 615
parallel, 615
skew, 615

logarithmic differen a on, 118

Möbius band, 881
Maclaurin Polynomial, see Taylor Polynomial

defini on, 474
Maclaurin Series, see Taylor Series

defini on, 485
magnitude of vector, 574
mass, 787, 788, 822, 847

center of, 791, 847
maximum

absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
rela ve/local, 130, 749, 752

Mean Value Theorem
of differen a on, 138
of integra on, 243

Midpoint Rule, 218, 223
minimum

absolute, 129, 749
and First Deriv. Test, 145, 155
rela ve/local, 130, 749, 752

moment, 793, 795, 822
monotonic sequence, 414
mul ple integra on, see iterated integra on
mul variable func on, 683, 687

con nuity, 696–698, 714, 719
differen ability, 713, 714, 718, 719
domain, 683, 687

level curves, 684
level surface, 688
limit, 691, 692, 698
range, 683, 687

Newton’s Method, 168
norm, 574
normal line, 63, 521, 742
normal vector, 623
nth–term test, 429
numerical integra on, 248

Le /Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255

error bounds, 256
Trapezoidal Rule, 251, 255

error bounds, 256

octant
first, 560

one to one, 880
open, 690
open ball, 698
open disk, 690
op miza on, 181

constrained, 754
orientable, 880
orthogonal, 592, 742

decomposi on, 596
orthogonal decomposi on of vectors, 596
orthogonal projec on, 594
oscula ng circle, 678
outer unit normal vector, 900

p-series, 423
parabola

defini on, 498
general equa on, 499
reflec ve property, 501

parallel vectors, 582
Parallelogram Law, 578
parametric equa ons

arc length, 527
concavity, 524
defini on, 511
finding d2y

dx2 , 525
finding dy

dx , 521
normal line, 521
of a surface, 880
surface area, 529
tangent line, 521

parametrized surface, 880
par al deriva ve, 700, 708

high order, 708
meaning, 702
mixed, 704
second deriva ve, 704
total differen al, 712, 718

par on, 225
size of, 225

path independent, 865, 866



perpendicular, see orthogonal
piecewise smooth curve, 846
planes

coordinate plane, 562
distance between point and plane, 628
equa ons of, 624
introduc on, 562
normal vector, 623
tangent, 745

point of inflec on, 152
polar

coordinates, 533
func on

arc length, 553
gallery of graphs, 540
surface area, 554

func ons, 536
area, 549
area between curves, 551
finding dy

dx , 546
graphing, 536

polar coordinates, 533
plo ng points, 533

poten al func on, 857, 866
Power Rule

differen a on, 82, 89, 95, 116
integra on, 202

power series, 460
algebra of, 491
convergence, 461
deriva ves and integrals, 465

projec le mo on, 656, 657, 670

quadric surface
defini on, 566
ellipsoid, 568
ellip c cone, 567
ellip c paraboloid, 567
gallery, 567–569
hyperbolic paraboloid, 569
hyperboloid of one sheet, 568
hyperboloid of two sheets, 569
sphere, 568
trace, 566

Quo ent Rule, 92

R, 574
radius of convergence, 462
radius of curvature, 678
Ra o Comparison Test

for series, 443
rearrangements of series, 455, 456
related rates, 174
Riemann Sum, 218, 222, 225

and definite integral, 232
Right Hand Rule, 218, 223, 248
right hand rule

of Cartesian coordinates, 560
of the cross product, 605

Rolle’s Theorem, 138

Root Comparison Test
for series, 446

saddle point, 751, 752
Second Deriva ve Test, 155, 752
sensi vity analysis, 717
sequence

Absolute Value Theorem, 410
posi ve, 437

sequences
boundedness, 412
convergent, 408, 413, 416
defini on, 405
divergent, 408
limit, 408
limit proper es, 411
monotonic, 414

series
absolute convergence, 454
Absolute Convergence Theorem, 456
alterna ng, 449

Approxima on Theorem, 452
Alterna ng Series Test, 450
Binomial, 489
condi onal convergence, 454
convergent, 419
defini on, 419
Direct Comparison Test, 437
divergent, 419
geometric, 421, 422
Integral Test, 434
interval of convergence, 462
Limit Comparison Test, 438
Maclaurin, 485
nth–term test, 429
p-series, 423
par al sums, 419
power, 460, 461

deriva ves and integrals, 465
proper es, 427
radius of convergence, 462
Ra o Comparison Test, 443
rearrangements, 455, 456
Root Comparison Test, 446
Taylor, 485
telescoping, 424, 425

Shell Method, 371, 375
signed area, 209
signed volume, 770, 771
simple curve, 865
simply connected, 865
Simpson’s Rule, 253, 255

error bounds, 256
smooth, 642

curve, 517
surface, 880

smooth curve
piecewise, 846

speed, 651
sphere, 561



spherical coordinates, 831
Squeeze Theorem, 22
Stokes’ Theorem, 906
Sum/Difference Rule

of deriva ves, 84
of integra on, 202
of series, 427

summa on
nota on, 219
proper es, 221

surface, 880
smooth, 880

surface area, 800
of parametrized surface, 886, 887
solid of revolu on, 383, 529, 554

surface integral, 891
surface of revolu on, 564, 565

tangent line, 62, 521, 546, 641
direc onal, 739

tangent plane, 745
Taylor Polynomial

defini on, 474
Taylor’s Theorem, 477

Taylor Series
common series, 491
defini on, 485
equality with genera ng func on, 487

Taylor’s Theorem, 477
telescoping series, 424, 425
terminal point, 574
torque, 608
total differen al, 712, 718

sensi vity analysis, 717
total signed area, 209
trace, 566
Trapezoidal Rule, 251, 255

error bounds, 256
triple integral, 808, 819–821

proper es, 814

unbounded sequence, 412
unbounded set, 690
unit normal vector

aN, 669
and accelera on, 668, 669
and curvature, 679
defini on, 666
in R2, 668

unit tangent vector
and accelera on, 668, 669
and curvature, 675, 679
aT, 669
defini on, 664
in R2, 668

unit vector, 580
proper es, 582
standard unit vector, 584
unit normal vector, 666
unit tangent vector, 664

vector field, 850
conserva ve, 865, 866
curl of, 853
divergence of, 852, 853
over vector field, 860
poten al func on of, 857, 866

vector–valued func on
algebra of, 632
arc length, 648
average rate of change, 635
con nuity, 638
defini on, 631
deriva ves, 639, 640, 643
describing mo on, 651
displacement, 634
distance traveled, 659
graphing, 631
integra on, 646
limits, 637
of constant length, 645, 655, 656, 665
projec le mo on, 656, 657
smooth, 642
tangent line, 641

vectors, 574
algebra of, 577
algebraic proper es, 580
component form, 575
cross product, 601, 603, 604
defini on, 574
dot product, 588–590
Head To Tail Rule, 578
magnitude, 574
norm, 574
normal vector, 623
orthogonal, 592
orthogonal decomposi on, 596
orthogonal projec on, 594
parallel, 582
Parallelogram Law, 578
resultant, 578
standard unit vector, 584
unit vector, 580, 582
zero vector, 578

velocity, 77, 651
volume, 770, 771, 806

Washer Method, 366, 375
work, 387, 599



Differen a on Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

Integra on Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ln x dx = x ln x− x+ C

8.
∫

ax dx =
1
ln a

· ax + C

9.
∫ 1

x
dx = ln |x|+ C

10.
∫

cos x dx = sin x+ C

11.
∫

sin x dx =− cos x+ C

12.
∫

tan x dx =− ln | cos x|+ C

13.
∫

sec x dx = ln | sec x+ tan x|+ C

14.
∫

csc x dx =− ln | csc x+ cot x|+ C

15.
∫

cot x dx = ln | sin x|+ C

16.
∫

sec2 x dx = tan x+ C

17.
∫

csc2 x dx =− cot x+ C

18.
∫

sec x tan x dx = sec x+ C

19.
∫

csc x cot x dx =− csc x+ C

20.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

21.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

22.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

23.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

24.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

25.
∫

cosh x dx = sinh x+ C

26.
∫

sinh x dx = cosh x+ C

27.
∫

tanh x dx = ln(cosh x) + C

28.
∫

coth x dx = ln | sinh x|+ C

29.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

30.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

31.
∫ 1

a2 − x2
dx =

1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

32.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

33.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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Defini ons of the Trigonometric Func ons

Unit Circle Defini on

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Defini on

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Iden es

Pythagorean Iden es
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunc on Iden es
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Iden es
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solu on of
the equa on p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily dis nct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadra c Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Ra onal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithme c Opera ons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Addi onal Formulas

Summa on Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolu on:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condi on(s) of
Convergence

Condi on(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
con nuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ra o Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posi ve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posi ve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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